1
|
Ha H, Lee HY, Kim JH, Kim DY, An HJ, Bae S, Park HS, Kang JH. Precision Oncology Clinical Trials: A Systematic Review of Phase II Clinical Trials with Biomarker-Driven, Adaptive Design. Cancer Res Treat 2024; 56:991-1013. [PMID: 38726510 PMCID: PMC11491240 DOI: 10.4143/crt.2024.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/29/2024] [Indexed: 08/30/2024] Open
Abstract
Novel clinical trial designs are conducted in the precision medicine era. This study aimed to evaluate biomarker-driven, adaptive phase II trials in precision oncology, focusing on infrastructure, efficacy, and safety. We systematically reviewed and analyzed the target studies. EMBASE and PubMed searches from 2015 to 2023 generated 29 eligible trials. Data extraction included infrastructure, biomarker screening methodologies, efficacy, and safety profiles. Government agencies, cancer hospitals, and academic societies with accumulated experiences led investigator-initiated precision oncology clinical trials (IIPOCTs), which later guided sponsor-initiated precision oncology clinical trials (SIPOCTs). Most SIPOCTs were international studies with basket design. IIPOCTs primarily used the central laboratory for biomarker screening, but SIPOCTs used both central and local laboratories. Most of the studies adapted next-generation sequencing and/or immunohistochemistry for biomarker screening. Fifteen studies included an independent central review committee for outcome investigation. Efficacy assessments predominantly featured objective response rate as the primary endpoint, with varying results. Nine eligible studies contributed to the United States Food and Drug Administration's marketing authorization. Safety monitoring was rigorous, but reporting formats lacked uniformity. Health-related quality of life and patient-reported outcomes were described in some protocols but rarely reported. Our results reveal that precision oncology trials with adaptive design rapidly and efficiently evaluate anticancer drugs' efficacy and safety, particularly in specified biomarker-driven cohorts. The evolution from IIPOCT to SIPOCT has facilitated fast regulatory approval, providing valuable insights into the precision oncology landscape.
Collapse
Affiliation(s)
- Hyerim Ha
- Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - Hee Yeon Lee
- Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Do Yeun Kim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Ho Jung An
- Division of Oncology, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - SeungJin Bae
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hye-sung Park
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Hyoung Kang
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
2
|
Werner R, Crosbie R, Dorney M, Connolly A, Collins D, Hand CK, Burke L. Implementation of an ISO 15189 accredited next generation sequencing service for cell-free total nucleic acid (cfTNA) analysis to facilitate driver mutation reporting in blood: the experience of a clinical diagnostic laboratory. J Clin Pathol 2024:jcp-2024-209514. [PMID: 38914446 DOI: 10.1136/jcp-2024-209514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
AIMS Next generation sequencing (NGS) on tumour tissue is integral to the delivery of personalised medicine and targeted therapy. NGS on liquid biopsy, a much less invasive technology, is an emerging clinical tool that has rapidly expanded clinical utility. Gene mutations in cell-free total nucleic acids (cfTNA) circulating in the blood are representative of whole tumour biology and can reveal different mutations from different tumour sites, thus addressing tumour heterogeneity challenges. METHODS The novel Ion Torrent Genexus NGS system with automated sample preparation, onboard library preparation, templating, sequencing, data analysis and Oncomine Reporter software was used. cfTNA extracted from plasma was verified with the targeted pan-cancer (~50 genes) Oncomine Precision Assay (OPA). Assessment criteria included analytical sensitivity, specificity, limits of detection (LOD), accuracy, repeatability, reproducibility and the establishment of performance metrics. RESULTS An ISO 15189 accredited, minimally invasive cfTNA NGS diagnostic service has been implemented. High sensitivity (>83%) and specificity between plasma and tissue were observed. A sequencing LOD of 1.2% was achieved when the depth of coverage was >22 000×. A reduction (>68%) in turnaround time (TAT) of liquid biopsy results was achieved: 5 days TAT for in-house analysis from sample receipt to a final report issued to oncologists as compared with >15 days from reference laboratories. CONCLUSION Tumour-derived somatic variants can now be reliably assessed from plasma to provide minimally invasive tumour profiling. Successful implementation of this accredited service resulted in:Appropriate molecular profiling of patients where tumour tissue is unavailable or inaccessible.Rapid TAT of plasma NGS results.
Collapse
Affiliation(s)
- Reiltin Werner
- Pathology Department, Cork University Hospital, Cork, Ireland
- Department of Pathology, School of Medicine, University College Cork College of Medicine and Health, Cork, Ireland
| | - Ruth Crosbie
- Pathology Department, Cork University Hospital, Cork, Ireland
| | - Mairead Dorney
- Pathology Department, Cork University Hospital, Cork, Ireland
| | - Amy Connolly
- Pathology Department, Cork University Hospital, Cork, Ireland
| | | | - Collette K Hand
- Department of Pathology, School of Medicine, University College Cork College of Medicine and Health, Cork, Ireland
| | - Louise Burke
- Pathology Department, Cork University Hospital, Cork, Ireland
- Department of Pathology, School of Medicine, University College Cork College of Medicine and Health, Cork, Ireland
| |
Collapse
|
3
|
Li Y, Nelson R, Izem R, Broglio K, Mundayat R, Gamalo M, Wen Y, Pan H, Sun H, Ye J. Unlocking the Potential: A Systematic Review of Master Protocol in Pediatrics. Ther Innov Regul Sci 2024; 58:634-644. [PMID: 38653950 PMCID: PMC11169036 DOI: 10.1007/s43441-024-00656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
The use of master protocols allows for innovative approaches to clinical trial designs, potentially enabling new approaches to operations and analytics and creating value for patients and drug developers. Pediatric research has been conducted for many decades, but the use of novel designs such as master protocols in pediatric research is not well understood. This study aims to provide a systematic review on the utilization of master protocols in pediatric drug development. A search was performed in September 2022 using two data sources (PubMed and ClinicalTrials.gov) and included studies conducted in the past10 years. General study information was extracted such as study type, study status, therapeutic area, and clinical trial phase. Study characteristics that are specific to pediatric studies (such as age of the participants and pediatric drug dosing) and important study design elements (such as number of test drug arms and whether randomization and/or concurrent control was used) were also collected. Our results suggest that master protocol studies are being used in pediatrics, with platform and basket trials more common than umbrella trials. Most of this experience is in oncology and early phase studies. There is a rise in the use starting in 2020, largely in oncology and COVID-19 trials. However, adoption of master protocols in pediatric clinical research is still on a small scale and could be substantially expanded. Work is required to further understand the barriers in implementing pediatric master protocols, from setting up infrastructure to interpreting study findings.
Collapse
Affiliation(s)
- Yimei Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 3501 Civic Center Blvd, Colket Translational Research Building Room 4032, 19034, Philadelphia, PA, USA.
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | | - Rima Izem
- Statistical Methodology, Novartis Pharma AG, Basel, Switzerland
| | | | | | | | - Yansong Wen
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Haitao Pan
- Department of Biostatistics, St. Jude Children's Hospital, Memphis, TN, USA
| | - Hengrui Sun
- Food & Drug Administration, Silver Spring, MD, USA
| | | |
Collapse
|
4
|
Werner R, Connolly A, Bennett M, Hand CK, Burke L. Implementation of an ISO15189 accredited next-generation sequencing service with the fully automated Ion Torrent Genexus: the experience of a clinical diagnostic laboratory. J Clin Pathol 2024; 77:278-283. [PMID: 36522176 PMCID: PMC10958377 DOI: 10.1136/jcp-2022-208625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
AIMS Next-generation sequencing (NGS) is integral to the delivery of personalised medicine for targeted cancer therapy. Average turnaround times (TAT) from reference laboratories with advanced expertise in sequencing are typically 2-3 weeks. Prolonged TAT for biomarker analysis can adversely affect patient outcomes. The project aim was to establish an accredited NGS service integrated within a routine clinical diagnostic laboratory, in a designated tertiary cancer centre with no previous experience in NGS or bioinformatics. METHODS Platform selected was the novel Ion Torrent Genexus Sequencer with automated onboard library preparation, templating, sequencing and data analysis, with subsequent reporting using Oncomine Reporter software.Entire workflow validation was performed with a targeted panel, the Oncomine Precision Assay, on formalin-fixed paraffin embedded clinical tumour samples. Oncomine Reporter software was used to report on variants including mutations, copy number variations and fusions across 50 key genes.Samples included surgical resections, biopsies, cytology and commercial reference material. Assessment of criteria included analytical sensitivity, specificity, limit of detection, accuracy, repeatability and reproducibility, with the establishment of performance metrics and quality parameters. RESULTS High sensitivity, specificity and reproducibility were achieved. DNA/RNA input requirements optimised to >10 ng, and sequencing performance established with a limit of detection of 5% when depth of coverage of 2500X was reached. This NGS service attained ISO15189 accreditation with no non-conformances and >56% reduction in TAT. CONCLUSION Successful implementation, clinical validation and accreditation of a novel NGS technology was achieved in this institution, with a significantly improved TAT of results to oncologists.
