1
|
Petit I, Faucher Q, Bernard JS, Giunchi P, Humeau A, Sauvage FL, Marquet P, Védrenne N, Di Meo F. Proximal tubule-on-chip as a model for predicting cation transport and drug transporter dynamics. Sci Rep 2025; 15:2580. [PMID: 39833212 PMCID: PMC11747318 DOI: 10.1038/s41598-025-85653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Deciphering the sources of variability in drug responses requires to understand the processes modulating drug pharmacokinetics. However, pharmacological research suffers from poor reproducibility across clinical, animal, and experimental models. Predictivity can be improved by using Organs-on-Chips, which are more physiological, human-oriented, micro-engineered devices that include microfluidics. OoC are particularly relevant at the fundamental and preclinical stages of drug development by providing more accurate assessment of key pharmacokinetic events. We have developed a proximal tubule-on-a-chip model combining commercial microfluidic and chip technologies. Using the RPTEC/TERT1 cell line, we set up a dual-flow system with antiparallel flows to mimic the dynamics of blood and urine. We assessed transporters mRNA expression, cellular polarization and protein expression via immunofluorescence, and monitored the transcellular transport of prototypic xenobiotics by determining their efflux ratios. Our results show that flow exposure significantly modulate mRNA expression of drug membrane transporters. Dynamic conditions also enhance cell polarization, as evidenced by preferential basal and apical expressions of Na + /K + -ATPase, P-gp, OCT2, and MATE1 , as well as the cellular secretory profile. We demonstrated unidirectional transcellular transport of metformin with a higher efflux than influx ratio, inhibited with OCT2 inhibitor, thus confirming the relevance of our proximal tubule-on-a-chip set up for cation transport investigations. Our proximal tubule-on-a-chip can also be used to explore the interactions between transporters, xenobiotics, and endogenous metabolites, possibly involved in the variability of individual drug responses. This study provides additional evidence that OoC can help bridge the gaps between systemic and local pharmacokinetics.
Collapse
Affiliation(s)
- Isy Petit
- U1248 Pharmacology & Transplantation, Inserm, Univ. Limoges, Limoges, France
| | - Quentin Faucher
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Perrine Giunchi
- U1248 Pharmacology & Transplantation, Inserm, Univ. Limoges, Limoges, France
- Institut de Recherche en Santé Digestive, INSERM, INRAE, ENVT, Univ. Toulouse III, Toulouse, France
- Institut de Mécanique Des Fluides de Toulouse (IMFT), CNRS, Univ. Toulouse, Toulouse, France
| | - Antoine Humeau
- U1248 Pharmacology & Transplantation, Inserm, Univ. Limoges, Limoges, France
| | | | - Pierre Marquet
- U1248 Pharmacology & Transplantation, Inserm, Univ. Limoges, Limoges, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges, France
| | - Nicolas Védrenne
- U1248 Pharmacology & Transplantation, Inserm, Univ. Limoges, Limoges, France.
| | - Florent Di Meo
- U1248 Pharmacology & Transplantation, Inserm, Univ. Limoges, Limoges, France.
- UAR2015/US42 Integrative Biology Health Chemistry and Environment BISCEm, CNRS, Inserm, CHU Limoges, Univ. Limoges, Limoges, France.
| |
Collapse
|
2
|
Granados JC, Nigam SK. Organic anion transporters in remote sensing and organ crosstalk. Pharmacol Ther 2024; 263:108723. [PMID: 39284369 DOI: 10.1016/j.pharmthera.2024.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 11/05/2024]
Abstract
The organic anion transporters, OAT1 and OAT3, regulate the movement of drugs, toxins, and endogenous metabolites. In 2007, we proposed that OATs and other SLC22 transporters are involved in "remote sensing" and organ crosstalk. This is now known as the Remote Sensing and Signaling Theory (RSST). In the proximal tubule of the kidney, OATs regulate signaling molecules such as fatty acids, bile acids, indoxyl sulfate, kynurenine, alpha-ketoglutarate, urate, flavonoids, and antioxidants. OAT1 and OAT3 function as key hubs in a large homeostatic network involving multi-, oligo- and monospecific transporters, enzymes, and nuclear receptors. The Remote Sensing and Signaling Theory emphasizes the functioning of OATs and other "drug" transporters in the network at multiple biological scales (inter-organismal, organism, organ, cell, organelle). This network plays an essential role in the homeostasis of urate, bile acids, prostaglandins, sex steroids, odorants, thyroxine, gut microbiome metabolites, and uremic toxins. The transported metabolites have targets in the kidney and other organs, including nuclear receptors (e.g., HNF4a, AHR), G protein-coupled receptors (GPCRs), and protein kinases. Feed-forward and feedback loops allow OAT1 and OAT3 to mediate organ crosstalk as well as modulate energy metabolism, redox state, and remote sensing. Furthermore, there is intimate inter-organismal communication between renal OATs and the gut microbiome. Extracellular vesicles containing microRNAs and proteins (exosomes) play a key role in the Remote Sensing and Signaling System as does the interplay with the neuroendocrine, hormonal, and immune systems. Perturbation of function with OAT-interacting drugs (e.g., probenecid, diuretics, antivirals, antibiotics, NSAIDs) can lead to drug-metabolite interactions. The RSST has general applicability to other multi-specific SLC and ABC "drug" transporters (e.g., OCT1, OCT2, SLCO1B1, SLCO1B3, ABCG2, P-gp, ABCC2, ABCC3, ABCC4). Recent high-resolution structures of SLC22 and other transporters, together with chemoinformatic and artificial intelligence methods, will aid drug development and also lead to a deeper mechanistic understanding of polymorphisms.
