1
|
Harris OJ, Larder RR, Jordan B, Prior I, El-Khoury R, Sebakhy KO, Hatton FL. RAFT solution polymerisation of bio-based γ-methyl-α-methylene-γ-butyrolactone monomer in DMSO and Cyrene. Chem Commun (Camb) 2024. [PMID: 39558865 DOI: 10.1039/d4cc04571h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Reversible addition fragmentation chain transfer (RAFT) solution polymerisation of the bio-based lactone monomer γ-methyl-α-methylene-γ-butyrolactone (γMeMBL) has been demonstrated in DMSO and Cyrene. RAFT control was evidenced by control over molecular weights, low disperisites, and kinetic evaluation. Purified P(γMeMBL) homopolymers exhibited high glass transition temperatures (206-221 °C) and excellent thermal stabilities. This work demonstrates the first RAFT solution polymerisation of γMeMBL and the first example of RAFT polymerisation in Cyrene.
Collapse
Affiliation(s)
- Oliver J Harris
- Department of Material, Loughborough University, Loughborough, LE11 3TU, UK.
| | - Ryan R Larder
- Department of Material, Loughborough University, Loughborough, LE11 3TU, UK.
| | - Beth Jordan
- Department of Material, Loughborough University, Loughborough, LE11 3TU, UK.
| | - Imogen Prior
- Department of Material, Loughborough University, Loughborough, LE11 3TU, UK.
| | - Rita El-Khoury
- Department of Material, Loughborough University, Loughborough, LE11 3TU, UK.
| | - Khaled O Sebakhy
- Department of Materials, Textiles and Chemical Engineering, Centre for Polymer and Material Technologies (CPMT), Ghent University, Ghent, Belgium
| | - Fiona L Hatton
- Department of Material, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
2
|
Ramu A, Rajendrakumar K. Evaluation of the Role of [{Cu(PMDETA)} 2(O 2 2-)] 2+ in Open-Air Photo ATRP of Methyl Methacrylate. ACS OMEGA 2024; 9:44916-44930. [PMID: 39554403 PMCID: PMC11561604 DOI: 10.1021/acsomega.4c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 11/19/2024]
Abstract
Herein, we report an open-air, photo accelerated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) without employing any deoxygenating agent. Under open-air photo ATRP conditions, oxygen reversibly binds with [{Cu (PMDETA)}2(O2 2-)]2+ (1) to form the required activator, which was demonstrated by simple benchtop oxygen/nitrogen purging experiments. The binding mode of oxygen in (1) (μ(η2-η2) peroxo dicopper(II)) was investigated using UV Visible-NIR, FT-Raman and X-ray photoelectron (XPS) spectroscopic techniques. DFT studies and electrochemical measurements further support the catalytic role of (1) in open-air photo ATRP. With the synergistic involvement of Cu (II)Br2, PMDETA ligand and the intensity of light (365 nm, 4.2 mW cm-2), a well-controlled rapid polymerization of MMA under open-air condition was achieved (1.25< Đ < 1.47, 94% conversion in 200 min). The bromo chain end fidelity was exemplified by chain extension experiment, block copolymerization and MALDI-ToF analysis. Other monomers such as methyl acrylate, glycidyl methacrylate, and benzyl methacrylate were also polymerized under open-air condition with reasonable control over molecular weight and Đ. An open-air photo polymerization methodology would be fruitful for applications like photocurable printing, dental, optoelectronics, stereolithography, and protective coatings where simple but rapid photopolymerizations are desirable.
