1
|
Arulkumar E, Thanikaikarasan S, Rajkumar S, Wondimu W. Influence of solution pH dependency on structure, optical with photoelectrochemical characteristics of SILAR deposited copper oxide thin films. Heliyon 2024; 10:e33579. [PMID: 39040338 PMCID: PMC11260933 DOI: 10.1016/j.heliyon.2024.e33579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Photoelectrochemical (PEC) technology is a promising approach for converting solar energy into chemical energy, offering significant potential for renewable energy applications. In this work, the CuO thin film was fabricated with different pH value in between 8.5 ± 0.1 and 10.5 ± 0.1 via Successive Ionic Layer Adsorption and Reaction (SILAR) method. The Effect of pH on thickness, structural, morphological, elemental composition and optical properties were investigated by using stylus profilometry, XRD, SEM, TEM, EDX, UV-vis and PL. The XRD results showed that as the pH increased, the crystallite size increased from 19.24 nm to 25.62 nm, with a monoclinic phase along the (111) direction. The CuO film deposited at pH value 10.5 ± 0.1 exhibit well defined identical particle with its size in the range between 200 and 300 nm was confirmed by SEM and TEM analysis. As the pH increased from 8.5 ± 0.1 to 10.5 ± 0.1, the CuO film bandgap (Eg) value reduced from 1.52 eV to 1.42 eV with indirect transition. The CuO photocathode deposited at pH 10.5 ± 0.1 shows maximum photocurrent density of 1.45 mA/cm2 at -0.1 V vs. RHE in 0.5 M Na2SO4 solution. Furthermore, the Electrochemical Impedance Spectroscopy (EIS) analysis shows, the CuO (pH 10.5 ± 0.1) electrode have higher conductivity value of 0.6862 S/cm compared CuO at pH 8.5 ± 0.1 (0.2779 S/cm) and CuO at pH 9.5 ± 0.1 (0.4646 S/cm) electrodes.
Collapse
Affiliation(s)
- E. Arulkumar
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602 105, Tamil Nadu, India
| | - S. Thanikaikarasan
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602 105, Tamil Nadu, India
| | - S. Rajkumar
- Department of Mechanical Engineering, Faculty of Manufacturing, Institute of Technology, Hawassa University, Hawassa, Ethiopia
| | - Wasihun Wondimu
- Department of Mechanical Engineering, Faculty of Manufacturing, Institute of Technology, Hawassa University, Hawassa, Ethiopia
| |
Collapse
|
2
|
Yang R, Xiao S, Zhang J, Tang S, Xu R, Tong Y. Hematite Hollow-Sphere-Array Photoanodes for Efficient Photoelectrochemical Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310752. [PMID: 38345256 DOI: 10.1002/smll.202310752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/18/2024] [Indexed: 07/13/2024]
Abstract
Constructing 3D nanophotonic structures is regarded as an effective method to realize efficient solar-to-hydrogen conversion. These photonic structures can enhance the absorbance of photoelectrodes by the light trapping effect, promote the charge separation by designable charge transport pathway and provide a high specific surface area for catalytic reaction. However, most 3D structures reported so far mainly focused on the influence of light absorption and lacked a systematic investigation of the overall water splitting process. Herein, hematite hollow-sphere-array photoanodes are fabricated through a facile hydrothermal method with polystyrene templates. Validating by simulations and experiments, the hollow sphere array is proved to enhance the efficiency of light harvesting, charge separation and surface reaction at the same time. With an additional annealing treatment in oxygen, a photocurrent density of 2.26 mA cm-2 at 1.23 V versus reversible hydrogen electrode can be obtained, which is 3.70 times larger than that with a planar structure in otherwise the same system. This work gains an insight into the photoelectrochemical water splitting process, which is valuable for the further design of advancing solar driven water splitting devices.
