1
|
Kim T, Kim Y, Wuttig A. Interfacial Science for Electrosynthesis. CURRENT OPINION IN ELECTROCHEMISTRY 2024; 47:101569. [PMID: 39092135 PMCID: PMC11290363 DOI: 10.1016/j.coelec.2024.101569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Interfacial science and electroorganic syntheses are inextricably linked because all electrochemical reactions occur at the interface between the electrode and the solution. Thus, the surface chemistry of the electrode material impacts the organic reaction selectivity. In this short review, we highlight emergent examples of electrode surface chemistries that enable selective electroorganic synthesis in three reaction classes: (1) hydrogenation, (2) oxidation, and (3) reductive C‒C bond formation between two electrophiles. We showcase the breadth of techniques, including materials and in-situ characterization, requisite to establish mechanistic schemes consistent with the observed reactivity patterns. Leveraging an electrode's unique surface chemistry will provide complementary approaches to tune the selectivity of electroorganic syntheses and unlock an electrode's catalytic properties.
Collapse
Affiliation(s)
- Taemin Kim
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| | - YeJi Kim
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| | - Anna Wuttig
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| |
Collapse
|
2
|
Schrader ML, Schäfer FR, Schäfers F, Glorius F. Bridging the information gap in organic chemical reactions. Nat Chem 2024; 16:491-498. [PMID: 38548884 DOI: 10.1038/s41557-024-01470-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/02/2024] [Indexed: 04/07/2024]
Abstract
The varying quality of scientific reports is a well-recognized problem and often results from a lack of standardization and transparency in scientific publications. This situation ultimately leads to prominent complications such as reproducibility issues and the slow uptake of newly developed synthetic methods for pharmaceutical and agrochemical applications. In recent years, various impactful approaches have been advocated to bridge information gaps and to improve the quality of experimental protocols in synthetic organic publications. Here we provide a critical overview of these strategies and present the reader with a versatile set of tools to augment their standard procedures. We formulate eight principles to improve data management in scientific publications relating to data standardization, reproducibility and evaluation, and encourage scientists to go beyond current publication standards. We are aware that this is a substantial effort, but we are convinced that the resulting improved data situation will greatly benefit the progress of chemistry.
Collapse
Affiliation(s)
- Malte L Schrader
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Felix R Schäfer
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Felix Schäfers
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany.
| |
Collapse
|
3
|
Fiandra EF, Shaw L, Starck M, McGurk CJ, Mahon CS. Designing biodegradable alternatives to commodity polymers. Chem Soc Rev 2023; 52:8085-8105. [PMID: 37885416 DOI: 10.1039/d3cs00556a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The development and widespread adoption of commodity polymers changed societal landscapes on a global scale. Without the everyday materials used in packaging, textiles, construction and medicine, our lives would be unrecognisable. Through decades of use, however, the environmental impact of waste plastics has become grimly apparent, leading to sustained pressure from environmentalists, consumers and scientists to deliver replacement materials. The need to reduce the environmental impact of commodity polymers is beyond question, yet the reality of replacing these ubiquitous materials with sustainable alternatives is complex. In this tutorial review, we will explore the concepts of sustainable design and biodegradability, as applied to the design of synthetic polymers intended for use at scale. We will provide an overview of the potential biodegradation pathways available to polymers in different environments, and highlight the importance of considering these pathways when designing new materials. We will identify gaps in our collective understanding of the production, use and fate of biodegradable polymers: from identifying appropriate feedstock materials, to considering changes needed to production and recycling practices, and to improving our understanding of the environmental fate of the materials we produce. We will discuss the current standard methods for the determination of biodegradability, where lengthy experimental timescales often frustrate the development of new materials, and highlight the need to develop better tools and models to assess the degradation rate of polymers in different environments.
