1
|
Villa J, Cury J, Kessler L, Tan X, Richter CP. Enhancing biocompatibility of the brain-machine interface: A review. Bioact Mater 2024; 42:531-549. [PMID: 39308547 PMCID: PMC11416625 DOI: 10.1016/j.bioactmat.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
In vivo implantation of microelectrodes opens the door to studying neural circuits and restoring damaged neural pathways through direct electrical stimulation and recording. Although some neuroprostheses have achieved clinical success, electrode material properties, inflammatory response, and glial scar formation at the electrode-tissue interfaces affect performance and sustainability. Those challenges can be addressed by improving some of the materials' mechanical, physical, chemical, and electrical properties. This paper reviews materials and designs of current microelectrodes and discusses perspectives to advance neuroprosthetics performance.
Collapse
Affiliation(s)
- Jordan Villa
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Joaquin Cury
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Lexie Kessler
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Xiaodong Tan
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
| | - Claus-Peter Richter
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Biomedical Engineering, Northwestern University, USA
| |
Collapse
|
2
|
Gurke J, Carnicer-Lombarte A, Naegele TE, Hansen AK, Malliaras GG. In vivo photopharmacological inhibition of hippocampal activity via multimodal probes - perspective and opening steps on experimental and computational challenges. J Mater Chem B 2024; 12:9894-9904. [PMID: 39189156 PMCID: PMC11348833 DOI: 10.1039/d4tb01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Neurological conditions such as epilepsy can have a significant impact on people's lives. Here, we discuss a new perspective for the study/treatment of these conditions using photopharmacology. A multimodal, intracranial implant that incorporates fluidic channels for localised drug delivery, electrodes for recording and stimulation, and a light source for photoswitching is used for in vivo administration and deactivation of a photoresponsive AMPA antagonist. We review current advancements in the relevant disciplines and show experimentally that the inhibition of seizure-like events induced in the hippocampus by electrical stimulation can be altered upon switching the drug with light. We discuss the interconnection of the drug's photopharmacological properties with the design of the device by modelling light penetration into the rat brain with Monte Carlo simulations. This work delivers a new perspective, including initial experimental and computational efforts on in vivo photopharmacology to understand and eventually treat neurological conditions.
Collapse
Affiliation(s)
- Johannes Gurke
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
- Fraunhofer Institute of Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | | | - Tobias E Naegele
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
| | - Anders K Hansen
- Technical University of Denmark, DTU Fotonik, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - George G Malliaras
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
| |
Collapse
|
3
|
Bikbaeva G, Pilip A, Egorova A, Medvedev V, Mamonova D, Pankin D, Kalinichev A, Mayachkina N, Bakina L, Kolesnikov I, Leuchs G, Manshina A. Smart photopharmacological agents: LaVO 4:Eu 3+@vinyl phosphonate combining luminescence imaging and photoswitchable butyrylcholinesterase inhibition. NANOSCALE ADVANCES 2024; 6:4417-4425. [PMID: 39170980 PMCID: PMC11334978 DOI: 10.1039/d4na00389f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/20/2024] [Indexed: 08/23/2024]
Abstract
The combination of photoswitchability and bioactivity in one compound provides interesting opportunities for photopharmacology. Here, we report a hybrid compound that in addition allows for its visual localization. It is the first demonstration of its kind and it even shows high photoswitchability. The multifunctional nanomaterial hybrid, which we present, is composed of luminescent LaVO4:Eu3+ nanoparticles and vinyl phosphonate, the latter of which inhibits butyrylcholinesterase (BChE). This inhibition increases 7 times when irradiated with a 266 nm laser. We found that it is increased even further when vinyl phosphonate molecules are conjugated with LaVO4:Eu3+ nanoparticles, leading in total to a 20-fold increase in BChE inhibition upon laser irradiation. The specific luminescence spectrum of LaVO4:Eu3+ allows its spatial localization in various biological samples (chicken breast, Daphnia and Paramecium). Furthermore, laser irradiation of the LaVO4:Eu3+@vinyl phosphonate hybrid leads to a drop in luminescence intensity and in lifetime of the Eu3+ ion that can implicitly indicate photoswitching of vinyl phosphonate in the bioactive state. Thus, combining enhanced photoswitchability, bioactivity and luminescence induced localizability in a unique way, hybrid LaVO4:Eu3+@vinyl phosphonate can be considered as a promising tool for photopharmacology.
Collapse
Affiliation(s)
- Gulia Bikbaeva
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| | - Anna Pilip
- St Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences Korpusnaya 18 St Petersburg 197110 Russia
| | - Anastasiya Egorova
- St Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences Korpusnaya 18 St Petersburg 197110 Russia
- St Petersburg State Technological Institute (Technical University) 26, Moskovski Ave. St Petersburg 190013 Russia
| | - Vasiliy Medvedev
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| | - Daria Mamonova
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| | - Dmitrii Pankin
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| | - Alexey Kalinichev
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| | - Natalya Mayachkina
- St Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences Korpusnaya 18 St Petersburg 197110 Russia
| | - Lyudmila Bakina
- St Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences Korpusnaya 18 St Petersburg 197110 Russia
| | - Ilya Kolesnikov
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| | - Gerd Leuchs
- Max Planck Institute for the Science of Light Erlangen 91058 Germany
| | - Alina Manshina
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| |
Collapse
|
4
|
Coles L, Oluwasanya PW, Karam N, Proctor CM. Fluidic enabled bioelectronic implants: opportunities and challenges. J Mater Chem B 2022; 10:7122-7131. [PMID: 35959561 PMCID: PMC9518646 DOI: 10.1039/d2tb00942k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022]
Abstract
Bioelectronic implants are increasingly facilitating novel strategies for clinical diagnosis and treatment. The integration of fluidic technologies into such implants enables new complementary routes for sensing and therapy alongside electrical interaction. Indeed, these two technologies, electrical and fluidic, can work synergistically in a bioelectronics implant towards the fabrication of a complete therapeutic platform. In this perspective article, the leading applications of fluidic enabled bioelectronic implants are highlighted and methods of operation and material choices are discussed. Furthermore, a forward-looking perspective is offered on emerging opportunities as well as critical materials and technological challenges.