Collapse
Affiliation(s)
- Réiltín Werner
- Pathology Department, Cork University Hospital, Cork, Ireland
- Department of Pathology, School of Medicine, University College Cork, Cork, Ireland
| | - Amy Connolly
- Pathology Department, Cork University Hospital, Cork, Ireland
| | - Michael Bennett
- Pathology Department, Cork University Hospital, Cork, Ireland
| | - Collette K Hand
- Department of Pathology, School of Medicine, University College Cork, Cork, Ireland
| | - Louise Burke
- Pathology Department, Cork University Hospital, Cork, Ireland
- Department of Pathology, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Powell CL, Saddoughi SA, Wigle DA. Progress in genome-inspired treatment decisions for multifocal lung adenocarcinoma. Expert Rev Respir Med 2023; 17:1009-1021. [PMID: 37982734 DOI: 10.1080/17476348.2023.2286277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/17/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Multifocal lung adenocarcinoma (MFLA) is becoming increasingly recognized as a distinct subset of lung cancer, with unique biology, disease course, and treatment outcomes. While definitions remain controversial, MFLA is characterized by the development and concurrent presence of multiple independent (non-metastatic) lesions on the lung adenocarcinoma spectrum. Disease progression typically follows an indolent course measured in years, with a lower propensity for nodal and distant metastases than other more common forms of non-small cell lung cancer. AREAS COVERED Traditional imaging and histopathological analyses of tumor biopsies are frequently unable to fully characterize the disease, prompting interest in molecular diagnosis. We highlight some of the key questions in the field, including accurate definitions to identify and stage MLFA, molecular tests to stratify patients and treatment decisions, and the lack of clinical trial data to delineate best management for this poorly understood subset of lung cancer patients. We review the existing literature and progress toward a genomic diagnosis for this unique disease entity. EXPERT OPINION Multifocal lung adenocarcinoma behaves differently than other forms of non-small cell lung cancer. Progress in molecular diagnosis may enhance potential for accurate definition, diagnosis, and optimizing treatment approach.
Collapse
Affiliation(s)
- Chelsea L Powell
- Division of Thoracic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Sahar A Saddoughi
- Division of Thoracic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Dennis A Wigle
- Division of Thoracic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Gouda MA, Subbiah V. Precision oncology with selective RET inhibitor selpercatinib in RET-rearranged cancers. Ther Adv Med Oncol 2023; 15:17588359231177015. [PMID: 37360768 PMCID: PMC10288430 DOI: 10.1177/17588359231177015] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
Rearranged during transfection (RET) is a protooncogene that encodes for receptor tyrosine kinase with downstream effects on multiple cellular pathways. Activating RET alterations can occur and lead to uncontrolled cellular proliferation as a hallmark of cancer development. Oncogenic RET fusions are present in nearly 2% of patients with non-small cell lung cancer (NSCLC), 10-20% of patients with thyroid cancer, and <1% across the pan-cancer spectrum. In addition, RET mutations are drivers in 60% of sporadic medullary thyroid cancers and 99% of hereditary thyroid cancers. The discovery, rapid clinical translation, and trials leading to FDA approvals of selective RET inhibitors, selpercatinib and pralsetinib, have revolutionized the field of RET precision therapy. In this article, we review the current status on the use of the selective RET inhibitor, selpercatinib, in RET fusion-positive tumors: NSCLC, thyroid cancers, and the more recent tissue-agnostic activity leading to FDA approval.
Collapse
Affiliation(s)
- Mohamed A. Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center. Houston, TX, USA
| | - Vivek Subbiah
- Sarah Cannon Research Institute, 1100 Dr. Martin L. King Jr. Blvd. Suite 800. Nashville, TN 37203, USA
| |
Collapse
|
7
|
Avalos-Pacheco A, Ventz S, Arfè A, Alexander BM, Rahman R, Wen PY, Trippa L. Validation of Predictive Analyses for Interim Decisions in Clinical Trials. JCO Precis Oncol 2023; 7:e2200606. [PMID: 36848613 PMCID: PMC10166373 DOI: 10.1200/po.22.00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Accepted: 01/12/2023] [Indexed: 03/01/2023] Open
Abstract
PURPOSE Adaptive clinical trials use algorithms to predict, during the study, patient outcomes and final study results. These predictions trigger interim decisions, such as early discontinuation of the trial, and can change the course of the study. Poor selection of the Prediction Analyses and Interim Decisions (PAID) plan in an adaptive clinical trial can have negative consequences, including the risk of exposing patients to ineffective or toxic treatments. METHODS We present an approach that leverages data sets from completed trials to evaluate and compare candidate PAIDs using interpretable validation metrics. The goal is to determine whether and how to incorporate predictions into major interim decisions in a clinical trial. Candidate PAIDs can differ in several aspects, such as the prediction models used, timing of interim analyses, and potential use of external data sets. To illustrate our approach, we considered a randomized clinical trial in glioblastoma. The study design includes interim futility analyses on the basis of the predictive probability that the final analysis, at the completion of the study, will provide significant evidence of treatment effects. We examined various PAIDs with different levels of complexity to investigate if the use of biomarkers, external data, or novel algorithms improved interim decisions in the glioblastoma clinical trial. RESULTS Validation analyses on the basis of completed trials and electronic health records support the selection of algorithms, predictive models, and other aspects of PAIDs for use in adaptive clinical trials. By contrast, PAID evaluations on the basis of arbitrarily defined ad hoc simulation scenarios, which are not tailored to previous clinical data and experience, tend to overvalue complex prediction procedures and produce poor estimates of trial operating characteristics such as power and the number of enrolled patients. CONCLUSION Validation analyses on the basis of completed trials and real world data support the selection of predictive models, interim analysis rules, and other aspects of PAIDs in future clinical trials.
Collapse
Affiliation(s)
- Alejandra Avalos-Pacheco
- Applied Statistics Research Unit, Faculty of Mathematics and Geoinformation, TU Wien, Vienna, Austria
- Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA
| | - Steffen Ventz
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Andrea Arfè
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brian M. Alexander
- Dana-Farber Cancer Institute, Boston, MA
- Foundation Medicine, Cambridge, MA
| | - Rifaquat Rahman
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Lorenzo Trippa
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
8
|
Racine-Poon A, D’Amelio A, Sverdlov O, Haas T. OPTIM-ARTS—An Adaptive Phase II Open Platform Trial Design With Application to a Metastatic Melanoma Study. Stat Biopharm Res 2022. [DOI: 10.1080/19466315.2020.1749722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Zhao Y, Tang RS, Du Y, Yuan Y. A bayesian platform trial design to simultaneously evaluate multiple drugs in multiple indications with mixed endpoints. Biometrics 2022. [PMID: 35546501 DOI: 10.1111/biom.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 04/22/2022] [Indexed: 11/29/2022]
Abstract
In the era of targeted therapies and immunotherapies, the traditional drug development paradigm of testing one drug at a time in one indication has become increasingly inefficient. Motivated by a real-world application, we propose a master-protocol-based Bayesian platform trial design with mixed endpoints (PDME) to simultaneously evaluate multiple drugs in multiple indications, where different subsets of efficacy measures (e.g., objective response and landmark progression-free survival) may be used by different indications as single or multiple endpoints. We propose a Bayesian hierarchical model to accommodate mixed endpoints and reflect the trial structure of indications that are nested within treatments. We develop a two-stage approach that first clusters the indications into homogeneous subgroups and then applies the Bayesian hierarchical model to each subgroup to achieve precision information borrowing. Patients are enrolled in a group-sequential way and adaptively assigned to treatments according to their efficacy estimates. At each interim analysis, the posterior probabilities that the treatment effect exceeds prespecified clinically relevant thresholds are used to drop ineffective treatments and "graduate" effective treatments. Simulations show that the PDME design has desirable operating characteristics compared to existing method. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yujie Zhao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Rui Sammi Tang
- Servier Pharmaceuticals, Boston, MA, 02210, United States
| | - Yeting Du
- Servier Pharmaceuticals, Boston, MA, 02210, United States
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| |
Collapse
|
10
|
Tan AC, Tan DSW. Targeted Therapies for Lung Cancer Patients With Oncogenic Driver Molecular Alterations. J Clin Oncol 2022; 40:611-625. [PMID: 34985916 DOI: 10.1200/jco.21.01626] [Citation(s) in RCA: 284] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lung cancer has traditionally been classified by histology. However, a greater understanding of disease biology and the identification of oncogenic driver alterations has dramatically altered the therapeutic landscape. Consequently, the new classification paradigm of non-small-cell lung cancer is further characterized by molecularly defined subsets actionable with targeted therapies and the treatment landscape is becoming increasingly complex. This review encompasses the current standards of care for targeted therapies in lung cancer with driver molecular alterations. Targeted therapies for EGFR exon 19 deletion and L858R mutations, and ALK and ROS1 rearrangements are well established. However, there is an expanding list of approved targeted therapies including for BRAF V600E, EGFR exon 20 insertion, and KRAS G12C mutations, MET exon 14 alterations, and NTRK and RET rearrangements. In addition, there are numerous other oncogenic drivers, such as HER2 exon 20 insertion mutations, for which there are emerging efficacy data for targeted therapies. The importance of diagnostic molecular testing, intracranial efficacy of novel therapies, the optimal sequencing of therapies, role for targeted therapies in early-stage disease, and future directions for precision oncology approaches to understand tumor evolution and therapeutic resistance are also discussed.
