1
|
Amariles P, Rivera-Cadavid M, Ceballos M. Clinical Relevance of Drug Interactions in People Living with Human Immunodeficiency Virus on Antiretroviral Therapy-Update 2022: Systematic Review. Pharmaceutics 2023; 15:2488. [PMID: 37896248 PMCID: PMC10610003 DOI: 10.3390/pharmaceutics15102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The clinical outcomes of antiretroviral drugs may be modified through drug interactions; thus, it is important to update the drug interactions in people living with HIV (PLHIV). AIM To update clinically relevant drug interactions in PLHIV on antiretroviral therapy with novel drug interactions published from 2017 to 2022. METHODS A systematic review in Medline/PubMed database from July 2017 to December 2022 using the Mesh terms antiretroviral agents and drug interactions or herb-drug interactions or food-drug interactions. Publications with drug interactions in humans, in English or Spanish, and with full-text access were retrieved. The clinical relevance of drug interactions was grouped into five levels according to the gravity and probability of occurrence. RESULTS A total of 366 articles were identified, with 219 (including 87 citation lists) were included, which allowed for the identification of 471 drug interaction pairs; among them, 291 were systematically reported for the first time. In total 42 (14.4%) and 137 (47.1%) were level one and two, respectively, and 233 (80.1%) pairs were explained with the pharmacokinetic mechanism. Among these 291 pairs, protease inhibitors (PIs) and ritonavir/cobicistat-boosted PIs, as well as integrase strand transfer inhibitors (InSTIs), with 70 (24.1%) and 65 (22.3%) drug interaction pairs of levels one and two, respectively, were more frequent. CONCLUSIONS In PLHIV on antiretroviral therapy, we identify 291 drug interaction pairs systematically reported for the first time, with 179 (61.5%) being assessed as clinically relevant (levels one and two). The pharmacokinetic mechanism was the most frequently identified. PIs, ritonavir/cobicistat-boosted PIs, and InSTIs were the antiretroviral groups with the highest number of clinically relevant drug interaction pairs (levels one and two).
Collapse
Affiliation(s)
- Pedro Amariles
- Research Group on Pharmaceutical Promotion and Prevention, University of Antioquia, UdeA, AA 1226, Medellin 050010, Colombia; (M.R.-C.); (M.C.)
- Research Group on Pharmaceutical Care, University of Granada, 18071 Granada, Spain
| | - Mónica Rivera-Cadavid
- Research Group on Pharmaceutical Promotion and Prevention, University of Antioquia, UdeA, AA 1226, Medellin 050010, Colombia; (M.R.-C.); (M.C.)
| | - Mauricio Ceballos
- Research Group on Pharmaceutical Promotion and Prevention, University of Antioquia, UdeA, AA 1226, Medellin 050010, Colombia; (M.R.-C.); (M.C.)
- Research Group on Pharmacy Regency Technology, University of Antioquia, Medellin 050010, Colombia
| |
Collapse
|
2
|
Sia JEV, Lai X, Wu X, Zhang F, Li H, Cui C, Liu D. Physiologically-based pharmacokinetic modeling to predict drug-drug interactions of dabigatran etexilate and rivaroxaban in the Chinese older adults. Eur J Pharm Sci 2023; 182:106376. [PMID: 36626944 PMCID: PMC9883662 DOI: 10.1016/j.ejps.2023.106376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Drug-drug interaction (DDI) is one of the major concerns for the clinical use of NOACs in the older adults considering that coexistence of multiple diseases and comorbidity were common. Current guidelines on the DDI management were established based on clinical studies conducted in healthy adults and mainly focus on the Caucasians, whereas systemic and ethnic differences may lead to distinct management in the Chinese older adults. OBJECTIVES To investigate the impact of aging on the DDI magnitude between P-gp and/or CYP3A4 inhibitors with dabigatran etexilate and rivaroxaban in older adults, providing additional information for the use in clinical practice. RESULTS Compared with the simulated adult, the AUC of the simulated older adults increased by 42-88% (DABE) and 21-60% (rivaroxaban), respectively, during NOACs monotherapy. Simulation on DDIs predicted that verapamil and clarithromycin further increase the exposure of dabigatran by 29-72% and 40-47%, whereas clarithromycin, fluconazole, and ketoconazole increase the exposure of rivaroxaban by 21-30%, 16-24%, and 194-247% in the older adults. Overall, our simulation result demonstrated that aging and DDIs both increased the exposure of NOACs. However, aging does not have a drastic impact on the extent of DDIs. The DDI ratios of young and old older adults were similar to the adults and were also similar between Caucasians and Chinese. DISCUSSION We further simulated the interactions under steady-state based on the EHRA guideline (2021). Our simulation results revealed that recommended reduced dosing regimen of dabigatran etexilate during comedication with verapamil and clarithromycin (110 and 75 mg BID for Chinese young and old older adults) will result in exposure (trough concentration) that was either slightly higher or similar to the trough concentration of patients with any bleeding events. Routine monitoring of bleeding risk is encouraged. Further studies on the use of rivaroxaban in Chinese older adults are warranted. CONCLUSION Aging and DDI increases exposure of drug in Chinese older adults. However, aging does not have a drastic impact on the extent of DDIs. Clinical management of DDIs in Chinese older adults in the absence of complex polypharmacy can a priori be similar to the EHRA guideline but routine monitoring of bleeding risk is encouraged when dabigatran etexilate given with verapamil and clarithromycin.