Collapse
Affiliation(s)
- Arumugam Ramu
- Department
of chemistry, School of Advanced Sciences Vellore Institute of Technology, Chennai 600127, India
| | - Kannapiran Rajendrakumar
- Centre
for Advanced Materials and Innovative Technologies (CAMIT) Vellore Institute of Technology, Chennai 600127, India
| |
Collapse
|
3
|
Cvek M, Jazani AM, Sobieski J, Jamatia T, Matyjaszewski K. Comparison of Mechano- and PhotoATRP with ZnO Nanocrystals. Macromolecules 2023; 56:5101-5110. [PMID: 37457022 PMCID: PMC10339823 DOI: 10.1021/acs.macromol.3c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/24/2023] [Indexed: 07/18/2023]
Abstract
Zinc oxide (ZnO) was previously reported as an excellent cocatalyst for mechanically controlled atom transfer radical polymerization (mechanoATRP), but its photocatalytic properties in photoinduced ATRP (photoATRP) have been much less explored. Herein, well-defined ZnO nanocrystals were prepared via microwave-assisted synthesis and applied as a heterogeneous cocatalyst in mechano- and photoATRP. Both techniques yielded polymers with outstanding control over the molecular weight, but ZnO-cocatalyzed photoATRP was much faster than analogous mechanoATRP (conversion of 91% in 1 h vs 54% in 5 h). The kinetics of photoATRP was tuned by loadings of ZnO nanocrystals. PhotoATRP with ZnO did not require any excess of ligand versus Cu, in contrast to mechanoATRP, requiring an excess of ligand, acting as a reducing agent. ZnO-cocatalyzed photoATRP proceeded controllably without prior deoxygenation, since ZnO was involved in a cascade of reactions, leading to the rapid elimination of oxygen. The versatility and robustness of the technique were demonstrated for various (meth)acrylate monomers with good temporal control and preservation of end-group functionality, illustrated by the formation of tailored block copolymers.
Collapse
Affiliation(s)
- Martin Cvek
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Arman Moini Jazani
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Julian Sobieski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Thaiskang Jamatia
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Parkatzidis K, Boner S, Wang HS, Anastasaki A. Photoinduced Iron-Catalyzed ATRP of Renewable Monomers in Low-Toxicity Solvents: A Greener Approach. ACS Macro Lett 2022; 11:841-846. [PMID: 35731694 PMCID: PMC9301913 DOI: 10.1021/acsmacrolett.2c00302] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Producing polymers from renewable resources via more sustainable approaches has become increasingly important. Herein we present the polymerization of monomers obtained from biobased renewable resources, employing an environmentally friendly photoinduced iron-catalyzed atom transfer radical polymerization (ATRP) in low-toxicity solvents. We demonstrate that renewable monomers can be successfully polymerized into sustainable polymers with controlled molecular weights and narrow molar mass distributions (Đ as low as 1.17). This is in contrast to reversible addition-fragmentation chain-transfer (RAFT) polymerization, arguably the most commonly employed method to polymerize biobased monomers, which led to poorer molecular weight control and higher dispersities for these specific monomers (Đs ∼ 1.4). The versatility of our approach was further highlighted by the temporal control demonstrated through intermittent "on/off" cycles, controlled polymerizations of a variety of monomers and chain lengths, oxygen-tolerance, and high end-group fidelity exemplified by the synthesis of block copolymers. This work highlights photoinduced iron-catalyzed ATRP as a powerful tool for the synthesis of renewable polymers.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- -Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Silja Boner
- -Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Hyun Suk Wang
- -Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Athina Anastasaki
- -Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| |
Collapse
|
5
|
Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106076. [PMID: 35175001 PMCID: PMC9259732 DOI: 10.1002/advs.202106076] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 05/13/2023]
Abstract
Reversible-deactivation radical polymerizations (RDRPs) have revolutionized synthetic polymer chemistry. Nowadays, RDRPs facilitate design and preparation of materials with controlled architecture, composition, and functionality. Atom transfer radical polymerization (ATRP) has evolved beyond traditional polymer field, enabling synthesis of organic-inorganic hybrids, bioconjugates, advanced polymers for electronics, energy, and environmentally relevant polymeric materials for broad applications in various fields. This review focuses on the relation between ATRP technology and the 12 principles of green chemistry, which are paramount guidelines in sustainable research and implementation. The green features of ATRP are presented, discussing the environmental and/or health issues and the challenges that remain to be overcome. Key discoveries and recent developments in green ATRP are highlighted, while providing a perspective for future opportunities in this area.