Collapse
Affiliation(s)
- Aaron C Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore.,Genome Institute of Singapore, Singapore
| |
Collapse
|
11
|
Zabor EC, Kane MJ, Roychoudhury S, Nie L, Hobbs BP. Bayesian basket trial design with false-discovery rate control. Clin Trials 2022; 19:297-306. [PMID: 35128970 DOI: 10.1177/17407745211073624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Recent advances in developing "tumor agnostic" oncology therapies have identified molecular targets that define patient subpopulations in a manner that supersedes conventional criteria for cancer classification. These successes have produced effective targeted therapies that are administered to patients regardless of their tumor histology. Trials have evolved as well with master protocol designs. By blending translational and clinical science, basket trials in particular are well-suited to investigate and develop targeted therapies among multiple cancer histologies. However, basket trials intrinsically involve more complex design decisions, including issues of multiple testing across baskets, and guidance for investigators is needed. METHODS The sensitivity of the multisource exchangeability model to prior specification under differing degrees of response heterogeneity is explored through simulation. Then, a multisource exchangeability model design that incorporates control of the false-discovery rate is presented and a simulation study compares the operating characteristics to a design where the family-wise error rate is controlled and to the frequentist approach of treating the baskets as independent. Simulations are based on the original design of a real-world clinical trial, the SUMMIT trial, which investigated Neratinib treatment for a variety of solid tumors. The methods studied here are specific to single-arm phase II trials with binary outcomes. RESULTS Values of prior probability of exchangeability in the multisource exchangeability model between 0.1 and 0.3 provide the best trade-offs between gain in precision and bias, especially when per-basket sample size is below 30. Application of these calibration results to a re-analysis of the SUMMIT trial showed that the breast basket exceeded the null response rate with posterior probability of 0.999 while having low posterior probability of exchangeability with all other baskets. Simulations based on the design of the SUMMIT trial revealed that there is meaningful improvement in power even in baskets with small sample size when the false-discovery rate is controlled as opposed to the family-wise error rate. For example, when only the breast basket was active, with a sample size of 25, the power was 0.76 when the false-discovery rate was controlled at 0.05 but only 0.56 when the family-wise error rate was controlled at 0.05, indicating that impractical sample sizes for the phase II setting would be needed to achieve acceptable power while controlling the family-wise error rate in this setting of a trial with 10 baskets. CONCLUSION Selection of the prior exchangeability probability based on calibration and incorporation of false-discovery rate control result in multisource exchangeability model designs with high power to detect promising treatments in the context of phase II basket trials.
Collapse
Affiliation(s)
| | | | | | - Lei Nie
- U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Brian P Hobbs
- Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
12
|
Roth JA, Trivedi MS, Gray SW, Patrick DL, Delaney DM, Watabayashi K, Litwin P, Shah P, Crew KD, Yee M, Redman MW, Unger JM, Papadimitrakopoulou V, Johnson J, Kelly K, Gandara D, Herbst RS, Hershman DL, Ramsey SD. Patient Knowledge and Expectations About Return of Genomic Results in a Biomarker-Driven Master Protocol Trial (SWOG S1400GEN). JCO Oncol Pract 2021; 17:e1821-e1829. [PMID: 33797955 PMCID: PMC9810137 DOI: 10.1200/op.20.00770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Biomarker-driven master protocols represent a new paradigm in oncology clinical trials, but their complex designs and wide-ranging genomic results returned can be difficult to communicate to participants. The objective of this pilot study was to evaluate patient knowledge and expectations related to return of genomic results in the Lung Cancer Master Protocol (Lung-MAP). METHODS Eligible participants with previously treated advanced non-small-cell lung cancer were recruited from patients enrolled in Lung-MAP. Participants completed a 38-item telephone survey ≤ 30 days from Lung-MAP consent. The survey assessed understanding about the benefits and risks of Lung-MAP participation and knowledge of the potential uses of somatic testing results returned. Descriptive statistics and odds ratios for associations between demographic factors and correct responses to survey items were assessed. RESULTS From August 1, 2017, to June 30, 2019, we recruited 207 participants with a median age of 67, 57.3% male, and 94.2% White. Most participants "strongly/somewhat agreed" with statements that they "received enough information to understand" Lung-MAP benefits (82.6%) and risks (69.5%). In items asking about potential uses of Lung-MAP genomic results, 87.0% correctly indicated that the results help to select cancer treatment, but < 20% correctly indicated that the results are not used to confirm cancer diagnosis, would not reveal risk of developing diseases besides cancer, and would not indicate if family members had increased cancer risk. There were no associations between sociodemographic factors and proportions providing correct responses. CONCLUSION In a large National Clinical Trials Network biomarker-driven master protocol, most participants demonstrated incorrect knowledge and expectations about the uses of genomic results provided in the study despite most indicating that they had enough information to understand benefits and risks.
Collapse
Affiliation(s)
- Joshua A. Roth
- Hutchinson Institute for Cancer Outcomes Research, Fred Hutchinson Cancer Research Center, Seattle, WA,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA,Joshua A. Roth, PhD, MHA, Hutchinson Institute for Cancer Outcomes Research, Fred Hutchinson Cancer Research Center, 1101 Fairview Ave North, Seattle, WA 98109; e-mail:
| | - Meghna S. Trivedi
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Stacy W. Gray
- Division of Clinical Cancer Genomics, City of Hope Cancer Center, Duarte, CA
| | - Donald L. Patrick
- Department of Health Services, School of Public Health, University of Washington, Seattle, WA
| | - Debbie M. Delaney
- Hutchinson Institute for Cancer Outcomes Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kate Watabayashi
- Hutchinson Institute for Cancer Outcomes Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Paul Litwin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Parth Shah
- Hutchinson Institute for Cancer Outcomes Research, Fred Hutchinson Cancer Research Center, Seattle, WA,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Katherine D. Crew
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Monica Yee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Mary W. Redman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Joseph M. Unger
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA,Cancer Research and Biostatistics, SWOG Cancer Research Network, Seattle, WA
| | - Vassiliki Papadimitrakopoulou
- Division of Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX,Currently: Pfizer, Inc, New York, NY
| | | | - Karen Kelly
- Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA
| | - David Gandara
- Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA
| | - Roy S. Herbst
- Department of Medical Oncology, Yale Cancer Center, New Haven, CT
| | - Dawn L. Hershman
- Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Scott D. Ramsey
- Hutchinson Institute for Cancer Outcomes Research, Fred Hutchinson Cancer Research Center, Seattle, WA,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA,Department of Health Services, School of Public Health, University of Washington, Seattle, WA
| |
Collapse
|
13
|
Streamlined Operational Approaches and Use of e-Technologies in Clinical Trials: Beat Acute Myeloid Leukemia Master Trial. Ther Innov Regul Sci 2021; 55:926-935. [PMID: 33997942 PMCID: PMC8332589 DOI: 10.1007/s43441-021-00277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/17/2021] [Indexed: 11/19/2022]
Abstract
Advances in genomic technologies and an increased understanding of the molecular pathogenesis of cancer have resulted in development of new effective, mutation-targeted therapies. In turn, these informed the development of Master Trial designs to test these therapies. The Beat Acute Myeloid Leukemia (BAML) Master Trial (Sponsor: The Leukemia & Lymphoma Society) tests several targeted therapies in patients aged ≥ 60 years with AML based on genomic profiling obtained within 7 days of study enrollment. We hypothesized that integrating operational strategies with new electronic technologies (e-technologies) might streamline the conduct and management of this Master Trial. BAML's 5 core operational strategies revolve around the guiding principle of "patients first." The e-technology platforms employed in BAML include: Clinical Oversight Platform: a central collaborative tool; e-Protocol/e-Source Upload/Electronic Data Capture Platform: digitizes the protocol, allows remote data monitoring, and collects/exports data in Study Data Tabulation Model format; and Data Review Platform: ingests data from different sources for clinical response and safety data reviews. The operational approaches, e-technologies and sponsor/contract research organization's (CRO) expertise together allow: the complexity and size of the BAML Master Trial to be better managed; near real-time study data oversight; better collaboration, communication and training; improved data collection, enhanced transmission and accessibility; data integration, review and generation of reports; while maintaining data privacy, and compliance. Initial e-technology challenges were overcome through training, learning, discipline and adjustment. In conclusion, to successfully manage Master Trials, significant time should be spent re-evaluating, improving and developing new operational approaches.Clinical Trial Registration: Clinical Trials.gov Identifier: NCT03013998. https://clinicaltrials.gov/ct2/show/NCT03013998 .
