1
|
Ostos-Valverde A, Herrera-Solís A, Ruiz-Contreras AE, Méndez-Díaz M, Prospéro-García OE. Sleep debt-induced anxiety and addiction to substances of abuse: A narrative review. Pharmacol Biochem Behav 2024; 245:173874. [PMID: 39260592 DOI: 10.1016/j.pbb.2024.173874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Substance Use Disorder (SUD) has been conceptualized as an outcome of a dysregulated reward system. However, individuals with SUD suffer from anxiety with an intensity depending on the abstinence period length. This review discusses the role of anxiety as a major contributor to the initiation and perpetuation of SUD, and its dependence on an up-regulated defense-antireward system. In addition, it is discussed that sleep debt, and its psychosocial consequences, promote anxiety, contributing to SUD generation and maintenance. Healthy sleep patterns can be disrupted by diverse medical conditions and negative psychosocial interactions, resulting in accumulated sleep debt and anxiety. Within this narrative review, we discuss the interplay between the motivation-reward and defense-antireward systems, framing the progression from recreational drug use to addiction. This interplay is nuanced by sleep debt-induced anxiety and its psychosocial consequences as contributory vulnerability factors in the genesis of addiction.
Collapse
Affiliation(s)
- Aline Ostos-Valverde
- Grupo de Neurociencias: Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, UNAM, Mexico
| | - Andrea Herrera-Solís
- Grupo de Neurociencias: Laboratorio de Efectos Terapéuticos de los Cannabinoides, Subdirección de Investigación Biomédica, Hospital General Dr. Manuel Gea González, Secretaría de Salud, Mexico
| | - Alejandra E Ruiz-Contreras
- Grupo de Neurociencias: Laboratorio de Neurogenómica Cognitiva, Coordinación de Psicofisiología y Neurociencias, Facultad de Psicología, UNAM, Mexico
| | - Mónica Méndez-Díaz
- Grupo de Neurociencias: Laboratorio de Ontogenia y Adicciones, Departamento de Fisiología, Facultad de Medicina, UNAM, Mexico
| | - Oscar E Prospéro-García
- Grupo de Neurociencias: Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, UNAM, Mexico.
| |
Collapse
|
2
|
Mitra S, Werner CT, Shwani T, Lopez AG, Federico D, Higdon K, Li X, Gobira PH, Thomas SA, Martin JA, An C, Chandra R, Maze I, Neve R, Lobo MK, Gancarz AM, Dietz DM. A Novel Role for the Histone Demethylase JMJD3 in Mediating Heroin-Induced Relapse-Like Behaviors. Biol Psychiatry 2024:S0006-3223(24)01452-5. [PMID: 39019389 DOI: 10.1016/j.biopsych.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Epigenetic changes that lead to long-term neuroadaptations following opioid exposure are not well understood. We examined how histone demethylase JMJD3 in the nucleus accumbens (NAc) influences heroin seeking after abstinence from self-administration. METHODS Male Sprague Dawley rats were trained to self-administer heroin. Western blotting and quantitative polymerase chain reaction were performed to quantify JMJD3 and bone morphogenetic protein (BMP) pathway expression in the NAc (n = 7-11/group). Pharmacological inhibitors or viral expression vectors were microinfused into the NAc to manipulate JMJD3 or the BMP pathway member SMAD1 (n = 9-11/group). The RiboTag capture method (n = 3-5/group) and viral vectors (n = 7-8/group) were used in male transgenic rats to identify the contributions of D1- and D2-expressing medium spiny neurons in the NAc. Drug seeking was tested by cue-induced response previously paired with drug infusion. RESULTS Levels of JMJD3 and phosphorylated SMAD1/5 in the NAc were increased after 14 days of abstinence from heroin self-administration. Pharmacological and virus-mediated inhibition of JMJD3 or the BMP pathway attenuated cue-induced seeking. Pharmacological inhibition of BMP signaling reduced JMJD3 expression and H3K27me3 levels. JMJD3 bidirectionally affected seeking: expression of the wild-type increased cue-induced seeking whereas expression of a catalytic dead mutant decreased it. JMJD3 expression was increased in D2+ but not D1+ medium spiny neurons. Expression of the mutant JMJD3 in D2+ neurons was sufficient to decrease cue-induced heroin seeking. CONCLUSIONS JMJD3 mediates persistent cellular and behavioral adaptations that underlie heroin relapse, and this activity is regulated by the BMP pathway.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Craig T Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Treefa Shwani
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Ana Garcia Lopez
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Dale Federico
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Kate Higdon
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Xiaofang Li
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Pedro H Gobira
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Shruthi A Thomas
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Jennifer A Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Chunna An
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Neve
- Gene Technology Core, Massachusetts General Hospital, Cambridge, Massachusetts
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amy M Gancarz
- Department of Psychology, California State University, Bakersfield, Bakersfield, California
| | - David M Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York.
| |
Collapse
|
3
|
Blum K, Bowirrat A, Baron D, Elman I, Makale MT, Cadet JL, Thanos PK, Hanna C, Ahmed R, Gondre-Lewis MC, Dennen CA, Braverman ER, Soni D, Carney P, Khalsa J, Modestino EJ, Barh D, Bagchi D, Badgaiyan RD, McLaughlin T, Cortese R, Ceccanti M, Murphy KT, Gupta A, Makale MT, Sunder K, Gold MS. Identification of stress-induced epigenetic methylation onto dopamine D2 gene and neurological and behavioral consequences. GENE & PROTEIN IN DISEASE 2024; 3:10.36922/gpd.1966. [PMID: 38766604 PMCID: PMC11100097 DOI: 10.36922/gpd.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The D2 dopamine receptor (DRD2) gene has garnered substantial attention as one of the most extensively studied genes across various neuropsychiatric disorders. Since its initial association with severe alcoholism in 1990, particularly through the identification of the DRD2 Taq A1 allele, numerous international investigations have been conducted to elucidate its role in different conditions. As of February 22, 2024, there are 5485 articles focusing on the DRD2 gene listed in PUBMED. There have been 120 meta-analyses with mixed results. In our opinion, the primary cause of negative reports regarding the association of various DRD2 gene polymorphisms is the inadequate screening of controls, not adequately eliminating many hidden reward deficiency syndrome behaviors. Moreover, pleiotropic effects of DRD2 variants have been identified in neuropsychologic, neurophysiologic, stress response, social stress defeat, maternal deprivation, and gambling disorder, with epigenetic DNA methylation and histone post-translational negative methylation identified as discussed in this article. There are 70 articles listed in PUBMED for DNA methylation and 20 articles listed for histone methylation as of October 19, 2022. For this commentary, we did not denote DNA and/or histone methylation; instead, we provided a brief summary based on behavioral effects. Based on the fact that Blum and Noble characterized the DRD2 Taq A1 allele as a generalized reward gene and not necessarily specific alcoholism, it now behooves the field to find ways to either use effector moieties to edit the neuroepigenetic insults or possibly harness the idea of potentially removing negative mRNA-reduced expression by inducing "dopamine homeostasis."