Collapse
Affiliation(s)
- Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Billing AM, Kim YC, Gullaksen S, Schrage B, Raabe J, Hutzfeldt A, Demir F, Kovalenko E, Lassé M, Dugourd A, Fallegger R, Klampe B, Jaegers J, Li Q, Kravtsova O, Crespo-Masip M, Palermo A, Fenton RA, Hoxha E, Blankenberg S, Kirchhof P, Huber TB, Laugesen E, Zeller T, Chrysopoulou M, Saez-Rodriguez J, Magnussen C, Eschenhagen T, Staruschenko A, Siuzdak G, Poulsen PL, Schwab C, Cuello F, Vallon V, Rinschen MM. Metabolic Communication by SGLT2 Inhibition. Circulation 2024; 149:860-884. [PMID: 38152989 PMCID: PMC10922673 DOI: 10.1161/circulationaha.123.065517] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND SGLT2 (sodium-glucose cotransporter 2) inhibitors (SGLT2i) can protect the kidneys and heart, but the underlying mechanism remains poorly understood. METHODS To gain insights on primary effects of SGLT2i that are not confounded by pathophysiologic processes or are secondary to improvement by SGLT2i, we performed an in-depth proteomics, phosphoproteomics, and metabolomics analysis by integrating signatures from multiple metabolic organs and body fluids after 1 week of SGLT2i treatment of nondiabetic as well as diabetic mice with early and uncomplicated hyperglycemia. RESULTS Kidneys of nondiabetic mice reacted most strongly to SGLT2i in terms of proteomic reconfiguration, including evidence for less early proximal tubule glucotoxicity and a broad downregulation of the apical uptake transport machinery (including sodium, glucose, urate, purine bases, and amino acids), supported by mouse and human SGLT2 interactome studies. SGLT2i affected heart and liver signaling, but more reactive organs included the white adipose tissue, showing more lipolysis, and, particularly, the gut microbiome, with a lower relative abundance of bacteria taxa capable of fermenting phenylalanine and tryptophan to cardiovascular uremic toxins, resulting in lower plasma levels of these compounds (including p-cresol sulfate). SGLT2i was detectable in murine stool samples and its addition to human stool microbiota fermentation recapitulated some murine microbiome findings, suggesting direct inhibition of fermentation of aromatic amino acids and tryptophan. In mice lacking SGLT2 and in patients with decompensated heart failure or diabetes, the SGLT2i likewise reduced circulating p-cresol sulfate, and p-cresol impaired contractility and rhythm in human induced pluripotent stem cell-derived engineered heart tissue. CONCLUSIONS SGLT2i reduced microbiome formation of uremic toxins such as p-cresol sulfate and thereby their body exposure and need for renal detoxification, which, combined with direct kidney effects of SGLT2i, including less proximal tubule glucotoxicity and a broad downregulation of apical transporters (including sodium, amino acid, and urate uptake), provides a metabolic foundation for kidney and cardiovascular protection.
Collapse
Affiliation(s)
- Anja M. Billing
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Young Chul Kim
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla (Y.C.K., M.C.-M., V.V.)