Collapse
|
14
|
Ravi R, Kesari HV. Novel Study Designs in Precision Medicine - Basket, Umbrella and Platform Trials. Curr Rev Clin Exp Pharmacol 2021; 17:114-121. [PMID: 34455953 DOI: 10.2174/1574884716666210316114157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 11/22/2022]
Abstract
The concept of 'one size fits all' - one treatment for patients with a particular disease, seems to be outdated. The advent of precision medicine has prompted profound changes in clinical research and it allows researchers to predict, more accurately, the prevention and treatment strategies for a specific disease population. Novel study designs are, therefore, essential to establish safe and effective personalized medicine. Basket, umbrella and platform trial designs (collectively referred to as master protocols) are biomarker enrichment designs that allow for testing more than one hypothesis within a protocol, thus accelerating drug development. These trial designs tailor intervention strategies based on patient's risk factor(s) that can help predict whether they will respond to a specific treatment. Basket trials evaluate therapy for various diseases that share a common molecular alteration while umbrella trials evaluate multiple targeted therapies for a single disease that is stratified into subgroups based on different molecular alterations/ risk factors. These designs are complex and their major limitations stem from the fact that it would be inappropriate to completely replace histological typing with molecular profiling alone. However, in the upcoming decades, these trial designs are likely to gain popularity and improve the efficiency of clinical research. This article briefly overviews the characteristics of master protocol designs with examples of completed and ongoing clinical trials utilizing these study designs.
Collapse
Affiliation(s)
- Renju Ravi
- Department of Clinical Pharmacology, Seth GS Medical College & KEM Hospital, Mumbai. India
| | - Harshad V Kesari
- Department of Pharmacology and Therapeutics, Seth GS Medical College & KEM Hospital, Mumbai. India
| |
Collapse
|
15
|
Kaizer AM, Koopmeiners JS, Chen N, Hobbs BP. Statistical design considerations for trials that study multiple indications. Stat Methods Med Res 2021; 30:785-798. [PMID: 33267746 PMCID: PMC9907719 DOI: 10.1177/0962280220975187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Breakthroughs in cancer biology have defined new research programs emphasizing the development of therapies that target specific pathways in tumor cells. Innovations in clinical trial design have followed with master protocols defined by inclusive eligibility criteria and evaluations of multiple therapies and/or histologies. Consequently, characterization of subpopulation heterogeneity has become central to the formulation and selection of a study design. However, this transition to master protocols has led to challenges in identifying the optimal trial design and proper calibration of hyperparameters. We often evaluate a range of null and alternative scenarios; however, there has been little guidance on how to synthesize the potentially disparate recommendations for what may be optimal. This may lead to the selection of suboptimal designs and statistical methods that do not fully accommodate the subpopulation heterogeneity. This article proposes novel optimization criteria for calibrating and evaluating candidate statistical designs of master protocols in the presence of the potential for treatment effect heterogeneity among enrolled patient subpopulations. The framework is applied to demonstrate the statistical properties of conventional study designs when treatments offer heterogeneous benefit as well as identify optimal designs devised to monitor the potential for heterogeneity among patients with differing clinical indications using Bayesian modeling.
Collapse
Affiliation(s)
- Alexander M Kaizer
- Department of Biostatistics and Informatics, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | | | - Nan Chen
- Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Brian P Hobbs
- Department of Population Health; Dell Medical School, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
16
|
Gittings LM, Sattler R. Recent advances in understanding amyotrophic lateral sclerosis and emerging therapies. Fac Rev 2020; 9:12. [PMID: 33659944 PMCID: PMC7886072 DOI: 10.12703/b/9-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by degeneration of both upper and lower motor neurons and subsequent progressive loss of muscle function. Within the last decade, significant progress has been made in the understanding of the etiology and pathobiology of the disease; however, treatment options remain limited and only two drugs, which exert a modest effect on survival, are approved for ALS treatment in the US. Therefore, the search for effective ALS therapies continues, and over 60 clinical trials are in progress for patients with ALS and other therapeutics are at the pre-clinical stage of development. Recent advances in understanding the genetics, pathology, and molecular mechanisms of ALS have led to the identification of novel targets and strategies that are being used in emerging ALS therapeutic interventions. Here, we review the current status and mechanisms of action of a selection of emerging ALS therapies in pre-clinical or early clinical development, including gene therapy, immunotherapy, and strategies that target neuroinflammation, phase separation, and protein clearance.
Collapse
Affiliation(s)
- Lauren M Gittings
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Rita Sattler
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
17
|
Bitterman DS, Cagney DN, Singer LL, Nguyen PL, Catalano PJ, Mak RH. Master Protocol Trial Design for Efficient and Rational Evaluation of Novel Therapeutic Oncology Devices. J Natl Cancer Inst 2020; 112:229-237. [PMID: 31504680 PMCID: PMC7073911 DOI: 10.1093/jnci/djz167] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/26/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
Historically, the gold standard for evaluation of cancer therapeutics, including medical devices, has been the randomized clinical trial. Although high-quality clinical data are essential for safe and judicious use of therapeutic oncology devices, class II devices require only preclinical data for US Food and Drug Administration approval and are often not rigorously evaluated prior to widespread uptake. Herein, we review master protocol design in medical oncology and its application to therapeutic oncology devices, using examples from radiation oncology. Unique challenges of clinical testing of radiation oncology devices (RODs) include patient and treatment heterogeneity, lack of funding for trials by industry and health-care payers, and operator dependence. To address these challenges, we propose the use of master protocols to optimize regulatory, financial, administrative, quality assurance, and statistical efficiency of trials evaluating RODs. These device-specific master protocols can be extrapolated to other devices and encompass multiple substudies with the same design, statistical considerations, logistics, and infrastructure. As a practical example, we outline our phase I and II master protocol trial of stereotactic magnetic resonance imaging–guided adaptive radiotherapy, which to the best of our knowledge is the first master protocol trial to test a ROD. Development of more efficient clinical trials is needed to promote thorough evaluation of therapeutic oncology devices, including RODs, in a resource-limited environment, allowing more practical and rapid identification of the most valuable advances in our field.
Collapse
Affiliation(s)
- Danielle S Bitterman
- Harvard Radiation Oncology Program, Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Daniel N Cagney
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Lisa L Singer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Paul L Nguyen
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Paul J Catalano
- Department of Biostatistics & Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Raymond H Mak
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Challenges and approaches to implementing master/basket trials in oncology. Blood Adv 2020; 3:2237-2243. [PMID: 31337605 DOI: 10.1182/bloodadvances.2019031229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/30/2019] [Indexed: 11/20/2022] Open
Abstract
The appetite for cutting-edge cancer research, across medical institutions, scientific researchers, and health care providers, is increasing based on the promise of true breakthroughs and cures with new therapeutics available for investigation. At the same time, the barriers for advancing clinical research are impacting how quickly drug development efforts are conducted. For example, we know now that under a microscope, patients with the same type of cancer and histology might look the same; however, the reality is that most cancers are driven by genomic, transcriptional, and epigenetic changes that make each patient unique. Additionally, the immunologic reaction to different tumor types is distinct among patients. The challenge for researchers developing new therapies today is vastly different than it was in the era of cytotoxics. Today, we must identify a sufficient number of patients harboring a rare mutation or other characteristic and match this to the right therapeutic option. This summary provides a guide to help inform the scientific cancer community about the benefits and challenges of conducting umbrella or basket trials (master trials), and to create a roadmap to help make this new and evolving form of clinical trial design as effective as possible.
Collapse
|
19
|
The Evolution of Master Protocol Clinical Trial Designs: A Systematic Literature Review. Clin Ther 2020; 42:1330-1360. [DOI: 10.1016/j.clinthera.2020.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/10/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
|
20
|
Unger JM, Vaidya R, Hershman DL, Minasian LM, Fleury ME. Systematic Review and Meta-Analysis of the Magnitude of Structural, Clinical, and Physician and Patient Barriers to Cancer Clinical Trial Participation. J Natl Cancer Inst 2020; 111:245-255. [PMID: 30856272 PMCID: PMC6410951 DOI: 10.1093/jnci/djy221] [Citation(s) in RCA: 317] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/29/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Barriers to cancer clinical trial participation have been the subject of frequent study, but the rate of trial participation has not changed substantially over time. Studies often emphasize patient-related barriers, but other types of barriers may have greater impact on trial participation. Our goal was to examine the magnitude of different domains of trial barriers by synthesizing prior research. METHODS We conducted a systematic review and meta-analysis of studies that examined the trial decision-making pathway using a uniform framework to characterize and quantify structural (trial availability), clinical (eligibility), and patient/physician barrier domains. The systematic review utilized the PubMed, Google Scholar, Web of Science, and Ovid Medline search engines. We used random effects to estimate rates of different domains across studies, adjusting for academic vs community care settings. RESULTS We identified 13 studies (nine in academic and four in community settings) with 8883 patients. A trial was unavailable for patients at their institution 55.6% of the time (95% confidence interval [CI] = 43.7% to 67.3%). Further, 21.5% (95% CI = 10.9% to 34.6%) of patients were ineligible for an available trial, 14.8% (95% CI = 9.0% to 21.7%) did not enroll, and 8.1% (95% CI = 6.3% to 10.0%) enrolled. Rates of trial enrollment in academic (15.9% [95% CI = 13.8% to 18.2%]) vs community (7.0% [95% CI = 5.1% to 9.1%]) settings differed, but not rates of trial unavailability, ineligibility, or non-enrollment. CONCLUSIONS These findings emphasize the enormous need to address structural and clinical barriers to trial participation, which combined make trial participation unachievable for more than three of four cancer patients.