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of the Health Sciences, Pomona, CA, United States of America
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Psychiatry, University of Vermont, Burlington, VT 05405, United States of America
- Department of Psychiatry, Wright University Boonshoft School of Medicine, Dayton, OH, United States of America
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX United States of America
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
- Department of Nutrigenomic Research, Victory Nutrition International, Inc., Bonita Springs, FL, United States of America
- Division of Personalized Neuromodulation Research, Sunder Foundation, Palm Springs, CA, United States of America
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - David Baron
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of the Health Sciences, Pomona, CA, United States of America
| | - Igor Elman
- Division of Personalized Neuromodulation Research, Sunder Foundation, Palm Springs, CA, United States of America
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, United States of America
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, UC San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, United States of America
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD., United States of America
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America; Department of Psychology, State University of New York at Buffalo, Buffalo, NY., United States of America
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America; Department of Psychology, State University of New York at Buffalo, Buffalo, NY., United States of America
| | - Rania Ahmed
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America; Department of Psychology, State University of New York at Buffalo, Buffalo, NY., United States of America
| | - Marjorie C. Gondre-Lewis
- Department of Anatomy, Howard University College of Medicine, and Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, Washington D.C., United States of America
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, United States of America
| | - Eric R. Braverman
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX United States of America
| | - Diwanshu Soni
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of the Health Sciences, Pomona, CA, United States of America
| | - Paul Carney
- Division Pediatric Neurology, University of Missouri, School of Medicine, Columbia, MO., United States of America
| | - Jag Khalsa
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Edward J. Modestino
- Department of Psychology, Curry College, Milton, MA., United States of America
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Texas Southern University College of Pharmacy and Health Sciences, Houston, TX, United States of America
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland OH., 44106, USA and Department of Psychiatry, Mt. Sinai School of Medicine, New York, NY, United States of America
| | - Thomas McLaughlin
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX United States of America
| | - Rene Cortese
- Department of Child Health – Child Health Research Institute, & Department of Obstetrics, Gynecology and Women’s Health School of Medicine, University of Missouri, MO, United States of America
| | - Mauro Ceccanti
- Alcohol Addiction Program, Latium Region Referral Center, Sapienza University of Rome, Roma, Italy
| | - Kevin T. Murphy
- Division of Personalized Neuromodulation and Patient Care, PeakLogic, LLC, Del Mar, CA, United States of America
| | - Ashim Gupta
- Future Biologics, Lawrenceville, Georgia, 30043, United States of America
| | - Miles T. Makale
- Department of Psychology, UC San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, United States of America
| | - Keerthy Sunder
- Division of Personalized Neuromodulation Research, Sunder Foundation, Palm Springs, CA, United States of America
- Department of Psychiatry, UC Riverside School of Medicine, Riverside, CA, United States of America
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
4
|
Bowirrat A, Elman I, Dennen CA, Gondré-Lewis MC, Cadet JL, Khalsa J, Baron D, Soni D, Gold MS, McLaughlin TJ, Bagchi D, Braverman ER, Ceccanti M, Thanos PK, Modestino EJ, Sunder K, Jafari N, Zeine F, Badgaiyan RD, Barh D, Makale M, Murphy KT, Blum K. Neurogenetics and Epigenetics of Loneliness. Psychol Res Behav Manag 2023; 16:4839-4857. [PMID: 38050640 PMCID: PMC10693768 DOI: 10.2147/prbm.s423802] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Loneliness, an established risk factor for both, mental and physical morbidity, is a mounting public health concern. However, the neurobiological mechanisms underlying loneliness-related morbidity are not yet well defined. Here we examined the role of genes and associated DNA risk polymorphic variants that are implicated in loneliness via genetic and epigenetic mechanisms and may thus point to specific therapeutic targets. Searches were conducted on PubMed, Medline, and EMBASE databases using specific Medical Subject Headings terms such as loneliness and genes, neuro- and epigenetics, addiction, affective disorders, alcohol, anti-reward, anxiety, depression, dopamine, cancer, cardiovascular, cognitive, hypodopaminergia, medical, motivation, (neuro)psychopathology, social isolation, and reward deficiency. The narrative literature review yielded recursive collections of scientific and clinical evidence, which were subsequently condensed and summarized in the following key areas: (1) Genetic Antecedents: Exploration of multiple genes mediating reward, stress, immunity and other important vital functions; (2) Genes and Mental Health: Examination of genes linked to personality traits and mental illnesses providing insights into the intricate network of interaction converging on the experience of loneliness; (3) Epigenetic Effects: Inquiry into instances of loneliness and social isolation that are driven by epigenetic methylations associated with negative childhood experiences; and (4) Neural Correlates: Analysis of loneliness-related affective states and cognitions with a focus on hypodopaminergic reward deficiency arising in the context of early life stress, eg, maternal separation, underscoring the importance of parental support early in life. Identification of the individual contributions by various (epi)genetic factors presents opportunities for the creation of innovative preventive, diagnostic, and therapeutic approaches for individuals who cope with persistent feelings of loneliness. The clinical facets and therapeutic prospects associated with the current understanding of loneliness, are discussed emphasizing the relevance of genes and DNA risk polymorphic variants in the context of loneliness-related morbidity.