Collapse
Affiliation(s)
- Lawrence Coles
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Pelumi W Oluwasanya
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Nuzli Karam
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Christopher M Proctor
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Orthogonal Control of Neuronal Circuits and Behavior Using Photopharmacology. J Mol Neurosci 2022; 72:1433-1442. [PMID: 35737209 DOI: 10.1007/s12031-022-02037-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/04/2022] [Indexed: 10/17/2022]
Abstract
Over the last decades, photopharmacology has gone far beyond its proof-of-concept stage to become a bona fide approach to study neural systems in vivo. Indeed, photopharmacological control has expanded over a wide range of endogenous targets, such as receptors, ion channels, transporters, kinases, lipids, and DNA transcription processes. In this review, we provide an overview of the recent progresses in the in vivo photopharmacological control of neuronal circuits and behavior. In particular, the use of small aquatic animals for the in vivo screening of photopharmacological compounds, the recent advances in optical modulation of complex behaviors in mice, and the development of adjacent techniques for light and drug delivery in vivo are described.
Collapse
|
6
|
Frank JA. Optofluidic neural interfaces for in vivo photopharmacology. Curr Opin Pharmacol 2022; 63:102195. [DOI: 10.1016/j.coph.2022.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 11/03/2022]
|
7
|
Kneuttinger AC. A guide to designing photocontrol in proteins: methods, strategies and applications. Biol Chem 2022; 403:573-613. [PMID: 35355495 DOI: 10.1515/hsz-2021-0417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Light is essential for various biochemical processes in all domains of life. In its presence certain proteins inside a cell are excited, which either stimulates or inhibits subsequent cellular processes. The artificial photocontrol of specifically proteins is of growing interest for the investigation of scientific questions on the organismal, cellular and molecular level as well as for the development of medicinal drugs or biocatalytic tools. For the targeted design of photocontrol in proteins, three major methods have been developed over the last decades, which employ either chemical engineering of small-molecule photosensitive effectors (photopharmacology), incorporation of photoactive non-canonical amino acids by genetic code expansion (photoxenoprotein engineering), or fusion with photoreactive biological modules (hybrid protein optogenetics). This review compares the different methods as well as their strategies and current applications for the light-regulation of proteins and provides background information useful for the implementation of each technique.
Collapse
Affiliation(s)
- Andrea C Kneuttinger
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
8
|
Avila R, Wu Y, Garziera R, Rogers JA, Huang Y. Analytical Modeling of Flowrate and Its Maxima in Electrochemical Bioelectronics with Drug Delivery Capabilities. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9805932. [PMID: 35316891 PMCID: PMC8917966 DOI: 10.34133/2022/9805932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/16/2022] [Indexed: 11/06/2022]
Abstract
Flowrate control in flexible bioelectronics with targeted drug delivery capabilities is essential to ensure timely and safe delivery. For neuroscience and pharmacogenetics studies in small animals, these flexible bioelectronic systems can be tailored to deliver small drug volumes on a controlled fashion without damaging surrounding tissues from stresses induced by excessively high flowrates. The drug delivery process is realized by an electrochemical reaction that pressurizes the internal bioelectronic chambers to deform a flexible polymer membrane that pumps the drug through a network of microchannels implanted in the small animal. The flowrate temporal profile and global maximum are governed and can be modeled by the ideal gas law. Here, we obtain an analytical solution that groups the relevant mechanical, fluidic, environmental, and electrochemical terms involved in the drug delivery process into a set of three nondimensional parameters. The unique combinations of these three nondimensional parameters (related to the initial pressure, initial gas volume, and microfluidic resistance) can be used to model the flowrate and scale up the flexible bioelectronic design for experiments in medium and large animal models. The analytical solution is divided into (1) a fast variable that controls the maximum flowrate and (2) a slow variable that models the temporal profile. Together, the two variables detail the complete drug delivery process and control using the three nondimensional parameters. Comparison of the analytical model with alternative numerical models shows excellent agreement and validates the analytic modeling approach. These findings serve as a theoretical framework to design and optimize future flexible bioelectronic systems used in biomedical research, or related medical fields, and analytically control the flowrate and its global maximum for successful drug delivery.
Collapse
Affiliation(s)
- Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yixin Wu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.,Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Rinaldo Garziera
- Dipartimento di Ingegneria ed Architettura, Università di Parma, Italy
| | - John A Rogers
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.,Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yonggang Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.,Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.,Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|