Collapse
Affiliation(s)
- Emanuella F Fiandra
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Lloyd Shaw
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Matthieu Starck
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | | - Clare S Mahon
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
4
|
Fantozzi N, Volle JN, Porcheddu A, Virieux D, García F, Colacino E. Green metrics in mechanochemistry. Chem Soc Rev 2023; 52:6680-6714. [PMID: 37691600 DOI: 10.1039/d2cs00997h] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The development of new green methodologies and their broader adoption for promoting sustainable development in chemistry laboratories and industry play a significant role in society, due to the economic importance of chemistry and its widespread presence in everyday life. Therefore, a sustainable approach to chemistry contributes to the well-being of the worldwide population and complies with the United Nations Sustainable Development Goals (UN SDGs) and the European Green Deal. The review highlights how batch and continuous mechanochemical methods are an eco-friendly approach for organic synthesis, with a lower environmental footprint in most cases, compared to solution-based procedures. The assessment is objectively based on the use of green metrics (e.g., atom and real atom economy, E-factor, process mass intensity, material parameter recovery, Eco-scale, stoichiometric factor, etc.) and indicators (e.g. DOZN tool and life cycle assessment, LCA, studies) applied to organic transformations such as synthesis of the amide bond, carbamates, heterocycles, active pharmaceutical ingredients (APIs), porphyrins, porous organic polymers (POPs), metal- or acid-catalysed processes, multicomponent and condensation reactions, rearrangements, etc. The generalized absence of bulk solvents, the precise control over the stoichiometry (i.e., using agents in a stoichiometrically rather than in excess), and the more selective reactions enabling simplified work-up procedures are the distinctive factors, marking the superiority of mechanochemical processes over solution-based chemistry.
Collapse
Affiliation(s)
| | - Jean-Noël Volle
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France.
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042, Monserrato (CA), Italy
| | - David Virieux
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France.
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo, 33006, Asturias, Spain.
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
5
|
Domínguez de María P, Kara S, Gallou F. Biocatalysis in Water or in Non-Conventional Media? Adding the CO 2 Production for the Debate. Molecules 2023; 28:6452. [PMID: 37764228 PMCID: PMC10536496 DOI: 10.3390/molecules28186452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Biocatalysis can be applied in aqueous media and in different non-aqueous solutions (non-conventional media). Water is a safe solvent, yet many synthesis-wise interesting substrates cannot be dissolved in aqueous solutions, and thus low concentrations are often applied. Conversely, non-conventional media may enable higher substrate loadings but at the cost of using (fossil-based) organic solvents. This paper determines the CO2 production-expressed as kg CO2·kg product-1-of generic biotransformations in water and non-conventional media, assessing both the upstream and the downstream. The key to reaching a diminished environmental footprint is the type of wastewater treatment to be implemented. If the used chemicals enable a conventional (mild) wastewater treatment, the production of CO2 is limited. If other (pre)treatments for the wastewater are needed to eliminate hazardous chemicals and solvents, higher environmental impacts can be expected (based on CO2 production). Water media for biocatalysis are more sustainable during the upstream unit-the biocatalytic step-than non-conventional systems. However, processes with aqueous media often need to incorporate extractive solvents during the downstream processing. Both strategies result in comparable CO2 production if extractive solvents are recycled at least 1-2 times. Under these conditions, a generic industrial biotransformation at 100 g L-1 loading would produce 15-25 kg CO2·kg product-1 regardless of the applied media.