Collapse
Affiliation(s)
- Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, 40700, Israel
| | - Igor Elman
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Catherine A Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - Marjorie C Gondré-Lewis
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, Bethesda, MD, 20892, USA
| | - Jag Khalsa
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, School of Medicine, Washington, DC, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Diwanshu Soni
- Western University Health Sciences School of Medicine, Pomona, CA, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Thomas J McLaughlin
- Division of Reward Deficiency Clinics, TranspliceGen Therapeutics, Inc, Austin, TX, USA
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Texas Southern University College of Pharmacy, Houston, TX, USA
| | - Eric R Braverman
- Division of Clinical Neurology, The Kenneth Blum Institute of Neurogenetics & Behavior, LLC, Austin, TX, USA
| | - Mauro Ceccanti
- Alcohol Addiction Program, Latium Region Referral Center, Sapienza University of Rome, Roma, 00185, Italy
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | | | - Keerthy Sunder
- Karma Doctors & Karma TMS, and Suder Foundation, Palm Springs, CA, USA
- Department of Medicine, University of California, Riverside School of Medicine, Riverside, CA, USA
| | - Nicole Jafari
- Department of Human Development, California State University at Long Beach, Long Beach, CA, USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA, USA
| | - Foojan Zeine
- Awareness Integration Institute, San Clemente, CA, USA
- Department of Health Science, California State University at Long Beach, Long Beach, CA, USA
| | | | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur, WB, 721172, India
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Milan Makale
- Department of Radiation Medicine and Applied Sciences, UC San Diego, La Jolla, CA, 92093-0819, USA
| | - Kevin T Murphy
- Department of Radiation Oncology, University of California San Diego, La Jolla, CA, USA
| | - Kenneth Blum
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, 40700, Israel
- Division of Addiction Research & Education, Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, CA, 91766, USA
- Division of Reward Deficiency Clinics, TranspliceGen Therapeutics, Inc, Austin, TX, USA
- Division of Clinical Neurology, The Kenneth Blum Institute of Neurogenetics & Behavior, LLC, Austin, TX, USA
- Department of Medicine, University of California, Riverside School of Medicine, Riverside, CA, USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA, USA
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur, WB, 721172, India
- Department of Psychiatry, University of Vermont School of Medicine, Burlington, VA, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
5
|
de Luna FCF, Ferreira WAS, Casseb SMM, de Oliveira EHC. Anticancer Potential of Flavonoids: An Overview with an Emphasis on Tangeretin. Pharmaceuticals (Basel) 2023; 16:1229. [PMID: 37765037 PMCID: PMC10537037 DOI: 10.3390/ph16091229] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Natural compounds with pharmacological activity, flavonoids have been the subject of an exponential increase in studies in the field of scientific research focused on therapeutic purposes due to their bioactive properties, such as antioxidant, anti-inflammatory, anti-aging, antibacterial, antiviral, neuroprotective, radioprotective, and antitumor activities. The biological potential of flavonoids, added to their bioavailability, cost-effectiveness, and minimal side effects, direct them as promising cytotoxic anticancer compounds in the optimization of therapies and the search for new drugs in the treatment of cancer, since some extensively antineoplastic therapeutic approaches have become less effective due to tumor resistance to drugs commonly used in chemotherapy. In this review, we emphasize the antitumor properties of tangeretin, a flavonoid found in citrus fruits that has shown activity against some hallmarks of cancer in several types of cancerous cell lines, such as antiproliferative, apoptotic, anti-inflammatory, anti-metastatic, anti-angiogenic, antioxidant, regulatory expression of tumor-suppressor genes, and epigenetic modulation.
Collapse
Affiliation(s)
- Francisco Canindé Ferreira de Luna
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
| | - Wallax Augusto Silva Ferreira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
| | | | - Edivaldo Herculano Correa de Oliveira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
- Faculty of Natural Sciences, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Rua Augusto Correa, 01, Belém 66075-990, Brazil
| |
Collapse
|
6
|
Giridharan S. Beyond the Mat: Exploring the Potential Clinical Benefits of Yoga on Epigenetics and Gene Expression: A Narrative Review of the Current Scientific Evidence. Int J Yoga 2023; 16:64-71. [PMID: 38204768 PMCID: PMC10775846 DOI: 10.4103/ijoy.ijoy_141_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 01/12/2024] Open
Abstract
Yoga, an ancient practice rooted in Indian philosophy, has gained widespread popularity for its numerous physical and mental health benefits. In the recent years, there has been growing interest in understanding how yoga influences gene expression and epigenetic modifications. This narrative review investigates the molecular mechanisms, by which yoga influences gene expression, focusing on deoxyribonucleic acid (DNA) methylation, and histone modifications. Research literature was sourced from various databases to select randomized clinical trials and comparative cohort studies examining yoga's impact on gene expression and epigenetic changes. Our findings suggest that yoga could exert anti-inflammatory effects, as it downregulates pro-inflammatory cytokines, soluble interleukin IL-2 receptor gene expression, and transcription factors. Yoga also boosts the innate antiviral response and brain health by enhancing natural defense genes and microRNA-29c expression. Notably, it activates telomerase, linked with cellular longevity, and promotes nitric oxide synthetase and neuroprotective gene expression, implying benefits for ocular health. In addition, yoga fosters DNA repair and cellular integrity maintenance by increasing oxoguanine glycosylase one protein and p53 gene expression. However, the diversity of yoga interventions in these studies complicates direct comparisons and broader application. The current research primarily focuses on short-term outcomes, offering a limited understanding of yoga's long-term epigenetic impacts. Future research should address these gaps by studying the enduring effects of Yoga, personalizing interventions, and contrasting techniques.