Collapse
Affiliation(s)
- Joseph M Unger
- Fred Hutchinson Cancer Research Center, Seattle, WA.,SWOG Statistical Center, Seattle, WA
| | - Riha Vaidya
- Fred Hutchinson Cancer Research Center, Seattle, WA.,SWOG Statistical Center, Seattle, WA
| | | | - Lori M Minasian
- National Cancer Institute, Division of Cancer Prevention, Rockville, MD
| | - Mark E Fleury
- American Cancer Society Cancer Action Network Inc., Washington, DC
| |
Collapse
|
21
|
Kaizer AM, Koopmeiners JS, Kane MJ, Roychoudhury S, Hong DS, Hobbs BP. Basket Designs: Statistical Considerations for Oncology Trials. JCO Precis Oncol 2019; 3:1-9. [DOI: 10.1200/po.19.00194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progress in the areas of genomics, disease pathways, and drug discovery has advanced into clinical and translational cancer research. The latest innovations in clinical trials have followed with master protocols, which are defined by inclusive eligibility criteria and devised to interrogate multiple therapies for a given tumor histology and/or multiple histologies for a given therapy under one protocol. The use of master protocols for oncology has become more common with the desire to improve the efficiency of clinical research and accelerate overall drug development. Basket trials have been devised to ascertain the extent to which a treatment strategy offers benefit to various patient subpopulations defined by a common molecular target. Conventionally conducted within the phase II setting, basket designs have become popular as drug developers seek to effectively evaluate and identify preliminary efficacy signals among clinical indications identified as promising in preclinical study. This article reviews basket trial designs in oncology settings and discusses several issues that arise with their design and analysis.
Collapse
Affiliation(s)
| | | | | | | | - David S. Hong
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
22
|
Leonetti A, Boyd L, Giuliani J, Giovannetti E, Garajová I. Light and shadow on innovative clinical trial designs: reflections from the EORTC-PAMM course on 'preclinical and early-phase clinical pharmacology'. Expert Rev Clin Pharmacol 2019; 12:1033-1036. [PMID: 31633383 DOI: 10.1080/17512433.2019.1683446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: In the era of 'precision' oncology, novel clinical trial designs have emerged, in order to better address the final goal of translating the above-mentioned preclinical discoveries into the clinic. Nonetheless, in aiming to achieve the greatest clinical benefit to patients, some limitations of these novel approaches from the statistical, methodological and practical point of view need to be overcome.Areas covered: In the present review, a short overview of basket trials, umbrella trials and platform trials are discussed, in particular advantages and disadvantages of such experimental approaches.Expert opinion: Master protocols represent the future of clinical oncology research. The possibility of investigating multiple biomarkers and therapeutic regimens under one study is a strong advantage over traditional trials, and it can lead to quick implementation of new, promising treatments or biomarkers into the clinic.
Collapse
Affiliation(s)
| | - Lenka Boyd
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands.,Department of Surgery, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jacopo Giuliani
- Department of Oncology, Mater Salutis Hospital, Legnago, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands.,Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisa per la Scienza Pisa, Pisa, Italy
| | - Ingrid Garajová
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| |
Collapse
|
23
|
Siden EG, Park JJH, Zoratti MJ, Dron L, Harari O, Thorlund K, Mills EJ. Reporting of master protocols towards a standardized approach: A systematic review. Contemp Clin Trials Commun 2019; 15:100406. [PMID: 31334382 PMCID: PMC6616543 DOI: 10.1016/j.conctc.2019.100406] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In September 2018 the FDA provided a draft guidance on master protocols reflecting an increased interest in these designs by industry. Master protocols refer to a single overarching protocol developed to evaluate multiple hypotheses and may be further categorized as basket, umbrella, and platform trials. However, inconsistencies in reporting persist in the literature. We conducted a systematic review to describe master protocol reporting with the goal of facilitating the further development and spread of these innovative trial designs. METHODS We searched MEDLINE, EMBASE, and CENTRAL from inception to April 25, 2019 for English articles on master protocols. This was supplemented by hand searches of trial registries and of the bibliographies of published reviews. We used the FDA's definitions of master protocols as references and compared them to self-reported master protocols. RESULTS We identified 278 master protocol publications, consisting of 228 protocols and 50 reviews. Sixty-six records provided unique definitions of master protocol types. We observed considerable heterogeneity in definitions of master protocols, and over half (54%) used oncology-specific language. The majority of self-classified master protocols (57%) were consistent with the FDA's definitions of master protocols. CONCLUSION The terms 'master protocol', 'basket trial', 'umbrella trial', and 'platform trial' are inconsistently described. Careful treatment of these terms and adherence to the definitions set forth by the FDA will facilitate better understanding of these trial designs and allow them to be used broadly and to their full potential in clinical research. We encourage trial methodologists to use these trial designations when applicable.
Collapse
Affiliation(s)
- Ellie G. Siden
- MTEK Sciences, 777 West Broadway, Suite 802, Vancouver, BC, V5Z 1J5, Canada
| | - Jay JH. Park
- MTEK Sciences, 777 West Broadway, Suite 802, Vancouver, BC, V5Z 1J5, Canada
- Department of Medicine, University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Michael J. Zoratti
- Department of Health Research Methodology, Evidence, and Impact, McMaster University, 1280 Main St, 2C Area, Hamilton, ON, L8S 4K1, Canada
| | - Louis Dron
- MTEK Sciences, 777 West Broadway, Suite 802, Vancouver, BC, V5Z 1J5, Canada
| | - Ofir Harari
- MTEK Sciences, 777 West Broadway, Suite 802, Vancouver, BC, V5Z 1J5, Canada
| | - Kristian Thorlund
- MTEK Sciences, 777 West Broadway, Suite 802, Vancouver, BC, V5Z 1J5, Canada
- Department of Health Research Methodology, Evidence, and Impact, McMaster University, 1280 Main St, 2C Area, Hamilton, ON, L8S 4K1, Canada
| | - Edward J. Mills
- MTEK Sciences, 777 West Broadway, Suite 802, Vancouver, BC, V5Z 1J5, Canada
- Department of Health Research Methodology, Evidence, and Impact, McMaster University, 1280 Main St, 2C Area, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
24
|
Adaptive platform trials: definition, design, conduct and reporting considerations. Nat Rev Drug Discov 2019; 18:797-807. [DOI: 10.1038/s41573-019-0034-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2019] [Indexed: 11/08/2022]
|
25
|
Strzebonska K, Waligora M. Umbrella and basket trials in oncology: ethical challenges. BMC Med Ethics 2019; 20:58. [PMID: 31443704 PMCID: PMC6708208 DOI: 10.1186/s12910-019-0395-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/13/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Novel precision oncology trial designs, such as basket and umbrella trials, are designed to test new anticancer agents in more effective and affordable ways. However, they present some ethical concerns referred to scientific validity, risk-benefit balance and informed consent. Our aim is to discuss these issues in basket and umbrella trials, giving examples of two ongoing cancer trials: NCI-MATCH (National Cancer Institute - Molecular Analysis for Therapy Choice) and Lung-MAP (Lung Cancer Master Protocol) study. MAIN BODY We discuss three ethical requirements for clinical trials which may be challenged in basket and umbrella trial designs. Firstly, we consider scientific validity. Thanks to the new trial designs, patients with rare malignancies have the opportunity to be enrolled and benefit from the trial, but due to insufficient accrual, the trial may generate clinically insignificant findings. Inadequate sample size in study arms and the use of surrogate endpoints may result in a drug approval without confirmed efficacy. Moreover, complexity, limited quality and availability of tumor samples may not only introduce bias and result in unreliable and unrepresentative findings, but also can potentially harm patients and assign them to an inappropriate therapy arm. Secondly, we refer to benefits and risks. Novel clinical trials can gain important knowledge on the variety of tumors, which can be used in future trials to develop effective therapies. However, they offer limited direct benefits to patients. All potential participants must wait about 2 weeks for the results of the genetic screening, which may be stressful and produce anxiety. The enrollment of patients whose tumors harbor multiple mutations in treatments matching a single mutation may be controversial. As to informed consent - the third requirement we discuss, the excessive use of phrases like "personalized medicine", "tailored therapy" or "precision oncology" might be misleading and cause personal convictions that the study protocol is designed to fulfill the individual health-related needs of participants. CONCLUSIONS We suggest that further approaches should be implemented to enhance scientific validity, reduce misunderstandings and risks, thus maximizing the benefits to society and to trial participants.
Collapse
Affiliation(s)
- Karolina Strzebonska
- REMEDY, Research Ethics in Medicine Study Group, Department of Philosophy and Bioethics, Jagiellonian University Medical College, ul. Michałowskiego 12, 31-126 Krakow, Poland
| | - Marcin Waligora
- REMEDY, Research Ethics in Medicine Study Group, Department of Philosophy and Bioethics, Jagiellonian University Medical College, ul. Michałowskiego 12, 31-126 Krakow, Poland
| |
Collapse
|
26
|
Abstract
The traditional approach to clinical trial design requires assuming precise values for multiple unknown parameters, resulting in a trial design that is unlikely to perform well if one or more of those assumptions turn out to be incorrect. During conduct of the trial, trial characteristics are often held fixed, even if incoming data suggest that one or more design assumptions were incorrect. This leads to an increased risk of a failed trial. In contrast, an adaptive clinical trial is designed to take advantage of partial, incoming data during the conduct of the trial, modifying key clinical trial characteristics according to prespecified rules, in order to avoid a failed or inconclusive trial, improve statistical efficacy, better treat patients within the trial, or achieve other scientific or ethical goals. The concept of an adaptive trial can be expanded to a platform trial, a clinical trial that is intended to evaluate multiple treatments or combinations of treatments, often for patients with any of a group of related diseases, and to continue beyond the evaluation of any particular treatment. Platform trial design strategies can be applied to the problem of finding the best treatment strategy for patients suffering from posttraumatic hemorrhagic shock. We present the rationale and considerations surrounding adaptive and platform trial design and apply these concepts to the problem of investigating strategies for remote damage control resuscitation.