Collapse
Affiliation(s)
- Sylwia Dworakowska
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of Chemical Engineering and TechnologyCracow University of TechnologyWarszawska 24Cracow31‐155Poland
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Department of Industrial EngineeringUniversity of Padovavia Marzolo 9Padova35131Italy
| | - Adam Gorczyński
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | | |
Collapse
|
6
|
Palà M, Woods SE, Hatton FL, Lligadas G. RDRP (Meth)acrylic Homo and Block Polymers from Lignocellulosic Sugar Derivatives. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marc Palà
- Laboratory of Sustainable Polymers Department of Analytical Chemistry and Organic Chemistry University Rovira i Virgili Tarragona 43007 Spain
| | - Sarah E. Woods
- Department of Materials Loughborough University Loughborough LE11 3TU UK
| | - Fiona L. Hatton
- Department of Materials Loughborough University Loughborough LE11 3TU UK
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers Department of Analytical Chemistry and Organic Chemistry University Rovira i Virgili Tarragona 43007 Spain
| |
Collapse
|
7
|
Bińczak J, Dziuba K, Chrobok A. Recent Developments in Lactone Monomers and Polymer Synthesis and Application. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2881. [PMID: 34072108 PMCID: PMC8198756 DOI: 10.3390/ma14112881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 01/07/2023]
Abstract
Lactones are a group of compounds that have been known for several decades. The commercial importance of lactones results from the possibility of manufacturing of a broad scope of derivatives and polymers with a wide spectrum of applications. In this work the synthesis and characterization of simple lactones are described, which due to the easy methods of the synthesis are of high importance for the industry. The chemical as well as biochemical methods are included with special attention paid to the methods that avoid metal catalysts, initiators or toxic solvents, allowing the use of the final products for the medical applications, e.g., for controlled drug-release systems, resorbable surgical threads, implants, tissue scaffolds or for the production of drugs. Lactone-based derivatives, such as polymers, copolymers, composites or three-dimensional structures are also presented. The work is focused on the methods for the synthesis of lactones and lactones derivates, as well as on the special properties and application of the studied compounds.
Collapse
Affiliation(s)
- Jakub Bińczak
- Department of Chemical Organic Technology and Petrochemistry, PhD School, Silesian University of Technology, Akademicka 2a, 44-100 Gliwice, Poland; or
- Grupa Azoty Zakłady Azotowe, Puławy” S.A., Al. Tysiąclecia Państwa Polskiego 13, 24-110 Puławy, Poland;
| | - Krzysztof Dziuba
- Grupa Azoty Zakłady Azotowe, Puławy” S.A., Al. Tysiąclecia Państwa Polskiego 13, 24-110 Puławy, Poland;
| | - Anna Chrobok
- Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| |
Collapse
|
8
|
Fouilloux H, Thomas CM. Production and Polymerization of Biobased Acrylates and Analogs. Macromol Rapid Commun 2021; 42:e2000530. [DOI: 10.1002/marc.202000530] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/23/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Hugo Fouilloux
- PSL University Chimie ParisTech CNRS Institut de Recherche de Chimie Paris Paris 75005 France
| | - Christophe M. Thomas
- PSL University Chimie ParisTech CNRS Institut de Recherche de Chimie Paris Paris 75005 France
| |
Collapse
|
9
|
Zain G, Bučková M, Mosnáčková K, Doháňošová J, Opálková Šišková A, Mičušík M, Kleinová A, Matúš P, Mosnáček J. Antibacterial cotton fabric prepared by surface-initiated photochemically induced atom transfer radical polymerization of 2-(dimethylamino)ethyl methacrylate with subsequent quaternization. Polym Chem 2021. [DOI: 10.1039/d1py01322j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antibacterial highly grafted cotton fabric with good laundry resistance was prepared using photoATRP in the presence of air.