Collapse
|
7
|
Dong N, Zhu J, Wang R, Wang S, Chen Y, Wang C, Goh EL, Chen T. Maternal Methamphetamine Exposure Influences Behavioral Sensitization and Nucleus Accumbens DNA Methylation in Subsequent Generation. Front Pharmacol 2022; 13:940798. [PMID: 35928279 PMCID: PMC9343784 DOI: 10.3389/fphar.2022.940798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The deleterious effects of methamphetamine (METH) exposure extend beyond abusers, and may potentially impact the vulnerability of their offspring in developing addictive behaviors. Epigenetic signatures have been implicated in addiction, yet the characteristics to identify prenatal METH abuse to offspring addiction risk remains elusive. Here, we used escalating doses of METH-exposed mouse model in F0 female mice before and during pregnancy to simulate the human pattern of drug abuse and generated METH-induced behavioral sensitization to investigate the addictive behavior in offspring mice. We then utilized whole genome-bisulfite sequencing (WGBS) to investigate the methylation signature of nucleus accumbens (NAc) in male METH-sensitized mice. Interestingly, male but not female offspring exhibited an enhanced response to METH-induced behavioral sensitization. Additionally, the METH-exposed group of male mice underwent a more comprehensive wave of epigenome remodeling over all genomic elements compared with unexposed groups due to drug exposure history. 104,219 DMCs (METH-SAL vs. SAL-SAL) induced by prenatal METH-exposure were positively correlated with that of postnatal METH-exposure (38,570, SAL-METH vs. SAL-SAL). Moreover, 4,983 DMCs induced by pre- and postnatal METH exposure (METH-METH vs. SAL-METH) were negatively correlated with that of postnatal METH exposure, and 371 commonly changed DMCs between the two comparison groups also showed a significantly negative correlation and 86 annotated genes functionally enriched in the pathways of neurodevelopment and addiction. Key annotated genes included Kirrel3, Lrpprc, and Peg3, implicated in neurodevelopmental processes, were down-regulated in METH-METH group mice compared with the SAL-METH group. Taken together, we render novel insights into the epigenetic correlation of drug exposure and provide evidence for epigenetic characteristics that link maternal METH exposure to the intensity of the same drug-induced behavioral sensitization in adult offspring.
Collapse
Affiliation(s)
- Nan Dong
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jie Zhu
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Rui Wang
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Shuai Wang
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Eyleen L.K Goh
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Singhealth Duke-NUS Neuroscience Academic Clinical Programme, Singapore, Singapore
| | - Teng Chen
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Teng Chen,
| |
Collapse
|
8
|
Saad L, Zwiller J, Kalsbeek A, Anglard P. Epigenetic Regulation of Circadian Clocks and Its Involvement in Drug Addiction. Genes (Basel) 2021; 12:1263. [PMID: 34440437 PMCID: PMC8394526 DOI: 10.3390/genes12081263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Based on studies describing an increased prevalence of addictive behaviours in several rare sleep disorders and shift workers, a relationship between circadian rhythms and addiction has been hinted for more than a decade. Although circadian rhythm alterations and molecular mechanisms associated with neuropsychiatric conditions are an area of active investigation, success is limited so far, and further investigations are required. Thus, even though compelling evidence connects the circadian clock to addictive behaviour and vice-versa, yet the functional mechanism behind this interaction remains largely unknown. At the molecular level, multiple mechanisms have been proposed to link the circadian timing system to addiction. The molecular mechanism of the circadian clock consists of a transcriptional/translational feedback system, with several regulatory loops, that are also intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape shows profound changes in the addictive brain, with significant alterations in histone modification, DNA methylation, and small regulatory RNAs. The combination of these two observations raises the possibility that epigenetic regulation is a common plot linking the circadian clocks with addiction, though very little evidence has been reported to date. This review provides an elaborate overview of the circadian system and its involvement in addiction, and we hypothesise a possible connection at the epigenetic level that could further link them. Therefore, we think this review may further improve our understanding of the etiology or/and pathology of psychiatric disorders related to drug addiction.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France
| |
Collapse
|
9
|
Effect of histone acetylation on maintenance and reinstatement of morphine-induced conditioned place preference and ΔFosB expression in the nucleus accumbens and prefrontal cortex of male rats. Behav Brain Res 2021; 414:113477. [PMID: 34302880 DOI: 10.1016/j.bbr.2021.113477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 01/14/2023]
Abstract
Recently, epigenetic mechanisms are considered as the new potential targets for addiction treatment. This research was designed to explore the effect of histone acetylation on ΔFosB gene expression in morphine-induced conditioned place preference (CPP) in male rats. CPP was induced via morphine injection (5 mg/kg) for three consecutive days. Animals received low-dose theophylline (LDT) or Suberoylanilide Hydroxamic acid (SAHA), as an histone deacetylase (HDAC) activator or inhibitor, respectively, and a combination of both in subsequent extinction days. Following extinction, a priming dose of morphine (1 mg/kg) was administered to induce reinstatement. H4 acetylation and ΔFosB expression in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) were assessed on the last day of extinction and the following CPP reinstatement. Our results demonstrated that daily administration of SAHA (25 mg/kg; i.p.), facilitated morphine-extinction and decreased CPP score in reinstatement of place preference. Conversely, injections of LDT (20 mg/kg; i.p.) prolonged extinction in animals. Co-administration of LDT and SAHA on extinction days counterbalanced each other, such that maintenance and reinstatement were no different than the control group. The gene expression of ΔFosB was increased by SAHA in NAc and mPFC compared to the control group. Administration of SAHA during extinction days, also altered histone acetylation in the NAc and mPFC on the last day of extinction, but not on reinstatement day. Collectively, administration of SAHA facilitated extinction and reduced reinstatement of morphine-induced CPP in rats. This study confirms the essential role of epigenetic mechanisms, specifically histone acetylation, in regulating drug-induced plasticity and seeking behaviors.