Collapse
|
27
|
Cecchini M, Rubin EH, Blumenthal GM, Ayalew K, Burris HA, Russell-Einhorn M, Dillon H, Lyerly HK, Reaman GH, Boerner S, LoRusso PM. Challenges with Novel Clinical Trial Designs: Master Protocols. Clin Cancer Res 2019; 25:2049-2057. [PMID: 30696689 DOI: 10.1158/1078-0432.ccr-18-3544] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/07/2019] [Accepted: 01/25/2019] [Indexed: 11/16/2022]
Abstract
The 2018 Accelerating Anticancer Agent Development (AAADV) Workshop assembled a panel of experts for an in-depth discussion session to present "Challenges with Novel Clinical Trial Designs." This panel offered assessments of the challenges faced by industry, the FDA, investigators, institutional review boards, and patients. The panel focused on master protocols, which include umbrella trials, platform trials, and basket trials. Umbrella trials and platform trials share many commonalities, whereas basket trials are more distinct. Umbrella and platform trials are generally designed with multiple arms where patients of the same histology or other unifying characteristics are enrolled into different arms and multiple investigational agents are evaluated in a single protocol. In contrast, basket studies generally enroll patients with different tumor types based on the presence of a specific mutation or biomarker regardless of histology; these trials may include expansion cohorts. These novel designs offer the promise of expedited drug assessment and approval, but they also place new challenges on all the stakeholders involved in the drug development process. Only by identifying the challenges of these complex, innovative clinical trial designs and highlighting challenges from each perspective can we begin to address these challenges. The 2018 AAADV Workshop convened a panel of experts from relevant disciplines to highlight the challenges that are created by master protocols, and, where appropriate, offer strategies to address these challenges.
Collapse
Affiliation(s)
| | | | | | - Kassa Ayalew
- U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Howard A Burris
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | | | - Hildy Dillon
- Cancer Support Community, Washington, District of Columbia
| | | | | | | | | |
Collapse
|
28
|
Schettini F, De Santo I, Rea CG, De Placido P, Formisano L, Giuliano M, Arpino G, De Laurentiis M, Puglisi F, De Placido S, Del Mastro L. CDK 4/6 Inhibitors as Single Agent in Advanced Solid Tumors. Front Oncol 2018; 8:608. [PMID: 30631751 PMCID: PMC6315195 DOI: 10.3389/fonc.2018.00608] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDK) 4/6 inhibitors, namely abemaciclib, palbociclib, and ribociclib, interfere with cell cycle progression, induce cell senescence and might promote cancer cell disruption by a cytotoxic T cells-mediated effect. Phase III randomized clinical trials have proven that CDK4/6 inhibitors (CDK4/6i) in combination with several endocrine agents improve treatment efficacy over endocrine agents alone for hormone receptor positive (HR+) HER2 negative (HER2-) metastatic breast cancer (MBC). Based on such results, these combinations have been approved for clinical use. Preclinical studies in cell cultures and mouse models proved that CDK4/6i are active against a broad spectrum of solid tumors other than breast cancer, including liposarcoma, rhabdomyosarcoma, non-small cell lung cancer, glioblastoma multiforme, esophageal cancer, and melanoma. The role of CDK4/6i in monotherapy in several solid tumors is currently under evaluation in phase I, II, and III trials. Nowadays, abemaciclib is the only of the three inhibitors that has received approval as single agent therapy for pretreated HR+ HER2- MBC. Here we review biological, preclinical and clinical data on the role of CDK4/6 inhibitors as single agents in advanced solid tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Mario Giuliano
- University of Naples Federico II, Naples, Italy
- Baylor College of Medicine, Houston, TX, United States
| | | | | | - Fabio Puglisi
- Department of Medicine, University of Udine, Udine, Italy
- IRCCS Centro di Riferimento Oncologico Aviano, Aviano, Italy
| | | | - Lucia Del Mastro
- Policlinico San Martino-IST, Genova, Italy
- University of Genova, Genova, Italy
| |
Collapse
|
29
|
Balevic SJ, Cohen-Wolkowiez M. Innovative Study Designs Optimizing Clinical Pharmacology Research in Infants and Children. J Clin Pharmacol 2018; 58 Suppl 10:S58-S72. [PMID: 30248192 PMCID: PMC6310922 DOI: 10.1002/jcph.1053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
Abstract
Almost half of recent pediatric trials failed to achieve labeling indications, in large part because of inadequate study design. Therefore, innovative study methods are crucial to optimizing trial design while also reducing the potential harms inherent with drug investigation. Several methods exist to optimize the amount of pharmacokinetic data collected from the smallest possible volume and with the fewest number of procedures, including the use of opportunistic and sparse sampling, alternative and noninvasive matrices, and microvolume assays. In addition, large research networks using master protocols promote collaboration, reduce regulatory burden, and increase trial efficiency for both early- and late-phase trials. Large pragmatic trials that leverage electronic health records can capitalize on central management strategies to reduce costs, enroll patients with rare diseases on a large scale, and augment study generalizability. Further, trial efficiency and safety can be optimized through Bayesian adaptive techniques that permit planned protocol changes based on analyses of prior and accumulated data. In addition to these trial design features, advances in modeling and simulation have paved the way for systems-based and physiologically based models that individualize pediatric dosing recommendations and support drug approval. Last, given the low prevalence of many pediatric diseases, collecting deidentified genetic and clinical data on a large scale is a potentially transformative way to augment clinical pharmacology research in children.
Collapse
Affiliation(s)
- Stephen J. Balevic
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Michael Cohen-Wolkowiez
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
30
|
Patel JN. Lessons in practicing cancer genomics and precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1526081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jai N. Patel
- Department of Cancer Pharmacology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
31
|
Le-Rademacher J, Dahlberg S, Lee JJ, Adjei AA, Mandrekar SJ. Biomarker Clinical Trials in Lung Cancer: Design, Logistics, Challenges, and Practical Considerations. J Thorac Oncol 2018; 13:1625-1637. [PMID: 30194034 DOI: 10.1016/j.jtho.2018.08.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/10/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
Abstract
Treatment for lung cancer has evolved in the past 3 decades starting with platinum-based chemotherapy as the standard of care, regardless of histology, in the early 1990s to the current age of biomarker-driven therapy. Consequently, clinical trials in lung cancer have evolved in response to this new shift of paradigm, leading to novel approaches that simultaneously shorten the development process and allow evaluation of multiple patient cohorts. Herein, we provide an overview of the landscape of lung cancer clinical trials in the era of targeted therapies, precision medicine, and biomarkers. Specific trials are given as examples to illustrate the design paradigms. The paper is organized by drug development phases starting with early-phase biomarker discovery to proof-of-concept trials to definitive trials. We also present some thoughts on future directions.
Collapse
Affiliation(s)
| | | | - J Jack Lee
- MD Anderson Cancer Institute, Houston, Texas
| | - Alex A Adjei
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
32
|
Chae YK, Arya A, Iams W, Cruz MR, Chandra S, Choi J, Giles F. Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC). J Immunother Cancer 2018; 6:39. [PMID: 29769148 PMCID: PMC5956851 DOI: 10.1186/s40425-018-0349-3] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 05/02/2018] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy is among the most rapidly evolving treatment strategies in oncology. The therapeutic potential of immune-checkpoint inhibitors is exemplified by the recent hail of Food and Drug Administration (FDA) approvals for their use in various malignancies. Continued efforts to enhance outcomes with immunotherapy agents have led to the formulation of advanced treatment strategies. Recent evidence from pre-clinical studies evaluating immune-checkpoint inhibitors in various cancer cell-lines has suggested that combinatorial approaches may have superior survival outcomes compared to single-agent immunotherapy regimens. Preliminary trials assessing combination therapy with anti-PD-1/PD-L1 plus anti-CTLA-4 immune-checkpoint inhibitors have documented considerable advantages in survival indices over single-agent immunotherapy. The therapeutic potential of combinatorial approaches is highlighted by the recent FDA approval of nivolumab plus ipilimumab for patients with advanced melanoma. Presently, dual-immune checkpoint inhibition with anti-programmed death receptor-1/programmed cell death receptor- ligand-1 (anti-PD-1/PD-L1) plus anti-cytotoxic T lymphocyte associated antigen-4 (anti-CTLA-4) monoclonal antibodies (MoAbs) is being evaluated for a wide range of tumor histologies. Furthermore, several ongoing clinical trials are investigating combination checkpoint inhibition in association with traditional treatment modalities such as chemotherapy, surgery, and radiation. In this review, we summarize the current landscape of combination therapy with anti-PD-1/PD-L1 plus anti-CTLA-4 MoAbs for patients with melanoma and non-small cell lung cancer (NSCLC). We present a synopsis of the prospects for expanding the indications of dual immune-checkpoint inhibition therapy to a more diverse set of tumor histologies.