- VA San Diego Healthcare System, CA (Y.C.K., M.C.-M., V.V.)
| | - Søren Gullaksen
- Clinical Medicine (S.G., P.L.P.), Aarhus University, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark (S.G., E.L.)
| | - Benedikt Schrage
- Department of Cardiology, University Heart and Vascular Center Hamburg, Germany (B.S., S.B., P.K., T.Z., C.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
| | - Janice Raabe
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.R., B.K., T.E., F.C.)
| | - Arvid Hutzfeldt
- III Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.H., M.L., E.H., T.B.H., M.M.R.)
| | - Fatih Demir
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Elina Kovalenko
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Moritz Lassé
- III Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.H., M.L., E.H., T.B.H., M.M.R.)
| | - Aurelien Dugourd
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg, Germany (A.D., R.F., J.S.-R.)
| | - Robin Fallegger
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg, Germany (A.D., R.F., J.S.-R.)
| | - Birgit Klampe
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.R., B.K., T.E., F.C.)
| | - Johannes Jaegers
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Qing Li
- Engineering (Q.L., C.S.), Aarhus University, Denmark
| | - Olha Kravtsova
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Maria Crespo-Masip
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla (Y.C.K., M.C.-M., V.V.)
- VA San Diego Healthcare System, CA (Y.C.K., M.C.-M., V.V.)
| | - Amelia Palermo
- Scripps Research, Center for Metabolomics, San Diego, CA (A.P., G.S., M.M.R.)
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (A.P.)
| | - Robert A. Fenton
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Elion Hoxha
- III Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.H., M.L., E.H., T.B.H., M.M.R.)
| | - Stefan Blankenberg
- Department of Cardiology, University Heart and Vascular Center Hamburg, Germany (B.S., S.B., P.K., T.Z., C.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center Hamburg, Germany (B.S., S.B., P.K., T.Z., C.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
- Institute of Cardiovascular Sciences, University of Birmingham, United Kingdom (P.K.)
| | - Tobias B. Huber
- III Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.H., M.L., E.H., T.B.H., M.M.R.)
| | - Esben Laugesen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark (S.G., E.L.)
- Diagnostic Centre, Silkeborg Regional Hospital, Denmark (E.L.)
| | - Tanja Zeller
- Department of Cardiology, University Heart and Vascular Center Hamburg, Germany (B.S., S.B., P.K., T.Z., C.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
| | - Maria Chrysopoulou
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg, Germany (A.D., R.F., J.S.-R.)
| | - Christina Magnussen
- Department of Cardiology, University Heart and Vascular Center Hamburg, Germany (B.S., S.B., P.K., T.Z., C.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
| | - Thomas Eschenhagen
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.R., B.K., T.E., F.C.)
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa (O.K., A.S.)
| | - Gary Siuzdak
- Scripps Research, Center for Metabolomics, San Diego, CA (A.P., G.S., M.M.R.)
| | - Per L. Poulsen
- Clinical Medicine (S.G., P.L.P.), Aarhus University, Denmark
- Steno Diabetes Center (P.L.P.), Aarhus University, Denmark
| | | | - Friederike Cuello
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (B.S., J.R., S.B., P.K., T.Z., C.M., T.E., F.C.)
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.R., B.K., T.E., F.C.)
| | - Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego, La Jolla (Y.C.K., M.C.-M., V.V.)
- VA San Diego Healthcare System, CA (Y.C.K., M.C.-M., V.V.)
| | - Markus M. Rinschen
- Departments of Biomedicine (A.M.B., F.D., E.K., J.J., R.A.F., M.C., M.M.R.), Aarhus University, Denmark
- Aarhus Institute of Advanced Studies (M.M.R.), Aarhus University, Denmark
- III Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.H., M.L., E.H., T.B.H., M.M.R.)
- Scripps Research, Center for Metabolomics, San Diego, CA (A.P., G.S., M.M.R.)