Collapse
|
10
|
Ribeiro ACR, Jahr FM, Hawkins E, Kronfol MM, Younis RM, McClay JL, Deshpande LS. Epigenetic histone acetylation and Bdnf dysregulation in the hippocampus of rats exposed to repeated, low-dose diisopropylfluorophosphate. Life Sci 2021; 281:119765. [PMID: 34186043 DOI: 10.1016/j.lfs.2021.119765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
AIMS Deployment-related exposures to organophosphate (OP) compounds are implicated for Gulf War Illness (GWI) development in First GW veterans. However, reasons for the persistence of GWI are not fully understood. Epigenetic modifications to chromatin are regulatory mechanisms that can adaptively or maladaptively respond to external stimuli. These include DNA methylation and histone acetylation. DNA methylation changes have been reported in GWI but the role of histone acetylation in GWI has been less explored, despite its importance as an epigenetic mechanism for neurological disorders. MAIN METHODS Male Sprague-Dawley rats were exposed to OP diisopropyl fluorophosphate (DFP, 0.5 mg/kg s.c., 5-d) and 6-m later brains were dissected for hippocampus. Western blotting, activity assays and chromatin immunoprecipitation (ChIP) were utilized for epigenetic analyses. Behavior was assessed using the Forced Swim Test (FST) and the Elevated Plus Maze (EPM). KEY FINDINGS We observed a significant upregulation in HDAC1 protein along with a significant increase in HDAC enzyme activity in the hippocampus of DFP rats. A locus-specific ChIP study revealed decreases in H3K9ac at the brain derived neurotrophic factor (Bdnf) promoter IV coupled with a significant decrease in BDNF protein in DFP rat hippocampus. Treatment with HDAC inhibitor valproic acid reduced HDAC activity and decreased the FST immobility time in DFP rats. SIGNIFICANCE Our research suggests that epigenetic alterations to histone acetylation pathways and decreased BDNF expression could represent novel mechanisms for GWI symptomatology and may provide new targets for developing effective drugs for GWI treatment.
Collapse
Affiliation(s)
- Ana C R Ribeiro
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Fay M Jahr
- Department of Pharmacotherapy & Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Elisa Hawkins
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohamad M Kronfol
- Department of Pharmacotherapy & Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Rabha M Younis
- Department of Pharmacotherapy & Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Joseph L McClay
- Department of Pharmacotherapy & Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Laxmikant S Deshpande
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
11
|
Pineda-Cirera L, Cabana-Domínguez J, Grau-López L, Daigre C, Sánchez-Mora C, Palma-Álvarez RF, Ramos-Quiroga JA, Ribasés M, Cormand B, Fernàndez-Castillo N. Exploring allele specific methylation in drug dependence susceptibility. J Psychiatr Res 2021; 136:474-482. [PMID: 32917399 DOI: 10.1016/j.jpsychires.2020.07.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 01/17/2023]
Abstract
Drug dependence is a neuropsychiatric condition that involves genetic, epigenetic and environmental factors. Allele-specific methylation (ASM) is a common and stable epigenetic mechanism that involves genetic variants correlating with differential levels of methylation at CpG sites. We selected 182 single-nucleotide polymorphisms (SNPs) described to influence cis ASM in human brain regions to evaluate their possible contribution to drug dependence susceptibility. We performed a case-control association study in a discovery sample of 578 drug-dependent patients (including 428 cocaine-dependent subjects) and 656 controls from Spain, and then, we followed-up the significant associations in an independent sample of 1119 cases (including 589 cocaine-dependent subjects) and 1092 controls. In the discovery sample, we identified five nominal associations, one of them replicated in the follow-up sample (rs6020251). The pooled analysis revealed an association between drug dependence and rs6020251 but also rs11585570, both overcoming the Bonferroni correction for multiple testing. We performed the same analysis considering only cocaine-dependent patients and obtained similar results. The rs6020251 variant correlates with differential methylation levels of cg17974185 and lies in the first intron of the CTNNBL1 gene, in a genomic region with multiple histone marks related to enhancer and promoter regions in brain. Rs11585570 is an eQTL in brain and blood for the SCP2 and ECHDC2 genes and correlates with differential methylation of cg27535305 and cg13461509, located in the promoter regions of both genes. To conclude, using an approach that combines genetic and epigenetic data, we highlighted the CTNNBL1, SCP2 and ECHDC2 genes as potential contributors to drug dependence susceptibility.
Collapse
Affiliation(s)
- Laura Pineda-Cirera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Lara Grau-López
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health and Addictions, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Constanza Daigre
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health and Addictions, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Cristina Sánchez-Mora
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raul Felipe Palma-Álvarez
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health and Addictions, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Josep Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health and Addictions, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Ribasés
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
12
|
Qin C, Hu J, Wan Y, Cai M, Wang Z, Peng Z, Liao Y, Li D, Yao P, Liu L, Rong S, Bao W, Xu G, Yang W. Narrative review on potential role of gut microbiota in certain substance addiction. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110093. [PMID: 32898589 DOI: 10.1016/j.pnpbp.2020.110093] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022]
Abstract
As a neuropsychiatric disorder, substance addiction represents a major public health issue with high prevalence and mortality in many countries. Recently, gut microbiota has been certified to play a part in substance addiction through various mechanisms. Hence, we mainly focused on three substance including alcohol, cocaine and methamphetamine in this review, and summarized their relationships with gut microbiota, respectively. Besides, we also concluded the possible treatments for substance addiction from the perspective of applying gut microbiota. This review aims to build a bridge between substance addiction and gut microbiota according to existing evidences, so as to excavate the possible bi-directional function of microbiota-gut-brain axis in substance addiction for developing therapeutic strategies in the future.