Collapse
Affiliation(s)
- Jie En Valerie Sia
- Geriatrics Department, Peking University Third Hospital, Beijing 100191, China,Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China,Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xuan Lai
- Geriatrics Department, Peking University Third Hospital, Beijing 100191, China
| | - Xinyi Wu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China,Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Fan Zhang
- Geriatrics Department, Peking University Third Hospital, Beijing 100191, China
| | - Haiyan Li
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China,Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Cheng Cui
- Geriatrics Department, Peking University Third Hospital, Beijing 100191, China; Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China; Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China.
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China; Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
3
|
Marzolini C, Kuritzkes DR, Marra F, Boyle A, Gibbons S, Flexner C, Pozniak A, Boffito M, Waters L, Burger D, Back DJ, Khoo S. Recommendations for the Management of Drug-Drug Interactions Between the COVID-19 Antiviral Nirmatrelvir/Ritonavir (Paxlovid) and Comedications. Clin Pharmacol Ther 2022; 112:1191-1200. [PMID: 35567754 PMCID: PMC9348462 DOI: 10.1002/cpt.2646] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The coronavirus disease 2019 (COVID-19) antiviral nirmatrelvir/ritonavir (Paxlovid) has been granted authorization or approval in several countries for the treatment of patients with mild to moderate COVID-19 at high risk of progression to severe disease and with no requirement for supplemental oxygen. Nirmatrelvir/ritonavir will be primarily administered outside the hospital setting as a 5-day course oral treatment. The ritonavir component boosts plasma concentrations of nirmatrelvir through the potent and rapid inhibition of the key drug-metabolizing enzyme cytochrome P450 (CYP) 3A4. Thus nirmatrelvir/ritonavir, even given as a short treatment course, has a high potential to cause harm from drug-drug interactions (DDIs) with other drugs metabolized through this pathway. Options for mitigating risk from DDIs with nirmatrelvir/ritonavir are limited due to the clinical illness, the short window for intervention, and the related difficulty of implementing clinical monitoring or dosage adjustment of the comedication. Pragmatic options are largely confined to preemptive or symptom-driven pausing of the comedication or managing any additional risk through counseling. This review summarizes the effects of ritonavir on drug disposition (i.e., metabolizing enzymes and transporters) and discusses factors determining the likelihood of having a clinically significant DDI. Furthermore, it provides a comprehensive list of comedications likely to be used in COVID-19 patients which are categorized according to their potential DDI risk with nirmatrelvir/ritonavir. It also discusses recommendations for the management of DDIs which balance the risk of harm from DDIs with a short course of ritonavir, against unnecessary denial of nirmatrelvir/ritonavir treatment.
Collapse
Affiliation(s)
- Catia Marzolini
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fiona Marra
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Department of Pharmacy, National Health Service Greater Glasgow and Clyde, Glasgow, UK
| | - Alison Boyle
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Department of Pharmacy, National Health Service Greater Glasgow and Clyde, Glasgow, UK
| | - Sara Gibbons
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Charles Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, School of Medicine and Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anton Pozniak
- Chelsea and Westminster Hospital National Health Service Foundation Trust, London, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Marta Boffito
- Chelsea and Westminster Hospital National Health Service Foundation Trust, London, UK
| | - Laura Waters
- Mortimer Market Centre, Central and North West London, National Health Service Foundation Trust, London, UK
| | - David Burger
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
- Global DDI Solutions, Utrecht, The Netherlands
| | - David J Back
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Saye Khoo
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Svedmyr A, Hack H, Anderson BJ. Interactions of the protease inhibitor, ritonavir, with common anesthesia drugs. Paediatr Anaesth 2022; 32:1091-1099. [PMID: 35842922 PMCID: PMC9543968 DOI: 10.1111/pan.14529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022]
Abstract
The protease inhibitor, ritonavir, is a strong inhibitor of CYP 3A. The drug is used for management of the human immunovirus and is currently part of an oral antiviral drug combination (nirmatrelvir-ritonavir) for the early treatment of SARS-2 COVID-19-positive patients aged 12 years and over who have recognized comorbidities. The CYP 3A enzyme system is responsible for clearance of numerous drugs used in anesthesia (e.g., alfentanil, fentanyl, methadone, rocuronium, bupivacaine, midazolam, ketamine). Ritonavir will have an impact on drug clearances that are dependent on ritonavir concentration, anesthesia drug intrinsic hepatic clearance, metabolic pathways, concentration-response relationship, and route of administration. Drugs with a steep concentration-response relationship (ketamine, midazolam, rocuronium) are mostly affected because small changes in concentration have major changes in effect response. An increase in midazolam concentration is observed after oral administration because CYP 3A in the gastrointestinal wall is inhibited, causing a large increase in relative bioavailability. Fentanyl infusion may be associated with a modest increase in plasma concentration and effect, but the large between subject variability of pharmacokinetic and pharmacodynamic concentration changes suggests it will have little impact on an individual patient, especially when used with adverse effect monitoring. It has been proposed that drugs that have no or only a small metabolic pathway involving the CYP 3A enzyme be used during anesthesia, for example, propofol, atracurium, remifentanil, and the volatile agents. That anesthesia approach denies children of drugs with considerable value. It is better that the inhibitory changes in clearance of these drugs are understood so that rational drug choices can be made to tailor drug use to the individual patient. Altered drug dose, anticipation of duration of effect, timing of administration, use of reversal agents and perioperative monitoring would better behoove children undergoing anesthesia.