| |
Collapse
|
4
|
Jamshidi N, Nigam KB, Nigam SK. Loss of the Kidney Urate Transporter, Urat1, Leads to Disrupted Redox Homeostasis in Mice. Antioxidants (Basel) 2023; 12:antiox12030780. [PMID: 36979028 PMCID: PMC10045411 DOI: 10.3390/antiox12030780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
High uric acid is associated with gout, hypertension, metabolic syndrome, cardiovascular disease, and kidney disease. URAT1 (SLC22A12), originally discovered in mice as Rst, is generally considered a very selective uric acid transporter compared to other closely-related kidney uric acid transporters such as OAT1 (SLC22A6, NKT) and OAT3 (SLC22A8). While the role of URAT1 in regulating human uric acid is well-established, in recent studies the gene has been linked to redox regulation in flies as well as progression of renal cell carcinoma. We have now identified over twenty metabolites in the Urat1 knockout that are generally distinct from metabolites accumulating in the Oat1 and Oat3 knockout mice, with distinct molecular properties as revealed by chemoinformatics and machine learning analysis. These metabolites are involved in seemingly disparate aspects of cellular metabolism, including pyrimidine, fatty acid, and amino acid metabolism. However, through integrative systems metabolic analysis of the transcriptomic and metabolomic data using a human metabolic reconstruction to build metabolic genome-scale models (GEMs), the cellular response to loss of Urat1/Rst revealed compensatory processes related to reactive oxygen species handling and maintaining redox state balances via Vitamin C metabolism and cofactor charging reactions. These observations are consistent with the increasingly appreciated role of the antioxidant properties of uric acid. Collectively, the results highlight the role of Urat1/Rst as a transporter strongly tied to maintaining redox homeostasis, with implications for metabolic side effects from drugs that block its function.
Collapse
Affiliation(s)
- Neema Jamshidi
- Department of Radiological Sciences, University of California, Los Angeles, CA 90095, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA;
- Correspondence:
| | - Kabir B. Nigam
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA 02130, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02130, USA
| | - Sanjay K. Nigam
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA;
- Departments of Pediatrics and Medicine (Nephrology), University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Granados JC, Watrous JD, Long T, Rosenthal SB, Cheng S, Jain M, Nigam SK. Regulation of Human Endogenous Metabolites by Drug Transporters and Drug Metabolizing Enzymes: An Analysis of Targeted SNP-Metabolite Associations. Metabolites 2023; 13:171. [PMID: 36837791 PMCID: PMC9958903 DOI: 10.3390/metabo13020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Drug transporters and drug-metabolizing enzymes are primarily known for their role in the absorption, distribution, metabolism, and excretion (ADME) of small molecule drugs, but they also play a key role in handling endogenous metabolites. Recent cross-tissue co-expression network analyses have revealed a "Remote Sensing and Signaling Network" of multispecific, oligo-specific, and monospecific transporters and enzymes involved in endogenous metabolism. This includes many proteins from families involved in ADME (e.g., SLC22, SLCO, ABCC, CYP, UGT). Focusing on the gut-liver-kidney axis, we identified the endogenous metabolites potentially regulated by this network of ~1000 proteins by associating SNPs in these genes with the circulating levels of thousands of small, polar, bioactive metabolites, including free fatty acids, eicosanoids, bile acids, and other signaling metabolites that act in part via G-protein coupled receptors (GPCRs), nuclear receptors, and kinases. We identified 77 genomic loci associated with 7236 unique metabolites. This included metabolites that were associated with multiple, distinct loci, indicating coordinated regulation between multiple genes (including drug transporters and drug-metabolizing enzymes) of specific metabolites. We analyzed existing pharmacogenomic data and noted SNPs implicated in endogenous metabolite handling (e.g., rs4149056 in SLCO1B1) also affecting drug ADME. The overall results support the existence of close relationships, via interactions with signaling metabolites, between drug transporters and drug-metabolizing enzymes that are part of the Remote Sensing and Signaling Network, and with GPCRs and nuclear receptors. These analyses highlight the potential for drug-metabolite interactions at the interfaces of the Remote Sensing and Signaling Network and the ADME protein network.
Collapse
Affiliation(s)
- Jeffry C. Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeramie D. Watrous
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Tao Long
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Susan Cheng
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mohit Jain
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanjay K. Nigam
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Granados JC, Ermakov V, Maity K, Vera DR, Chang G, Nigam SK. The kidney drug transporter OAT1 regulates gut microbiome-dependent host metabolism. JCI Insight 2023; 8:e160437. [PMID: 36692015 PMCID: PMC9977316 DOI: 10.1172/jci.insight.160437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/30/2022] [Indexed: 01/24/2023] Open
Abstract
Organic anion transporter 1 (OAT1/SLC22A6, NKT) is a multispecific drug transporter in the kidney with numerous substrates, including pharmaceuticals, endogenous metabolites, natural products, and uremic toxins. Here, we show that OAT1 regulates levels of gut microbiome-derived metabolites. We depleted the gut microbiome of Oat1-KO and WT mice and performed metabolomics to analyze the effects of genotype (KO versus WT) and microbiome depletion. OAT1 is an in vivo intermediary between the host and the microbes, with 40 of the 162 metabolites dependent on the gut microbiome also impacted by loss of Oat1. Chemoinformatic analysis revealed that the altered metabolites (e.g., indoxyl sulfate, p-cresol sulfate, deoxycholate) had more ring structures and sulfate groups. This indicates a pathway from gut microbes to liver phase II metabolism, to renal OAT1-mediated transport. The idea that multiple gut-derived metabolites directly interact with OAT1 was confirmed by in vitro transport and magnetic bead binding assays. We show that gut microbiome-derived metabolites dependent on OAT1 are impacted in a chronic kidney disease (CKD) model and human drug-metabolite interactions. Consistent with the Remote Sensing and Signaling Theory, our results support the view that drug transporters (e.g., OAT1, OAT3, OATP1B1, OATP1B3, MRP2, MRP4, ABCG2) play a central role in regulating gut microbe-dependent metabolism, as well as interorganismal communication between the host and microbiome.