Collapse
Affiliation(s)
- Chenyuan Qin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Jiawei Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Yiming Wan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Mengyao Cai
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Zhenting Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Dan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, IA 52242, USA
| | - Guifeng Xu
- Department of Epidemiology, College of Public Health, University of Iowa, IA 52242, USA; Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, Iowa City, IA 52242, USA
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China.
| |
Collapse
|
13
|
Xu W, Zhao M, Lin Z, Liu H, Ma H, Hong Q, Gui D, Feng J, Liu Y, Zhou W, Liu H. Increased expression of plasma hsa-miR-181a in male patients with heroin addiction use disorder. J Clin Lab Anal 2020; 34:e23486. [PMID: 32748469 PMCID: PMC7676194 DOI: 10.1002/jcla.23486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Drug addiction is an uncontrolled, chronic, and recurrent encephalopathy that presently lacks specific and characteristic biomarkers for diagnosis and treatment. As regulators of gene expression, microRNAs (miRNAs) are increasingly used for diagnostic and prognostic purposes in various disease states. Previous studies indicated that miRNAs play important roles in the development and progression of drug addictions, including addiction to methamphetamine, cocaine, alcohol, and heroin. METHODS We identified significant miRNAs using the microarray method and then validated the hsa-miR-181a expression levels in 53 heroin addiction patients and 49 normal controls using quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Finally, the potential associations between transcriptional levels in heroin addiction patients and their clinicopathological features were analyzed. RESULTS A total of 2006 miRNAs were differentially expressed between heroin addiction patients and normal controls. The top 10 up-regulated miRNAs in patients were hsa-miR-21a, hsa-miR-181a, hsa-miR-4459, hsa-miR-4430, hsa-miR-4306, hsa-miR-22-3P, hsa-miR-486-5P, hsa-miR-371b-5P, hsa-miR-92a-3P, and hsa-miR-5001-5P. The top 10 down-regulated miRNAs in patients were hsa-miR-3195, hsa-miR-4767, hsa-miR-3135b, hsa-miR-6087, hsa-miR-1181, hsa-miR-4785, hsa-miR-718, hsa-miR-3141, hsa-miR-652-5P, and hsa-miR-6126. The expression level of hsa-miR-181a in heroin addiction patients was significantly increased compared with that in normal controls (P < .001). The area under the receiver operating characteristic curve of hsa-miR-181a was 0.783, the sensitivity was 0.867, and the specificity was 0.551. CONCLUSIONS The increased expression of hsa-miR-181a in the plasma of heroin patients may be a consequence of the pathological process of heroin abuse. This study highlights the potential of hsa-miR-181a as a novel biomarker for the diagnosis of heroin addiction.
Collapse
Affiliation(s)
- Wenjin Xu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Ming Zhao
- Department of Medical Services, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Zi Lin
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Haixiong Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Hong Ma
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Qingxiao Hong
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Donghui Gui
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Jiying Feng
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Yue Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Wenhua Zhou
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Huifen Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Cavicchioli M, Ramella P, Movalli M, Prudenziati F, Vassena G, Simone G, Maffei C. DSM-5 Maladaptive Personality Domains among Treatment-Seeking Individuals with Alcohol Use Disorder: The Role of Disinhibition and Negative Affectivity. Subst Use Misuse 2020; 55:1746-1758. [PMID: 32410484 DOI: 10.1080/10826084.2020.1762650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Dimensional models of personality and personality disorders (PDs) have been widely investigated among individuals with alcohol use disorders (AUD). Nevertheless, DSM-5 maladaptive personality domains showed mixed associations with AUD. Furthermore, no studies have explored the role of DSM-5 maladaptive personality domains on the comorbidity between AUD and different PDs. Objective(s): This study aims at investigating whether DSM-5 maladaptive personality dimensions could differentiate individuals with AUD from normative and healthy controls (HCs) subjects. The study also investigated relationships between these personality dimensions and AUD clinical features (i.e. onset, severity of concurrent substance use disorders), as well as their role in accounting for the comorbidity between AUD and PDs. Methods: This study administered the personality inventory for DSM-5 (PID-5) to 99 treatment-seeking individuals (male 68.8%; female 31.2%; age: 48.12 (14.32)) with AUD (41 AUD only; 58 AUD with PDs), comparing the participants' levels of PID-5 domains with normative data and the data from a HC sample (N = 40; male 50%; female 50%; age: 48.12 (14.32)). Results: Disinhibition and negative affectivity were relevant maladaptive personality dimensions of AUD, even when controlling for the impact of PD diagnoses. Disinhibition and negative affectivity were associated to the onset of AUD and the severity of concurrent substance use disorders. The co-occurrence of AUD and PDs is related to other two domains, namely antagonism and detachment. Conclusions: AUD is a complex psychopathological disorder in which both externalizing and internalizing aspects determine relevant clinical features.