Collapse
Affiliation(s)
| | - Selin Kara
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstr. 5, 30167 Hannover, Germany
| | - Fabrice Gallou
- Chemical and Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland
| |
Collapse
|
6
|
Borah B, Swain S, Patat M, Kumar B, Prajapat KK, Biswas R, Vasantha R, Chowhan LR. Brønsted acid catalyzed mechanochemical domino multicomponent reactions by employing liquid assisted grindstone chemistry. Sci Rep 2023; 13:1386. [PMID: 36697475 PMCID: PMC9876939 DOI: 10.1038/s41598-023-27948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Here, we have demonstrated a metal-free energy-efficient mechanochemical approach for expedient access to a diverse set of 2-amino-3-cyano-aryl/heteroaryl-4H-chromenes, tetrahydrospiro[chromene-3,4'-indoline], 2,2'-aryl/heteroarylmethylene-bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) as well as tetrahydro-1H-xanthen-1-one by employing the reactivity of 5,5-dimethylcyclohexane-1,3-dione/cyclohexane-1,3-dione with TsOH⋅H2O as Brønsted acid catalyst under water-assisted grinding conditions at ambient temperature. The ability to accomplish multiple C-C, C=C, C-O, and C-N bonds from readily available starting materials via a domino multicomponent strategy in the absence of metal-catalyst as well as volatile organic solvents with an immediate reduction in the cost of the transformation without necessitates complex operational procedures, features the significant highlights of this approach. The excellent yield of the products, broad functional group tolerances, easy set-up, column-free, scalable synthesis with ultralow catalyst loading, short reaction time, waste-free, ligand-free, and toxic-free, are other notable advantages of this approach. The greenness and sustainability of the protocol were also established by demonstrating several green metrics parameters.
Collapse
Affiliation(s)
- Biplob Borah
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Sidhartha Swain
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Mihir Patat
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Bhupender Kumar
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Ketan Kumar Prajapat
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Rathindranath Biswas
- grid.428366.d0000 0004 1773 9952Department of Chemistry, Central University of Punjab, Bathinda, 151401 India
| | - R. Vasantha
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - L. Raju Chowhan
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| |
Collapse
|
7
|
McQueen E, Bai Y, Sprick RS. Impact of Interfaces, and Nanostructure on the Performance of Conjugated Polymer Photocatalysts for Hydrogen Production from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4299. [PMID: 36500922 PMCID: PMC9739915 DOI: 10.3390/nano12234299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The direct conversion of sunlight into hydrogen through water splitting, and by converting carbon dioxide into useful chemical building blocks and fuels, has been an active area of research since early reports in the 1970s. Most of the semiconductors that drive these photocatalytic processes have been inorganic semiconductors, but since the first report of carbon nitride organic semiconductors have also been considered. Conjugated materials have been relatively extensively studied as photocatalysts for solar fuels generation over the last 5 years due to the synthetic control over composition and properties. The understanding of materials' properties, its impact on performance and underlying factors is still in its infancy. Here, we focus on the impact of interfaces, and nanostructure on fundamental processes which significantly contribute to performance in these organic photocatalysts. In particular, we focus on presenting explicit examples in understanding the interface of polymer photocatalysts with water and how it affects performance. Wetting has been shown to be a clear factor and we present strategies for increased wettability in conjugated polymer photocatalysts through modifications of the material. Furthermore, the limited exciton diffusion length in organic polymers has also been identified to affect the performance of these materials. Addressing this, we also discuss how increased internal and external surface areas increase the activity of organic polymer photocatalysts for hydrogen production from water.
