1
|
Granados JC, Nigam SK. Organic anion transporters in remote sensing and organ crosstalk. Pharmacol Ther 2024; 263:108723. [PMID: 39284369 DOI: 10.1016/j.pharmthera.2024.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 11/05/2024]
Abstract
The organic anion transporters, OAT1 and OAT3, regulate the movement of drugs, toxins, and endogenous metabolites. In 2007, we proposed that OATs and other SLC22 transporters are involved in "remote sensing" and organ crosstalk. This is now known as the Remote Sensing and Signaling Theory (RSST). In the proximal tubule of the kidney, OATs regulate signaling molecules such as fatty acids, bile acids, indoxyl sulfate, kynurenine, alpha-ketoglutarate, urate, flavonoids, and antioxidants. OAT1 and OAT3 function as key hubs in a large homeostatic network involving multi-, oligo- and monospecific transporters, enzymes, and nuclear receptors. The Remote Sensing and Signaling Theory emphasizes the functioning of OATs and other "drug" transporters in the network at multiple biological scales (inter-organismal, organism, organ, cell, organelle). This network plays an essential role in the homeostasis of urate, bile acids, prostaglandins, sex steroids, odorants, thyroxine, gut microbiome metabolites, and uremic toxins. The transported metabolites have targets in the kidney and other organs, including nuclear receptors (e.g., HNF4a, AHR), G protein-coupled receptors (GPCRs), and protein kinases. Feed-forward and feedback loops allow OAT1 and OAT3 to mediate organ crosstalk as well as modulate energy metabolism, redox state, and remote sensing. Furthermore, there is intimate inter-organismal communication between renal OATs and the gut microbiome. Extracellular vesicles containing microRNAs and proteins (exosomes) play a key role in the Remote Sensing and Signaling System as does the interplay with the neuroendocrine, hormonal, and immune systems. Perturbation of function with OAT-interacting drugs (e.g., probenecid, diuretics, antivirals, antibiotics, NSAIDs) can lead to drug-metabolite interactions. The RSST has general applicability to other multi-specific SLC and ABC "drug" transporters (e.g., OCT1, OCT2, SLCO1B1, SLCO1B3, ABCG2, P-gp, ABCC2, ABCC3, ABCC4). Recent high-resolution structures of SLC22 and other transporters, together with chemoinformatic and artificial intelligence methods, will aid drug development and also lead to a deeper mechanistic understanding of polymorphisms.
Collapse
Affiliation(s)
- Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Billing AM, Kim YC, Gullaksen S, Schrage B, Raabe J, Hutzfeldt A, Demir F, Kovalenko E, Lassé M, Dugourd A, Fallegger R, Klampe B, Jaegers J, Li Q, Kravtsova O, Crespo-Masip M, Palermo A, Fenton RA, Hoxha E, Blankenberg S, Kirchhof P, Huber TB, Laugesen E, Zeller T, Chrysopoulou M, Saez-Rodriguez J, Magnussen C, Eschenhagen T, Staruschenko A, Siuzdak G, Poulsen PL, Schwab C, Cuello F, Vallon V, Rinschen MM. Metabolic Communication by SGLT2 Inhibition. Circulation 2024; 149:860-884. [PMID: 38152989 PMCID: PMC10922673 DOI: 10.1161/circulationaha.123.065517] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND SGLT2 (sodium-glucose cotransporter 2) inhibitors (SGLT2i) can protect the kidneys and heart, but the underlying mechanism remains poorly understood. METHODS To gain insights on primary effects of SGLT2i that are not confounded by pathophysiologic processes or are secondary to improvement by SGLT2i, we performed an in-depth proteomics, phosphoproteomics, and metabolomics analysis by integrating signatures from multiple metabolic organs and body fluids after 1 week of SGLT2i treatment of nondiabetic as well as diabetic mice with early and uncomplicated hyperglycemia. RESULTS Kidneys of nondiabetic mice reacted most strongly to SGLT2i in terms of proteomic reconfiguration, including evidence for less early proximal tubule glucotoxicity and a broad downregulation of the apical uptake transport machinery (including sodium, glucose, urate, purine bases, and amino acids), supported by mouse and human SGLT2 interactome studies. SGLT2i affected heart and liver signaling, but more reactive organs included the white adipose tissue, showing more lipolysis, and, particularly, the gut microbiome, with a lower relative abundance of bacteria taxa capable of fermenting phenylalanine and tryptophan to cardiovascular uremic toxins, resulting in lower plasma levels of these compounds (including p-cresol sulfate). SGLT2i was detectable in murine stool samples and its addition to human stool microbiota fermentation recapitulated some murine microbiome findings, suggesting direct inhibition of fermentation of aromatic amino acids and tryptophan. In mice lacking SGLT2 and in patients with decompensated heart failure or diabetes, the SGLT2i likewise reduced circulating p-cresol sulfate, and p-cresol impaired contractility and rhythm in human induced pluripotent stem cell-derived engineered heart tissue. CONCLUSIONS SGLT2i reduced microbiome formation of uremic toxins such as p-cresol sulfate and thereby their body exposure and need for renal detoxification, which, combined with direct kidney effects of SGLT2i, including less proximal tubule glucotoxicity and a broad downregulation of apical transporters (including sodium, amino acid, and urate uptake), provides a metabolic foundation for kidney and cardiovascular protection.