Collapse
Affiliation(s)
- Marco Cavicchioli
- Department of Psychology, University "Vita-Salute San Raffaele", Milan, Italy.,Unit of Clinical Psychology and Psychotherapy, San Raffaele-Turro Hospital, Milan, Italy
| | - Pietro Ramella
- Department of Psychology, University "Vita-Salute San Raffaele", Milan, Italy.,Unit of Clinical Psychology and Psychotherapy, San Raffaele-Turro Hospital, Milan, Italy
| | - Mariagrazia Movalli
- Department of Psychology, University "Vita-Salute San Raffaele", Milan, Italy.,Unit of Clinical Psychology and Psychotherapy, San Raffaele-Turro Hospital, Milan, Italy
| | - Francesca Prudenziati
- Department of Psychology, University "Vita-Salute San Raffaele", Milan, Italy.,Unit of Clinical Psychology and Psychotherapy, San Raffaele-Turro Hospital, Milan, Italy
| | - Giulia Vassena
- Department of Psychology, University "Vita-Salute San Raffaele", Milan, Italy.,Unit of Clinical Psychology and Psychotherapy, San Raffaele-Turro Hospital, Milan, Italy
| | - Giulia Simone
- Department of Psychology, University "Vita-Salute San Raffaele", Milan, Italy.,Unit of Clinical Psychology and Psychotherapy, San Raffaele-Turro Hospital, Milan, Italy
| | - Cesare Maffei
- Department of Psychology, University "Vita-Salute San Raffaele", Milan, Italy.,Unit of Clinical Psychology and Psychotherapy, San Raffaele-Turro Hospital, Milan, Italy
| |
Collapse
|
15
|
Wanner NM, Colwell ML, Faulk C. The epigenetic legacy of illicit drugs: developmental exposures and late-life phenotypes. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz022. [PMID: 31777665 PMCID: PMC6875650 DOI: 10.1093/eep/dvz022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 05/24/2023]
Abstract
The effects of in utero exposure to illicit drugs on adult offspring are a significant and widespread but understudied global health concern, particularly in light of the growing opioid epidemic and emerging therapeutic uses for cannabis, ketamine, and MDMA. Epigenetic mechanisms including DNA methylation, histone modifications, and expression of non-coding RNAs provide a mechanistic link between the prenatal environment and health consequences years beyond the original exposure, and shifts in the epigenome present in early life or adolescence can lead to disease states only appearing during adulthood. The current review summarizes the literature assessing effects of perinatal illicit drug exposure on adult disease phenotypes as mediated by perturbations of the epigenome. Both behavioral and somatic phenotypes are included and studies reporting clinical data in adult offspring, epigenetic readouts in offspring of any age, or both phenotypic and epigenetic measures are prioritized. Studies of licit substances of abuse (i.e. alcohol, nicotine) are excluded with a focus on cannabis, psychostimulants, opioids, and psychedelics; current issues in the field and areas of interest for further investigation are also discussed.
Collapse
Affiliation(s)
- Nicole M Wanner
- Department of Veterinary and Biomedical Sciences, University of Minnesota College of Veterinary Medicine, 1988 Fitch Ave, 495B AnSc/VetMed, St. Paul, MN 55108, USA
| | - Mathia L Colwell
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Natural Resource Sciences, 1988 Fitch Ave, 495B AnSc/VetMed, St. Paul, MN 55108, USA
| | - Christopher Faulk
- Department of Veterinary and Biomedical Sciences, University of Minnesota College of Veterinary Medicine, 1988 Fitch Ave, 495B AnSc/VetMed, St. Paul, MN 55108, USA
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Natural Resource Sciences, 1988 Fitch Ave, 495B AnSc/VetMed, St. Paul, MN 55108, USA
| |
Collapse
|
16
|
Imeh-Nathaniel A, Orfanakos V, Wormack L, Huber R, Nathaniel TI. The crayfish model (Orconectes rusticus), epigenetics and drug addiction research. Pharmacol Biochem Behav 2019; 183:38-45. [PMID: 31202808 DOI: 10.1016/j.pbb.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/16/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022]
Abstract
Fundamental signs of epigenetic effects are variations in the expression of genes or phenotypic traits among isogenic mates. Therefore, genetically identical animals are in high demand for epigenetic research. There are many genetically identical animals, including natural parthenogens and inbred laboratory lineages or clones. However, most parthenogenetic animal taxa are very small in combined epigenetic and drug addiction research. Orconectes rusticus has a unique phylogenetic position, with 2-3 years of life span, which undergoes metamorphosis that creates developmental stages with distinctly different morphologies, unique lifestyles, and broad behavioral traits, even among isogenic mates reared in the same environment offer novel inroads for epigenetics studies. Moreover, the establishment of crayfish as a novel system for drug addiction with evidence of an automated, operant self-administration and conditioned-reward, withdrawal, reinstatement of the conditioned drug-induced reward sets the stage to investigate epigenetic mechanisms of drug addiction. We discuss behavioral, pharmacological and molecular findings from laboratory studies that document a broad spectrum of molecular and, behavioral evidence including potential hypotheses that can be tested with the crayfish model for epigenetic study in drug addiction research.
Collapse
Affiliation(s)
| | | | - Leah Wormack
- University of South Carolina School of Medicine, SC, USA
| | - Robert Huber
- J.P Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| | | |
Collapse
|
17
|
Epigenetic mechanisms associated with addiction-related behavioural effects of nicotine and/or cocaine: implication of the endocannabinoid system. Behav Pharmacol 2018; 28:493-511. [PMID: 28704272 DOI: 10.1097/fbp.0000000000000326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The addictive use of nicotine (NC) and cocaine (COC) continues to be a major public health problem, and their combined use has been reported, particularly during adolescence. In neural plasticity, commonly induced by NC and COC, as well as behavioural plasticity related to the use of these two drugs, the involvement of epigenetic mechanisms, in which the reversible regulation of gene expression occurs independently of the DNA sequence, has recently been reported. Furthermore, on the basis of intense interactions with the target neurotransmitter systems, the endocannabinoid (ECB) system has been considered pivotal for eliciting the effects of NC or COC. The combined use of marijuana with NC and/or COC has also been reported. This article presents the addiction-related behavioural effects of NC and/or COC, based on the common behavioural/neural plasticity and combined use of NC/COC, and reviews the interacting role of the ECB system. The epigenetic processes inseparable from the effects of NC and/or COC (i.e. DNA methylation, histone modifications and alterations in microRNAs) and the putative therapeutic involvement of the ECB system at the epigenetic level are also discussed.