Collapse
Affiliation(s)
- Young Kwang Chae
- Developmental Therapeutics Program of the Division of Hematology Oncology, Early Phase Clinical Trials Unit, 645 N. Michigan Avenue, Suite 1006, Chicago, IL, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 645 N. Michigan Avenue, Suite 1006, Chicago, IL, 60611, USA. .,Northwestern University Feinberg School of Medicine, 645 N. Michigan Avenue, Suite 1006, Chicago, IL, 60611, USA.
| | - Ayush Arya
- Developmental Therapeutics Program of the Division of Hematology Oncology, Early Phase Clinical Trials Unit, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA
| | - Wade Iams
- 0000 0001 2299 3507grid.16753.36Northwestern University Feinberg School of Medicine, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA
| | - Marcelo R. Cruz
- Developmental Therapeutics Program of the Division of Hematology Oncology, Early Phase Clinical Trials Unit, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA
| | - Sunandana Chandra
- Developmental Therapeutics Program of the Division of Hematology Oncology, Early Phase Clinical Trials Unit, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA ,0000 0001 2299 3507grid.16753.36Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA ,0000 0001 2299 3507grid.16753.36Northwestern University Feinberg School of Medicine, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA
| | - Jaehyuk Choi
- 0000 0001 2299 3507grid.16753.36Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA ,0000 0001 2299 3507grid.16753.36Northwestern University Feinberg School of Medicine, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA
| | - Francis Giles
- Developmental Therapeutics Program of the Division of Hematology Oncology, Early Phase Clinical Trials Unit, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA ,0000 0001 2299 3507grid.16753.36Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA ,0000 0001 2299 3507grid.16753.36Northwestern University Feinberg School of Medicine, 645 N. Michigan Avenue, Suite 1006, Chicago, IL 60611 USA
| |
Collapse
|
33
|
Abstract
The process of screening agents one-at-a-time under the current clinical trials system suffers from several deficiencies that could be addressed in order to extend financial and patient resources. In this article, we introduce a statistical framework for designing and conducting randomized multi-arm screening platforms with binary endpoints using Bayesian modeling. In essence, the proposed platform design consolidates inter-study control arms, enables investigators to assign more new patients to novel therapies, and accommodates mid-trial modifications to the study arms that allow both dropping poorly performing agents as well as incorporating new candidate agents. When compared to sequentially conducted randomized two-arm trials, screening platform designs have the potential to yield considerable reductions in cost, alleviate the bottleneck between phase I and II, eliminate bias stemming from inter-trial heterogeneity, and control for multiplicity over a sequence of a priori planned studies. When screening five experimental agents, our results suggest that platform designs have the potential to reduce the mean total sample size by as much as 40% and boost the mean overall response rate by as much as 15%. We explain how to design and conduct platform designs to achieve the aforementioned aims and preserve desirable frequentist properties for the treatment comparisons. In addition, we demonstrate how to conduct a platform design using look-up tables that can be generated in advance of the study. The gains in efficiency facilitated by platform design could prove to be consequential in oncologic settings, wherein trials often lack a proper control, and drug development suffers from low enrollment, long inter-trial latency periods, and an unacceptably high rate of failure in phase III.
Collapse
Affiliation(s)
- Brian P. Hobbs
- Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Nan Chen
- Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - J. Jack Lee
- Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
34
|
Sánchez NS, Mills GB, Mills Shaw KR. Precision oncology: neither a silver bullet nor a dream. Pharmacogenomics 2017; 18:1525-1539. [PMID: 29061079 DOI: 10.2217/pgs-2017-0094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Precision oncology is not an illusion, nor is it the magic bullet that will eradicate all cancers. Precision oncology is simply another weapon in our growing armament against cancer. Rather than honing in on the failures of a relatively young field, one should advocate for integrating its successes into widespread clinical practice, especially for indications, such as: ABL, ALK, BRAF, BRCA1, BRCA2, EGFR, KIT, KRAS, PDGFRA, PDGFRB, ROS1, BCR-ABL, FLT3 and ROS1, where aberrations have been shown to alter responses to US FDA approved drugs - that is, level 1 data. Moreover, to truly assess the promise of precision oncology, we must first begin by defining our expectations for this field. Importantly, we must recognize that the conception of precision oncology arose as an antithesis of the 'one-size fits all' cancer therapeutics approach. Consequently, tools used for evaluating these conventional, large-scale trials, are not directly transferable for assessing nonconventional, smaller-scale trials needed for evaluating precision oncology. Hence, a thorough vetting of precision oncology as another tool of the trade, must first begin by reassessing our expectations for this field, as well as current clinical trial designs and end point measurements. Importantly, we must recognize that most targeted therapy approaches are in their infancy, with only monotherapy approaches being assessed and combination therapies likely being necessary to fulfill the promise of precision oncology.
Collapse
Affiliation(s)
- Nora S Sánchez
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gordon B Mills
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenna R Mills Shaw
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
35
|
Affiliation(s)
- Janet Woodcock
- From the Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD
| | - Lisa M LaVange
- From the Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD
| |
Collapse
|
36
|
Affiliation(s)
- Andrew W Lo
- MIT Sloan School of Management, Cambridge, MA USA
| |
Collapse
|
37
|
Drawnel FM, Zhang JD, Küng E, Aoyama N, Benmansour F, Araujo Del Rosario A, Jensen Zoffmann S, Delobel F, Prummer M, Weibel F, Carlson C, Anson B, Iacone R, Certa U, Singer T, Ebeling M, Prunotto M. Molecular Phenotyping Combines Molecular Information, Biological Relevance, and Patient Data to Improve Productivity of Early Drug Discovery. Cell Chem Biol 2017; 24:624-634.e3. [DOI: 10.1016/j.chembiol.2017.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/22/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022]
|
38
|
Lee J, Blumenthal GM, Hohl RJ, Huang SM. Cancer Therapy: Shooting for the Moon. Clin Pharmacol Ther 2017; 101:552-558. [PMID: 28418166 PMCID: PMC5525193 DOI: 10.1002/cpt.655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 11/15/2022]
Affiliation(s)
- Jsh Lee
- Office of the Director, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - G M Blumenthal
- Office of Hematology & Oncology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - R J Hohl
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - S-M Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
39
|
Sundar R, Chénard-Poirier M, Collins DC, Yap TA. Imprecision in the Era of Precision Medicine in Non-Small Cell Lung Cancer. Front Med (Lausanne) 2017; 4:39. [PMID: 28443282 PMCID: PMC5385461 DOI: 10.3389/fmed.2017.00039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/22/2017] [Indexed: 12/29/2022] Open
Abstract
Over the past decade, major advances have been made in the management of advanced non-small cell lung cancer (NSCLC). There has been a particular focus on the identification and targeting of putative driver aberrations, which has propelled NSCLC to the forefront of precision medicine. Several novel molecularly targeted agents have now achieved regulatory approval, while many others are currently in late-phase clinical trial testing. These antitumor therapies have significantly impacted the clinical outcomes of advanced NSCLC and provided patients with much hope for the future. Despite this, multiple deficiencies still exist in our knowledge of this complex disease, and further research is urgently required to overcome these critical issues. This review traces the path undertaken by the different therapeutics assessed in NSCLC and the impact of precision medicine in this disease. We also discuss the areas of "imprecision" that still exist in NSCLC and the modern hypothesis-testing studies being conducted to address these key challenges.
Collapse
Affiliation(s)
- Raghav Sundar
- Royal Marsden Hospital, London, UK
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore, Singapore
| | | | | | - Timothy A. Yap
- Royal Marsden Hospital, London, UK
- The Institute of Cancer Research, London, UK
| |
Collapse
|
40
|
Köhler J. Second-Line Treatment of NSCLC-The Pan-ErbB Inhibitor Afatinib in Times of Shifting Paradigms. Front Med (Lausanne) 2017; 4:9. [PMID: 28243590 PMCID: PMC5303897 DOI: 10.3389/fmed.2017.00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/20/2017] [Indexed: 12/22/2022] Open
Abstract
In contrast to the established role of epidermal growth factor receptor (EGFR) inhibitors for the first-line treatment of patients with non-small cell lung cancer (NSCLC) harboring activating EGFR mutations, the role of EGFR blockade and of EGFR molecular testing in the second-line treatment remains less clear. The irreversible pan-ErbB family inhibitor afatinib (Gi(l)otrif®) was recently FDA- and EMA-approved for the second-line treatment of NSCLC with squamous cell histology irrespective of the EGFR mutational status (LUX-Lung 8). Contrariwise, results from the TAILOR and DELTA trials among retrospective biomarker analyses show the predictive value of the EGFR mutational status for efficacy of reversible EGFR inhibitors also as a second-line therapy. This mini review critically summarizes the current role of EGFR-targeting strategies in the second-line treatment of NSCLC with special respect to afatinib in light of emerging T790M-specific EGFR and immune check point inhibitors. The review also emphasizes the urgent need for reliable biomarkers to guide therapeutic decision-making and outlines prospective changes to the second-line landscape with some of the current second-line treatment concepts likely to be moved to the first-line.