Collapse
Affiliation(s)
- Anja M. Billing
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Young Chul Kim
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla (Y.C.K., M.C.-M., V.V.)
- VA San Diego Healthcare System, CA (Y.C.K., M.C.-M., V.V.)
| | - Søren Gullaksen
- Clinical Medicine (S.G., P.L.P.), Aarhus University, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark (S.G., E.L.)
| | - Benedikt Schrage
- Department of Cardiology, University Heart and Vascular Center Hamburg, Germany (B.S., S.B., P.K., T.Z., C.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
| | - Janice Raabe
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.R., B.K., T.E., F.C.)
| | - Arvid Hutzfeldt
- III Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.H., M.L., E.H., T.B.H., M.M.R.)
| | - Fatih Demir
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Elina Kovalenko
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Moritz Lassé
- III Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.H., M.L., E.H., T.B.H., M.M.R.)
| | - Aurelien Dugourd
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg, Germany (A.D., R.F., J.S.-R.)
| | - Robin Fallegger
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg, Germany (A.D., R.F., J.S.-R.)
| | - Birgit Klampe
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.R., B.K., T.E., F.C.)
| | - Johannes Jaegers
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Qing Li
- Engineering (Q.L., C.S.), Aarhus University, Denmark
| | - Olha Kravtsova
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Maria Crespo-Masip
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla (Y.C.K., M.C.-M., V.V.)
- VA San Diego Healthcare System, CA (Y.C.K., M.C.-M., V.V.)
| | - Amelia Palermo
- Scripps Research, Center for Metabolomics, San Diego, CA (A.P., G.S., M.M.R.)
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (A.P.)
| | - Robert A. Fenton
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Elion Hoxha
- III Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.H., M.L., E.H., T.B.H., M.M.R.)
| | - Stefan Blankenberg
- Department of Cardiology, University Heart and Vascular Center Hamburg, Germany (B.S., S.B., P.K., T.Z., C.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center Hamburg, Germany (B.S., S.B., P.K., T.Z., C.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
- Institute of Cardiovascular Sciences, University of Birmingham, United Kingdom (P.K.)
| | - Tobias B. Huber
- III Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.H., M.L., E.H., T.B.H., M.M.R.)
| | - Esben Laugesen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark (S.G., E.L.)
- Diagnostic Centre, Silkeborg Regional Hospital, Denmark (E.L.)
| | - Tanja Zeller
- Department of Cardiology, University Heart and Vascular Center Hamburg, Germany (B.S., S.B., P.K., T.Z., C.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
| | - Maria Chrysopoulou
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg, Germany (A.D., R.F., J.S.-R.)
| | - Christina Magnussen
- Department of Cardiology, University Heart and Vascular Center Hamburg, Germany (B.S., S.B., P.K., T.Z., C.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
| | - Thomas Eschenhagen
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.R., B.K., T.E., F.C.)
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa (O.K., A.S.)
| | - Gary Siuzdak
- Scripps Research, Center for Metabolomics, San Diego, CA (A.P., G.S., M.M.R.)
| | - Per L. Poulsen
- Clinical Medicine (S.G., P.L.P.), Aarhus University, Denmark
- Steno Diabetes Center (P.L.P.), Aarhus University, Denmark
| | | | - Friederike Cuello
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.R., B.K., T.E., F.C.)
| | - Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla (Y.C.K., M.C.-M., V.V.)