Collapse
|
18
|
Brooks SJ, Lochner C, Shoptaw S, Stein DJ. Using the research domain criteria (RDoC) to conceptualize impulsivity and compulsivity in relation to addiction. PROGRESS IN BRAIN RESEARCH 2017; 235:177-218. [PMID: 29054288 DOI: 10.1016/bs.pbr.2017.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nomenclature for mental disorder was updated in 2013 with the publication of the fifth edition of the Diagnostic and Statistical Manual (DSM-5). In DSM-5, substance use disorders are framed as more dimensional. First, the distinction between abuse and dependence is replaced by substance use. Second, the addictions section now covers both substances and behavioral addictions. This contemporary move toward dimensionality and transdiagnosis in the addictions and other disorders embrace accumulating cognitive-affective neurobiological evidence that is reflected in the United States' National Institutes of Health Research Domain Criteria (NIH RDoC). The RDoC calls for the further development of transdiagnostic approaches to psychopathy and includes five domains to improve research. Additionally, the RDoC suggests that these domains can be measured in terms of specific units of analysis. In line with these suggestions, recent publications have stimulated updated neurobiological conceptualizations of two transdiagnostic concepts, namely impulsivity and compulsivity and their interactions that are applicable to addictive disorders. However, there has not yet been a review to examine the constructs of impulsivity and compulsivity in relation to addiction in light of the research-oriented RDoC. By doing so it may become clearer as to whether impulsivity and compulsivity function antagonistically, complementarily or in some other way at the behavioral, cognitive, and neural level and how this relationship underpins addiction. Thus, here we consider research into impulsivity and compulsivity in light of the transdiagnostic RDoC to help better understand these concepts and their application to evidence-based clinical intervention for addiction.
Collapse
Affiliation(s)
- Samantha J Brooks
- University of Cape Town, Cape Town, South Africa; Uppsala University, Uppsala, Sweden.
| | - Christine Lochner
- US/UCT MRC Unit on Anxiety & Stress Disorders, University of Stellenbosch, Stellenbosch, South Africa
| | - Steve Shoptaw
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Dan J Stein
- US/UCT MRC Unit on Anxiety & Stress Disorders, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Brooks SJ, Funk SG, Young SY, Schiöth HB. The Role of Working Memory for Cognitive Control in Anorexia Nervosa versus Substance Use Disorder. Front Psychol 2017; 8:1651. [PMID: 29018381 PMCID: PMC5615794 DOI: 10.3389/fpsyg.2017.01651] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 09/07/2017] [Indexed: 01/20/2023] Open
Abstract
Prefrontal cortex executive functions, such as working memory (WM) interact with limbic processes to foster impulse control. Such an interaction is referred to in a growing body of publications by terms such as cognitive control, cognitive inhibition, affect regulation, self-regulation, top-down control, and cognitive–emotion interaction. The rising trend of research into cognitive control of impulsivity, using various related terms reflects the importance of research into impulse control, as failure to employ cognitions optimally may eventually result in mental disorder. Against this background, we take a novel approach using an impulse control spectrum model – where anorexia nervosa (AN) and substance use disorder (SUD) are at opposite extremes – to examine the role of WM for cognitive control. With this aim, we first summarize WM processes in the healthy brain in order to frame a systematic review of the neuropsychological, neural and genetic findings of AN and SUD. In our systematic review of WM/cognitive control, we found n = 15 studies of AN with a total of n = 582 AN and n = 365 HC participants; and n = 93 studies of SUD with n = 9106 SUD and n = 3028 HC participants. In particular, we consider how WM load/capacity may support the neural process of excessive epistemic foraging (cognitive sampling of the environment to test predictions about the world) in AN that reduces distraction from salient stimuli. We also consider the link between WM and cognitive control in people with SUD who are prone to ‘jumping to conclusions’ and reduced epistemic foraging. Finally, in light of our review, we consider WM training as a novel research tool and an adjunct to enhance treatment that improves cognitive control of impulsivity.
Collapse
Affiliation(s)
- Samantha J Brooks
- Functional Pharmacology, Department of Neuroscience, Uppsala UniversityUppsala, Sweden.,Department of Psychiatry and Mental Health, University of Cape TownCape Town, South Africa
| | - Sabina G Funk
- Department of Psychiatry and Mental Health, University of Cape TownCape Town, South Africa
| | - Susanne Y Young
- Department of Psychiatry, Stellenbosch UniversityBellville, South Africa
| | - Helgi B Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala UniversityUppsala, Sweden
| |
Collapse
|
20
|
Bakulski KM, Halladay A, Hu VW, Mill J, Fallin MD. Epigenetic Research in Neuropsychiatric Disorders: the "Tissue Issue". Curr Behav Neurosci Rep 2016; 3:264-274. [PMID: 28093577 DOI: 10.1007/s40473-016-0083-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Evidence has linked neuropsychiatric disorders with epigenetic marks as either a biomarker of disease, biomarker of exposure, or mechanism of disease processes. Neuropsychiatric epidemiologic studies using either target brain tissue or surrogate blood tissue each have methodological challenges and distinct advantages. RECENT FINDINGS Brain tissue studies are challenged by small sample sizes of cases and controls, incomplete phenotyping, post-mortem timing, and cellular heterogeneity, but the use of a primary disease relevant tissue is critical. Blood-based studies have access to much larger sample sizes and more replication opportunities, as well as the potential for longitudinal measurements, both prior to onset and during the course of treatments. Yet, blood studies also are challenged by cell-type heterogeneity, and many question the validity of using peripheral tissues as a brain biomarker. Emerging evidence suggests that these limitations to blood-based epigenetic studies are surmountable, but confirmation in target tissue remains important. SUMMARY Epigenetic mechanisms have the potential to help elucidate biology connecting experiential risk factors with neuropsychiatric disease manifestation. Cross-tissue studies as well as advanced epidemiologic methods should be employed to more effectively conduct neuropsychiatric epigenetic research.
Collapse
Affiliation(s)
- Kelly M Bakulski
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Alycia Halladay
- Autism Science Foundation, New York City, New York, USA; Department of Pharmacology and Toxicology, Rutgers University, New Brunswick, New Jersey, USA
| | - Valerie W Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK; Institute for Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M Daniele Fallin
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Epigenetics in Drug Response. Clin Pharmacol Ther 2016; 99:468-70. [DOI: 10.1002/cpt.349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/16/2022]
|
22
|
Cadet JL, Ladenheim B, Krasnova IN, Jayanthi S. Differential Expression of mRNAs Coding for Histone Deacetylases (HDACs) in the Nucleus Accumbens of Compulsive Methamphetamine Takers and Abstinent Rats. ACTA ACUST UNITED AC 2016. [DOI: 10.4303/jdar/235998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|