Collapse
Affiliation(s)
- Anders Svedmyr
- Dept AnaesthesiaStarship Children's HospitalAucklandNew Zealand
| | - Henrik Hack
- Dept AnaesthesiaStarship Children's HospitalAucklandNew Zealand
| | | |
Collapse
|
5
|
Hanigan S, Park JM. Evaluating pharmacokinetic drug-drug interactions of direct oral anticoagulants in patients with renal dysfunction. Expert Opin Drug Metab Toxicol 2022; 18:189-202. [PMID: 35543017 DOI: 10.1080/17425255.2022.2074397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Drug transporters, metabolic enzymes, and renal clearance play significant roles in the pharmacokinetics of direct oral anticoagulants (DOACs). Recommendations for DOAC drug-drug interactions (DDIs) by the product labeling are limited to selected CYP3A4 and P-glycoprotein inhibitors and lack considerations for concomitant renal dysfunction. AREAS COVERED This review focuses on: 1) current recommendations for the management of pharmacokinetic DOAC DDIs and the evidence used to support them; 2) alterations in DOAC exposure in the setting of concomitant DDIs and mild, moderate, and severe renal impairment; 3) clinical outcomes associated with this combination; and 4) expert recommendations for the management of pharmacokinetic DOAC DDIs. English-language, full-text articles on apixaban, dabigatran, rivaroxaban, and edoxaban with a publication date up to 30 September 2021 were retrieved from PubMed. EXPERT OPINION Given the lack of supporting clinical data, empiric dose adjustments based on pharmacokinetic data alone should be avoided. When a considerable increase in a DOAC exposure is anticipated, it may be advisable to use an alternative DOAC or anticoagulant from a different class. Future research on identification of DOAC therapeutic ranges and target patient populations is needed to inform clinical utility of DOAC level monitoring to guide the management of DDIs.
Collapse
Affiliation(s)
- Sarah Hanigan
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Jeong M Park
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Nhean S, Tseng A, Back D. The intersection of drug interactions and adverse reactions in contemporary antiretroviral therapy. Curr Opin HIV AIDS 2021; 16:292-302. [PMID: 34459470 DOI: 10.1097/coh.0000000000000701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Advances in antiretroviral therapy (ART) have transformed HIV infection into a chronic and manageable condition. The introduction of potent and more tolerable antiretrovirals (ARVs) with favorable pharmacokinetic profiles has changed the prevalence and nature of drug-drug interactions (DDIs). Here, we review the relevance of DDIs in the era of contemporary ART. RECENT FINDINGS Management of DDIs remains an important challenge with modern ART, primarily due to increased polypharmacy in older persons living with HIV. Significant DDIs exist between boosted ARVs or older nonnucleoside reverse transcriptase inhibitors and comedications for chronic comorbidities (e.g., anticoagulants, antiplatelets, statins) or complex conditions (e.g., anticancer agents, immunosuppressants). Newer ARVs such as unboosted integrase inhibitors, doravirine, and fostemsavir have reduced DDI potential, but there are clinically relevant DDIs that warrant consideration. Potential consequences of DDIs include increased toxicity and/or reduced efficacy of ARVs and/or comedications. Management approaches include switching to an ARV with less DDI potential, changing comedications, or altering medication dosage or dosing frequency. Deprescribing strategies can reduce DDIs and polypharmacy, improve adherence, minimize unnecessary adverse effects, and prevent medication-related errors. SUMMARY Management of DDIs requires close interdisciplinary collaboration from multiple healthcare disciplines (medicine, nursing, pharmacy) across a spectrum of care (community, outpatient, inpatient).
Collapse
Affiliation(s)
- Salin Nhean
- Correct Rx Pharmacy Services, Hanover, Maryland, USA
| | - Alice Tseng
- Immunodeficiency Clinic, University Health Network
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - David Back
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Peck RW, Shahin MH, Vinks AA. Precision Dosing: The Clinical Pharmacology of Goldilocks. Clin Pharmacol Ther 2021; 109:11-14. [PMID: 33616906 DOI: 10.1002/cpt.2112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Richard W Peck
- Pharma Research & Development (pRED), Roche Innovation Center, Basel, Switzerland
| | | | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|