- VA San Diego Healthcare System, CA (Y.C.K., M.C.-M., V.V.)
| | - Markus M. Rinschen
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
- Aarhus Institute of Advanced Studies (M.M.R.), Aarhus University, Denmark
- III Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.H., M.L., E.H., T.B.H., M.M.R.)
- Scripps Research, Center for Metabolomics, San Diego, CA (A.P., G.S., M.M.R.)
| |
Collapse
|
4
|
Granados JC, Watrous JD, Long T, Rosenthal SB, Cheng S, Jain M, Nigam SK. Regulation of Human Endogenous Metabolites by Drug Transporters and Drug Metabolizing Enzymes: An Analysis of Targeted SNP-Metabolite Associations. Metabolites 2023; 13:171. [PMID: 36837791 PMCID: PMC9958903 DOI: 10.3390/metabo13020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Drug transporters and drug-metabolizing enzymes are primarily known for their role in the absorption, distribution, metabolism, and excretion (ADME) of small molecule drugs, but they also play a key role in handling endogenous metabolites. Recent cross-tissue co-expression network analyses have revealed a "Remote Sensing and Signaling Network" of multispecific, oligo-specific, and monospecific transporters and enzymes involved in endogenous metabolism. This includes many proteins from families involved in ADME (e.g., SLC22, SLCO, ABCC, CYP, UGT). Focusing on the gut-liver-kidney axis, we identified the endogenous metabolites potentially regulated by this network of ~1000 proteins by associating SNPs in these genes with the circulating levels of thousands of small, polar, bioactive metabolites, including free fatty acids, eicosanoids, bile acids, and other signaling metabolites that act in part via G-protein coupled receptors (GPCRs), nuclear receptors, and kinases. We identified 77 genomic loci associated with 7236 unique metabolites. This included metabolites that were associated with multiple, distinct loci, indicating coordinated regulation between multiple genes (including drug transporters and drug-metabolizing enzymes) of specific metabolites. We analyzed existing pharmacogenomic data and noted SNPs implicated in endogenous metabolite handling (e.g., rs4149056 in SLCO1B1) also affecting drug ADME. The overall results support the existence of close relationships, via interactions with signaling metabolites, between drug transporters and drug-metabolizing enzymes that are part of the Remote Sensing and Signaling Network, and with GPCRs and nuclear receptors. These analyses highlight the potential for drug-metabolite interactions at the interfaces of the Remote Sensing and Signaling Network and the ADME protein network.
Collapse
Affiliation(s)
- Jeffry C. Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeramie D. Watrous
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Tao Long
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Susan Cheng
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mohit Jain
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanjay K. Nigam
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Granados JC, Falah K, Koo I, Morgan EW, Perdew GH, Patterson AD, Jamshidi N, Nigam SK. AHR is a master regulator of diverse pathways in endogenous metabolism. Sci Rep 2022; 12:16625. [PMID: 36198709 PMCID: PMC9534852 DOI: 10.1038/s41598-022-20572-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor with roles in detoxification, development, immune response, chronic kidney disease and other syndromes. It regulates the expression of drug transporters and drug metabolizing enzymes in a proposed Remote Sensing and Signaling Network involved in inter-organ communication via metabolites and signaling molecules. Here, we use integrated omics approaches to analyze its contributions to metabolism across multiple scales from the organ to the organelle. Global metabolomics analysis of Ahr-/- mice revealed the role of AHR in the regulation of 290 metabolites involved in many biochemical pathways affecting fatty acids, bile acids, gut microbiome products, antioxidants, choline derivatives, and uremic toxins. Chemoinformatics analysis suggest that AHR plays a role in determining the hydrophobicity of metabolites and perhaps their transporter-mediated movement into and out of tissues. Of known AHR ligands, indolepropionate was the only significantly altered molecule, and it activated AHR in both human and murine cells. To gain a deeper biological understanding of AHR, we employed genome scale metabolic reconstruction to integrate knockout transcriptomics and metabolomics data, which indicated a role for AHR in regulation of organic acids and redox state. Together, the results indicate a central role of AHR in metabolism and signaling between multiple organs and across multiple scales.
Collapse
Affiliation(s)
- Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kian Falah
- Departments of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan W Morgan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA, 16801, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Neema Jamshidi
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|