Collapse
Affiliation(s)
- Gamal Zain
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
- Pretreatment and Finishing of Cellulose Based Textiles Dept., Textile Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Katarína Mosnáčková
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | - Jana Doháňošová
- Central Laboratories, Faculty of Chemical and Food Technology STU, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Alena Opálková Šišková
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
- Institute of Materials and Machines Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 13 Bratislava, Slovakia
| | - Matej Mičušík
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | - Angela Kleinová
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Jaroslav Mosnáček
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava, Slovakia
| |
Collapse
|
10
|
Cvek M, Kollar J, Mrlik M, Masar M, Suly P, Urbanek M, Mosnacek J. Surface-initiated mechano-ATRP as a convenient tool for tuning of bidisperse magnetorheological suspensions toward extreme kinetic stability. Polym Chem 2021. [DOI: 10.1039/d1py00930c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic NPs grafted via mechano-ATRP served as a powerful agent for enhancing performance and stability of magnetorheological suspensions.
Collapse
Affiliation(s)
- Martin Cvek
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, 760 01 Zlín, Czech Republic
| | - Jozef Kollar
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | - Miroslav Mrlik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, 760 01 Zlín, Czech Republic
| | - Milan Masar
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, 760 01 Zlín, Czech Republic
| | - Pavol Suly
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, 760 01 Zlín, Czech Republic
| | - Michal Urbanek
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, 760 01 Zlín, Czech Republic
| | - Jaroslav Mosnacek
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava, Slovakia
| |
Collapse
|
11
|
Sanay B, Strehmel B, Strehmel V. Photoinitiated polymerization of methacrylates comprising phenyl moieties. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Berran Sanay
- Institute for Coatings and Surface Chemistry, Department of Chemistry Niederrhein University of Applied Sciences Krefeld Germany
| | - Bernd Strehmel
- Institute for Coatings and Surface Chemistry, Department of Chemistry Niederrhein University of Applied Sciences Krefeld Germany
| | - Veronika Strehmel
- Institute for Coatings and Surface Chemistry, Department of Chemistry Niederrhein University of Applied Sciences Krefeld Germany
| |
Collapse
|
12
|
Kollár J, Danko M, Pippig F, Mosnáček J. Functional Polymers and Polymeric Materials From Renewable Alpha-Unsaturated Gamma-Butyrolactones. Front Chem 2019; 7:845. [PMID: 31921769 PMCID: PMC6923188 DOI: 10.3389/fchem.2019.00845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/20/2019] [Indexed: 11/13/2022] Open
Abstract
Sustainable chemistry requires application of green processes and often starting materials originate from renewable resources. Biomass-derived monomers based on five-membered γ-butyrolactone ring represent suitable candidates to replace sources of fossil origin. α-Methylene-γ-butyrolactone, β-hydroxy-α-methylene-γ-butyrolactone, and β- and γ-methyl-α-methylene-γ-butyrolactones bearing exocyclic double bond are available directly by isolation from plants or derived from itaconic or levulinic acids available from biomass feedstock. Exocyclic double bond with structural similarity with methacrylates is highly reactive in chain-growth polymerization. Reaction involves the linking of monomer molecules through vinyl double bonds in the presence of initiators typical for radical, anionic, zwitterionic, group-transfer, organocatalytic, and coordination polymerizations. The formed polymers containing pendant ring are characterized by high glass transition temperature (T g > 195°C) and render decent heat, weathering, scratch, and solvent resistance. The monomers can also be hydrolyzed to open the lactone ring and form water-soluble monomers. Subsequent radical copolymerization in the presence of cross-linker can yield to hydrogels with superior degree of swelling and highly tunable characteristics, depending on the external stimuli. The five-membered lactone ring allows copolymerization of these compounds by ring opening polymerization to provide polyesters with preserved methylene functionality. In addition, both the lactone ring and the methylene double bond can be attacked by amines. Polyaddition with di- or multi-amines leads to functional poly(amidoamines) with properties tunable by structure of the amines. In this mini-review, we summarize the synthetic procedures for preparation of polymeric materials with interesting properties, including thermoplastic elastomers, acrylic latexes, stimuli-sensitive superabsorbent hydrogels, functional biocompatible polyesters, and poly(amidoamines).
Collapse
Affiliation(s)
- Jozef Kollár
- Department of Synthesis and Characterization of Polymers, Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Danko
- Department of Synthesis and Characterization of Polymers, Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Falko Pippig
- Department of Synthesis and Characterization of Polymers, Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jaroslav Mosnáček
- Department of Synthesis and Characterization of Polymers, Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|