Collapse
Affiliation(s)
- Rongge Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuang Xiao
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology (iLaT) and College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jingnan Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Songtao Tang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ruimei Xu
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yexiang Tong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
3
|
Sharma MD, Basu M. Nanosheets of In 2S 3/S-C 3N 4-Dots for Solar Water-Splitting in Saline Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12981-12990. [PMID: 36218026 DOI: 10.1021/acs.langmuir.2c02390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogen generation from splitting of water under the photoelectrochemical (PEC) pathway is considered as the most promising strategy for covering the upcoming fuel crisis by taking care of all environmental issues. In this context, In2S3 can be explored as it is a visible light-active semiconductor with an appropriate band alignment with the water redox potential. Herein, In2S3 nanosheets are developed by the chemical method. The nanosheets of In2S3 absorb high visible light due to the manifold inside scattering and reflection. The PEC activity of In2S3 is enhanced because of the increase in the light absorbance of the materials. In the present work, at 1.18 V versus RHE in 3.5 wt % NaCl, a maximum 2.07 mA/cm2 photocurrent density can be achieved by In2S3 nanosheets. However, In2S3 suffers strongly due to photo-corrosion. To improve the efficacy of the In2S3 nanosheets in saline water, the charge-carrier transportation ability of In2S3 is aimed to increase by decorating S-C3N4-dots on In2S3. The heterostructure of type-II is developed by sensitization of S-C3N4-dots on In2S3. It increases both the transportation of charge carriers as well as separation. In the heterostructure, the transient decay time (τ) increases, which indicates a decrease in photogenerated charge-carrier recombination. S-C3N4-dots also act as an optical antenna and increase the range of visible light absorbance of In2S3. The heterostructure can generate ∼2.38-fold higher photocurrent density of 1.18 V versus RHE in 3.5 wt % NaCl. The photoconversion efficiency of the heterostructure is 0.88% at 0.95 V versus RHE. The nanosheets of In2S3 and In2S3/S-C3N4-dots are stable, and photocurrent density is measured up to 2700 s under continuous back-illumination conditions.
Collapse
Affiliation(s)
- Mamta Devi Sharma
- Department of Chemistry, BITS Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Mrinmoyee Basu
- Department of Chemistry, BITS Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
4
|
Kyesmen PI, Nombona N, Diale M. A Promising Three-Step Heat Treatment Process for Preparing CuO Films for Photocatalytic Hydrogen Evolution from Water. ACS OMEGA 2021; 6:33398-33408. [PMID: 34926889 PMCID: PMC8674923 DOI: 10.1021/acsomega.1c03796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Copper (II) oxide (CuO) nanostructures were prepared on fluorine-doped tin oxide (FTO) using a three-step heat treatment process in a sol-gel dip-coating method. The precursor used for the dip-coating process was prepared using copper acetate, propan-2-ol, diethanolamine, and polyethylene glycol 400. Dip-coated films in layers of 2, 4, 6, 8, and 10 were prepared by drying each layer at 110 and 250 °C for 10 and 5 min, respectively, followed by calcination at 550 °C for 1 h. The films were applied toward photocatalytic hydrogen evolution from water. The X-ray diffraction (XRD) pattern of the films confirmed the tenorite phase of pure CuO. Raman spectroscopy revealed the 1Ag and 2Bg phonon modes of CuO, confirming the high purity of the films produced. The CuO films absorb significant photons in the visible spectrum due to their low optical band gap of 1.25-1.33 eV. The highest photocurrent of -2.0 mA/cm2 at 0.45 V vs reversible hydrogen electrode (RHE) was recorded for CuO films consisting of six layers under 1 sun illumination. A more porous surface, low charge transfer resistance, and high double-layer capacitance at the CuO/electrolyte interface observed for the films consisting of six layers contributed to the high photocurrent density attained by the films. CuO films consisting of six layers prepared using the conventional two-step heat treatment process for comparative purposes yielded 65.0% less photocurrent at 0.45 V vs RHE compared to similar films fabricated via the three-step heating method. The photocurrent response of the CuO nanostructures prepared using the three-step heat treatment process is promising and can be employed for making CuO for photovoltaic and optoelectronic applications.
Collapse
Affiliation(s)
- Pannan I. Kyesmen
- Department
of Physics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Nolwazi Nombona
- Department
of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Mmantsae Diale
- Department
of Physics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
5
|
Fe 2O 3 nanorods/CuO nanoparticles p-n heterojunction photoanode: Effective charge separation and enhanced photoelectrochemical properties. J Colloid Interface Sci 2021; 602:32-42. [PMID: 34118603 DOI: 10.1016/j.jcis.2021.05.140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 11/24/2022]
Abstract
Fe2O3/CuO p-n heterojunction photoelectrode films were fabricated by growing CuO nanoparticles on Fe2O3 nanorods via an impregnation method. The content of CuO in Fe2O3/CuO films was changed to study the role of CuO on the p-n heterojunction. The obtained Fe2O3/CuO photoelectrodes exhibited high intensity of visible-light absorption and excellence photoelectrochemical (PEC) performance. The incident photocurrent efficiency (IPCE) of Fe2O3/CuO photoanode reached 11.4% under 365 nm light irradiation, which is 2.6 times higher than that of bare Fe2O3 photoanode. In a PEC water splitting reaction, the H2 and O2 production rates for Fe2O3/CuO-3 were 0.294 and 0.130 µmol/min. The enhanced PEC performance was mainly contributed by the enhanced charge separation and the synergism achieved in Fe2O3/CuO p-n heterojunctions. This work could provide a new route to construct efficient Fe2O3-based composite photoelectrodes for the PEC.