Collapse
Affiliation(s)
- Jens Köhler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; West German Cancer Center Essen, Department of Medical Oncology, Division of Thoracic Oncology, University Hospital Essen, Essen, North-Rhine Westphalia, Germany
| |
Collapse
|
41
|
Wilhelm-Benartzi CS, Mt-Isa S, Fiorentino F, Brown R, Ashby D. Challenges and methodology in the incorporation of biomarkers in cancer clinical trials. Crit Rev Oncol Hematol 2017; 110:49-61. [PMID: 28109405 DOI: 10.1016/j.critrevonc.2016.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/28/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022] Open
Abstract
Biomarkers can be used to establish more homogeneous groups using the genetic makeup of the tumour to inform the selection of treatment for each individual patient. However, proper preclinical work and stringent validation are needed before taking forward biomarkers into confirmatory studies. Despite the challenges, incorporation of biomarkers into clinical trials could better target appropriate patients, and potentially be lifesaving. The authors conducted a systematic review to describe marker-based and adaptive design methodology for their integration in clinical trials, and to further describe the associated practical challenges. Studies published between 1990 to November 2015 were searched on PubMed. Titles, abstracts and full text articles were reviewed to identify relevant studies. Of the 4438 studies examined, 57 studies were included. The authors conclude that the proposed approaches may readily help researchers to design biomarker trials, but novel approaches are still needed.
Collapse
Affiliation(s)
- Charlotte S Wilhelm-Benartzi
- CRUK Imperial Centre, Department of Surgery and Cancer, Imperial College London, UK; Imperial Clinical Trials Unit, School of Public Health, Imperial College London, UK.
| | - Shahrul Mt-Isa
- Imperial Clinical Trials Unit, School of Public Health, Imperial College London, UK
| | - Francesca Fiorentino
- Imperial Clinical Trials Unit, School of Public Health, Imperial College London, UK
| | - Robert Brown
- Epigenetics Unit, Department of Surgery and Cancer, Imperial College London, UK
| | - Deborah Ashby
- Imperial Clinical Trials Unit, School of Public Health, Imperial College London, UK
| |
Collapse
|
42
|
Sun H, Bretz F, Gerke O, Vach W. Comparing a stratified treatment strategy with the standard treatment in randomized clinical trials. Stat Med 2016; 35:5325-5337. [PMID: 27666738 DOI: 10.1002/sim.7091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 11/07/2022]
Abstract
The increasing emergence of predictive markers for different treatments in the same patient population allows us to define stratified treatment strategies. We consider randomized clinical trials that compare a standard treatment with a new stratified treatment strategy that divides the study population into subgroups receiving different treatments. Because the new strategy may not be beneficial in all subgroups, we consider in this paper an intermediate approach that establishes a treatment effect in a subset of patients built by joining several subgroups. The approach is based on the simple idea of selecting the subset with minimal p-value when testing the subset-specific treatment effects. We present a framework to compare this approach with other approaches to select subsets by introducing three performance measures. The results of a comprehensive simulation study are presented, and the relative merits of the various approaches are discussed. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hong Sun
- Clinical Epidemiology, Institute for Medical Biometry and Statistics, Faculty of Medicine, Medical Center - University of Freiburg, Germany
| | | | - Oke Gerke
- Nuclear Medicine, Odense University Hospital, Denmark
| | - Werner Vach
- Clinical Epidemiology, Institute for Medical Biometry and Statistics, Faculty of Medicine, Medical Center - University of Freiburg, Germany
| |
Collapse
|
43
|
Sharma J, Shum E, Chau V, Paucar D, Cheng H, Halmos B. The Evolving Role of Biomarkers in Personalized Lung Cancer Therapy. Respiration 2016; 93:1-14. [PMID: 27894113 DOI: 10.1159/000453086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Janaki Sharma
- Departments of Medicine and Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | |
Collapse
|
44
|
Waldman SA, Terzic A. Managing Innovation to Maximize Value Along the Discovery-Translation-Application Continuum. Clin Pharmacol Ther 2016; 101:8-12. [PMID: 27869291 DOI: 10.1002/cpt.551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 01/22/2023]
Abstract
Success in pharmaceutical development led to a record 51 drugs approved in the past year, surpassing every previous year since 1950. Technology innovation enabled identification and exploitation of increasingly precise disease targets ensuring next generation diagnostic and therapeutic products for patient management. The expanding biopharmaceutical portfolio stands, however, in contradistinction to the unsustainable costs that reflect remarkable challenges of clinical development programs. This annual Therapeutic Innovations issue juxtaposes advances in translating molecular breakthroughs into transformative therapies with essential considerations for lowering attrition and improving the cost-effectiveness of the drug-development paradigm. Realizing the discovery-translation-application continuum mandates a congruent approval, adoption, and access triad.
Collapse
Affiliation(s)
- S A Waldman
- Department of Pharmacology and Experimental Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - A Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
45
|
Siu LL, Conley BA, Boerner S, LoRusso PM. Next-Generation Sequencing to Guide Clinical Trials. Clin Cancer Res 2016; 21:4536-44. [PMID: 26473189 DOI: 10.1158/1078-0432.ccr-14-3215] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rapidly accruing knowledge of the mutational landscape of malignant neoplasms, the increasing facility of massively parallel genomic sequencing, and the availability of drugs targeting many "driver" molecular abnormalities have spurred the oncologic community to consider how to use these new tools to improve cancer treatment. In order to assure that assignment of patients to a particular targeted treatment is likely to be beneficial to the patient, it will be necessary to conduct appropriate clinical research. It is clear that clinical (histology and stage) eligibility criteria are not sufficient for most clinical trials using agents that target mutations that are present in only a minority of patients. Recently, several clinical trial designs have been suggested to test the benefit of targeted treatment in molecular and/or clinical subgroups of patients. However, challenges remain in the implementation of such trials, including choice of assay, levels of evidence regarding gene variants, tumor heterogeneity, identifying resistance mechanisms, the necessity of screening large numbers of patients, infrastructure needs, and collaboration of investigators and industry. This article reviews current trial designs and discusses some of the considerations, advantages, and drawbacks of designing clinical trials that depend on particular molecular variants as eligibility criteria.
Collapse
Affiliation(s)
- Lillian L Siu
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada.
| | - Barbara A Conley
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Scott Boerner
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
46
|
Doherty M, Metcalfe T, Guardino E, Peters E, Ramage L. Precision medicine and oncology: an overview of the opportunities presented by next-generation sequencing and big data and the challenges posed to conventional drug development and regulatory approval pathways. Ann Oncol 2016; 27:1644-6. [DOI: 10.1093/annonc/mdw165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
47
|
Abstract
BACKGROUND A "platform trial" is a clinical trial with a single master protocol in which multiple treatments are evaluated simultaneously. Adaptive platform designs offer flexible features such as dropping treatments for futility, declaring one or more treatments superior, or adding new treatments to be tested during the course of a trial. METHODS A simulation study explores the efficiencies of various platform trial designs relative to a traditional two-arm strategy. RESULTS Platform trials can find beneficial treatments with fewer patients, fewer patient failures, less time, and with greater probability of success than a traditional two-arm strategy. CONCLUSION In an era of personalized medicine, platform trials provide the innovation needed to efficiently evaluate modern treatments.
Collapse
Affiliation(s)
- Benjamin R Saville
- Berry Consultants, Austin, TX, USA Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Scott M Berry
- Berry Consultants, Austin, TX, USA Adjunct faculty, University of Kansas Medical Center, Department of Biostatistics, KS, USA
| |
Collapse
|
48
|
Baumgart M, Pandya K. The use of biomarkers in the treatment of non-small cell lung cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1136558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Abstract
During the past decade, biomedical technologies have undergone an explosive evolution-from the publication of the first complete human genome in 2003, after more than a decade of effort and at a cost of hundreds of millions of dollars-to the present time, where a complete genomic sequence can be available in less than a day and at a small fraction of the cost of the original sequence. The widespread availability of next-generation genomic sequencing has opened the door to the development of precision oncology. The need to test multiple new targeted agents both alone and in combination with other targeted therapies, as well as classic cytotoxic agents, demands the development of novel therapeutic platforms (particularly Master Protocols) capable of efficiently and effectively testing multiple targeted agents or targeted therapeutic strategies in relatively small patient subpopulations. Here, we describe the Master Protocol concept, with a focus on the expected gains and complexities of the use of this design. An overview of Master Protocols currently active or in development is provided along with a more extensive discussion of the Lung Master Protocol (Lung-MAP study).
Collapse
Affiliation(s)
- Mary W Redman
- Clinical Biostatistics, Clinical Research Division, Lead Statistician, SWOG Lung Committee and Lung-MAP trial; Fred Hutchinson Cancer Research Center, Seattle, WA.
| | - Carmen J Allegra
- Department of Medicine, Division of Hematology and Oncology, University of Florida Health Cancer Center, Gainesville, FL
| |
Collapse
|
50
|
Hohl RJ. Oncology trial design: More accurately and efficiently advancing the field. Clin Pharmacol Ther 2015; 97:430-2. [PMID: 25684240 DOI: 10.1002/cpt.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- R J Hohl
- Penn State Cancer Institute, Penn State University, Hershey, Pennsylvania, USA
| |
Collapse
|