Collapse
Affiliation(s)
| | | | - Koustav Maity
- Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - David R. Vera
- Department of Radiology
- In Vivo Cancer and Molecular Imaging Program
| | - Geoffrey Chang
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- Department of Pharmacology, School of Medicine
| | - Sanjay K. Nigam
- Department of Pediatrics, and
- Department of Medicine (Nephrology), UCSD, La Jolla, California, USA
| |
Collapse
|
7
|
Nigam SK, Granados JC. OAT, OATP, and MRP Drug Transporters and the Remote Sensing and Signaling Theory. Annu Rev Pharmacol Toxicol 2023; 63:637-660. [PMID: 36206988 DOI: 10.1146/annurev-pharmtox-030322-084058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The coordinated movement of organic anions (e.g., drugs, metabolites, signaling molecules, nutrients, antioxidants, gut microbiome products) between tissues and body fluids depends, in large part, on organic anion transporters (OATs) [solute carrier 22 (SLC22)], organic anion transporting polypeptides (OATPs) [solute carrier organic (SLCO)], and multidrug resistance proteins (MRPs) [ATP-binding cassette, subfamily C (ABCC)]. Depending on the range of substrates, transporters in these families can be considered multispecific, oligospecific, or (relatively) monospecific. Systems biology analyses of these transporters in the context of expression patterns reveal they are hubs in networks involved in interorgan and interorganismal communication. The remote sensing and signaling theory explains how the coordinated functions of drug transporters, drug-metabolizing enzymes, and regulatory proteins play a role in optimizing systemic and local levels of important endogenous small molecules. We focus on the role of OATs, OATPs, and MRPs in endogenous metabolism and how their substrates (e.g., bile acids, short chain fatty acids, urate, uremic toxins) mediate interorgan and interorganismal communication and help maintain and restore homeostasis in healthy and disease states.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Department of Pediatrics and Medicine (Nephrology), University of California San Diego, La Jolla, California, USA;
| | - Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Jamshidi N, Nigam SK. Drug transporters OAT1 and OAT3 have specific effects on multiple organs and gut microbiome as revealed by contextualized metabolic network reconstructions. Sci Rep 2022; 12:18308. [PMID: 36316339 PMCID: PMC9622871 DOI: 10.1038/s41598-022-21091-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
In vitro and in vivo studies have established the organic anion transporters OAT1 (SLC22A6, NKT) and OAT3 (SLC22A8) among the main multi-specific "drug" transporters. They also transport numerous endogenous metabolites, raising the possibility of drug-metabolite interactions (DMI). To help understand the role of these drug transporters on metabolism across scales ranging from organ systems to organelles, a formal multi-scale analysis was performed. Metabolic network reconstructions of the omics-alterations resulting from Oat1 and Oat3 gene knockouts revealed links between the microbiome and human metabolism including reactions involving small organic molecules such as dihydroxyacetone, alanine, xanthine, and p-cresol-key metabolites in independent pathways. Interestingly, pairwise organ-organ interactions were also disrupted in the two Oat knockouts, with altered liver, intestine, microbiome, and skin-related metabolism. Compared to older models focused on the "one transporter-one organ" concept, these more sophisticated reconstructions, combined with integration of a multi-microbial model and more comprehensive metabolomics data for the two transporters, provide a considerably more complex picture of how renal "drug" transporters regulate metabolism across the organelle (e.g. endoplasmic reticulum, Golgi, peroxisome), cellular, organ, inter-organ, and inter-organismal scales. The results suggest that drugs interacting with OAT1 and OAT3 can have far reaching consequences on metabolism in organs (e.g. skin) beyond the kidney. Consistent with the Remote Sensing and Signaling Theory (RSST), the analysis demonstrates how transporter-dependent metabolic signals mediate organ crosstalk (e.g., gut-liver-kidney) and inter-organismal communication (e.g., gut microbiome-host).