Collapse
|
6
|
Siavash Moakhar R, Hosseini‐Hosseinabad SM, Masudy‐Panah S, Seza A, Jalali M, Fallah‐Arani H, Dabir F, Gholipour S, Abdi Y, Bagheri‐Hariri M, Riahi‐Noori N, Lim Y, Hagfeldt A, Saliba M. Photoelectrochemical Water-Splitting Using CuO-Based Electrodes for Hydrogen Production: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007285. [PMID: 34117806 PMCID: PMC11468279 DOI: 10.1002/adma.202007285] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/25/2020] [Indexed: 06/12/2023]
Abstract
The cost-effective, robust, and efficient electrocatalysts for photoelectrochemical (PEC) water-splitting has been extensively studied over the past decade to address a solution for the energy crisis. The interesting physicochemical properties of CuO have introduced this promising photocathodic material among the few photocatalysts with a narrow bandgap. This photocatalyst has a high activity for the PEC hydrogen evolution reaction (HER) under simulated sunlight irradiation. Here, the recent advancements of CuO-based photoelectrodes, including undoped CuO, doped CuO, and CuO composites, in the PEC water-splitting field, are comprehensively studied. Moreover, the synthesis methods, characterization, and fundamental factors of each classification are discussed in detail. Apart from the exclusive characteristics of CuO-based photoelectrodes, the PEC properties of CuO/2D materials, as groups of the growing nanocomposites in photocurrent-generating devices, are discussed in separate sections. Regarding the particular attention paid to the CuO heterostructure photocathodes, the PEC water splitting application is reviewed and the properties of each group such as electronic structures, defects, bandgap, and hierarchical structures are critically assessed.
Collapse
Affiliation(s)
- Roozbeh Siavash Moakhar
- Department of BioengineeringMcGill UniversityMontrealQCH3A 0E9Canada
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
| | | | - Saeid Masudy‐Panah
- Electrical and Computer EngineeringNational University of SingaporeSingapore119260Singapore
- Low Energy Electronic Systems (LEES)Singapore‐MIT Alliance for Research and Technology (SMART) CentreSingapore38602Singapore
| | - Ashkan Seza
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
- Department of Materials Science and EngineeringSharif University of TechnologyAzadi AveTehran11155‐9466Iran
| | - Mahsa Jalali
- Department of BioengineeringMcGill UniversityMontrealQCH3A 0E9Canada
| | - Hesam Fallah‐Arani
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
| | - Fatemeh Dabir
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
| | - Somayeh Gholipour
- Nanophysics Research LaboratoryDepartment of PhysicsUniversity of TehranTehran14395‐547Iran
| | - Yaser Abdi
- Nanophysics Research LaboratoryDepartment of PhysicsUniversity of TehranTehran14395‐547Iran
| | - Mohiedin Bagheri‐Hariri
- Institute for Corrosion and Multiphase flow TechnologyDepartment of Chemical and Biomedical EngineeringOhio UniversityAthensOH45701USA
| | - Nastaran Riahi‐Noori
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
| | - Yee‐Fun Lim
- Institute of Materials Research and EngineeringAgency for Science Technology and Research (A*STAR)2 Fusionopolis Way, Innovis, #08‐03Singapore138634Singapore
| | - Anders Hagfeldt
- Laboratory of Photomolecular ScienceEcole Polytechnique Fédérale de LausanneEPFL SB‐ISIC‐LSPM, Station 6Lausanne1015Switzerland
| | - Michael Saliba
- Institute for PhotovoltaicsUniversity of StuttgartPfaffenwaldring 47D‐70569StuttgartGermany
- Helmholtz Young Investigator Group FRONTRUNNER IEK5‐PhotovoltaikForschungszentrumD‐52425JülichGermany
| |
Collapse
|
7
|
Photocatalytic Hydrogen Generation from pH-Neutral Water by a Flexible Tri-Component Composite. Catal Letters 2020. [DOI: 10.1007/s10562-020-03427-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|