Collapse
Affiliation(s)
- Neema Jamshidi
- grid.19006.3e0000 0000 9632 6718Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA USA ,grid.266100.30000 0001 2107 4242Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA USA
| | - Sanjay K. Nigam
- grid.266100.30000 0001 2107 4242Departments of Pediatrics and Medicine (Nephrology), University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
9
|
Granados JC, Falah K, Koo I, Morgan EW, Perdew GH, Patterson AD, Jamshidi N, Nigam SK. AHR is a master regulator of diverse pathways in endogenous metabolism. Sci Rep 2022; 12:16625. [PMID: 36198709 PMCID: PMC9534852 DOI: 10.1038/s41598-022-20572-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor with roles in detoxification, development, immune response, chronic kidney disease and other syndromes. It regulates the expression of drug transporters and drug metabolizing enzymes in a proposed Remote Sensing and Signaling Network involved in inter-organ communication via metabolites and signaling molecules. Here, we use integrated omics approaches to analyze its contributions to metabolism across multiple scales from the organ to the organelle. Global metabolomics analysis of Ahr-/- mice revealed the role of AHR in the regulation of 290 metabolites involved in many biochemical pathways affecting fatty acids, bile acids, gut microbiome products, antioxidants, choline derivatives, and uremic toxins. Chemoinformatics analysis suggest that AHR plays a role in determining the hydrophobicity of metabolites and perhaps their transporter-mediated movement into and out of tissues. Of known AHR ligands, indolepropionate was the only significantly altered molecule, and it activated AHR in both human and murine cells. To gain a deeper biological understanding of AHR, we employed genome scale metabolic reconstruction to integrate knockout transcriptomics and metabolomics data, which indicated a role for AHR in regulation of organic acids and redox state. Together, the results indicate a central role of AHR in metabolism and signaling between multiple organs and across multiple scales.
Collapse
Affiliation(s)
- Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kian Falah
- Departments of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan W Morgan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA, 16801, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Neema Jamshidi
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
10
|
Granados JC, Bhatnagar V, Nigam SK. Blockade of Organic Anion Transport in Humans After Treatment With the Drug Probenecid Leads to Major Metabolic Alterations in Plasma and Urine. Clin Pharmacol Ther 2022; 112:653-664. [PMID: 35490380 PMCID: PMC9398954 DOI: 10.1002/cpt.2630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/17/2022] [Indexed: 12/15/2022]
Abstract
Probenecid is used to treat gout and hyperuricemia as well as increase plasma levels of antiviral drugs and antibiotics. In vivo, probenecid mainly inhibits the renal SLC22 organic anion transporters OAT1 (SLC22A6), OAT3 (SLC22A8), and URAT1 (SLC22A12). To understand the endogenous role of these transporters in humans, we administered probenecid to 20 healthy participants and metabolically profiled the plasma and urine before and after dosage. Hundreds of metabolites were significantly altered, indicating numerous drug-metabolite interactions. We focused on potential OAT1 substrates by identifying 97 metabolites that were significantly elevated in the plasma and decreased in the urine, indicating OAT-mediated clearance. These included signaling molecules, antioxidants, and gut microbiome products. In contrast, urate was the only metabolite significantly decreased in the plasma and elevated in the urine, consistent with an effect on renal reuptake by URAT1. Additional support comes from metabolomics analyses of our Oat1 and Oat3 knockout mice, where over 50% of the metabolites that were likely OAT substrates in humans were elevated in the serum of the mice. Fifteen of these compounds were elevated in both knockout mice, whereas six were exclusive to the Oat1 knockout and 4 to the Oat3 knockout. These may be endogenous biomarkers of OAT function. We also propose a probenecid stress test to evaluate kidney proximal tubule organic anion transport function in kidney disease. Consistent with the Remote Sensing and Signaling Theory, the profound changes in metabolite levels following probenecid treatment support the view that SLC22 transporters are hubs in the regulation of systemic human metabolism.
Collapse
Affiliation(s)
- Jeffry C. Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093
| | - Vibha Bhatnagar
- Department of Family Medicine, University of California San Diego, La Jolla, CA, 92093
| | - Sanjay K. Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093
| |
Collapse
|