Collapse
Affiliation(s)
- Ewan McQueen
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Yang Bai
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Reiner Sebastian Sprick
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
8
|
Phloroglucinol promotes fucoxanthin synthesis by activating the cis-zeatin and brassinolide pathways in Thalassiosira pseudonana. Appl Environ Microbiol 2022; 88:e0216021. [PMID: 35108066 DOI: 10.1128/aem.02160-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phloroglucinol improves shoot formation and somatic embryogenesis in several horticultural and grain crops, but its function in microalgae remains unclear. Here, we found that sufficiently high concentrations of phloroglucinol significantly increased fucoxanthin synthesis, growth, and photosynthetic efficiency in the microalga Thalassiosira pseudonana. These results suggested that the role of phloroglucinol is conserved across higher plants and microalgae. Further analysis showed that, after phloroglucinol treatment, the contents of cis-zeatin and brassinolide in T. pseudonana increased significantly, while the contents of trans-zeatin, iP, auxin, or gibberellin were unaffected. Indeed, functional studies showed that the effects of cis-zeatin and brassinolide in T. pseudonana were similar to those of phloroglucinol. Knockout of key enzyme genes in the cis-zeatin synthesis pathway of T. pseudonana or treatment of T. pseudonana with a brassinolide synthesis inhibitor (brassinazole) significantly reduced growth and fucoxanthin content in T. pseudonana, and phloroglucinol treatment partially alleviated these inhibitory effects. However, phloroglucinol treatment was ineffective when the cis-zeatin and brassinolide pathways were simultaneously inhibited. These results suggested that the cis-zeatin and brassinolide signaling pathways are independent regulators of fucoxanthin synthesis in T. pseudonana, and that phloroglucinol affects both pathways. Thus, this study not only characterizes the mechanism by which phloroglucinol promotes fucoxanthin synthesis, but also demonstrates the roles of cis-zeatin and brassinolide in T. pseudonana. IMPORTANCE Here, we demonstrate that phloroglucinol, a growth promoter in higher plants, also increases growth and fucoxanthin synthesis in the microalga Thalassiosira pseudonana, and therefore may have substantial practical application for industrial fucoxanthin production. Phloroglucinol treatment also induced the synthesis of cis-zeatin and brassinolide in T. pseudonana, and the cis-zeatin and brassinolide signaling pathways were implicated in the phloroglucinol-driven increases in T. pseudonana growth and fucoxanthin synthesis. Thus, our work clarified the molecular mechanism of phloroglucinol promoting the growth and fucoxanthin synthesis of Thalassiosira pseudonana, and suggested that cis-zeatin and brassinolide, in addition to phloroglucinol, had potential utility as inducers of increased microalgal fucoxanthin production.
Collapse
|
9
|
Nocera DG. Proton-Coupled Electron Transfer: The Engine of Energy Conversion and Storage. J Am Chem Soc 2022; 144:1069-1081. [PMID: 35023740 DOI: 10.1021/jacs.1c10444] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proton-coupled electron transfer (PCET) underpins energy conversion in chemistry and biology. Four energy systems are described whose discoveries are based on PCET: the water splitting chemistry of the Artificial Leaf, the carbon fixation chemistry of the Bionic Leaf-C, the nitrogen fixation chemistry of the Bionic Leaf-N and the Coordination Chemistry Flow Battery (CCFB). Whereas the Artificial Leaf, Bionic Leaf-C, and Bionic Leaf-N require strong coupling between electron and proton to reduce energetic barriers to enable high energy efficiencies, the CCFB requires complete decoupling of the electron and proton so as to avoid parasitic energy-wasting reactions. The proper design of PCET in these systems facilitates their implementation in the areas of (i) centralized large scale grid storage of electricity and (ii) decentralized energy storage/conversion using only sunlight, air and any water source to produce fuel and food within a sustainable cycle for the biogenic elements of C, N and P.
Collapse
Affiliation(s)
- Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
10
|
Weber JM, Guo Z, Zhang C, Schweidtmann AM, Lapkin AA. Chemical data intelligence for sustainable chemistry. Chem Soc Rev 2021; 50:12013-12036. [PMID: 34520507 DOI: 10.1039/d1cs00477h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study highlights new opportunities for optimal reaction route selection from large chemical databases brought about by the rapid digitalisation of chemical data. The chemical industry requires a transformation towards more sustainable practices, eliminating its dependencies on fossil fuels and limiting its impact on the environment. However, identifying more sustainable process alternatives is, at present, a cumbersome, manual, iterative process, based on chemical intuition and modelling. We give a perspective on methods for automated discovery and assessment of competitive sustainable reaction routes based on renewable or waste feedstocks. Three key areas of transition are outlined and reviewed based on their state-of-the-art as well as bottlenecks: (i) data, (ii) evaluation metrics, and (iii) decision-making. We elucidate their synergies and interfaces since only together these areas can bring about the most benefit. The field of chemical data intelligence offers the opportunity to identify the inherently more sustainable reaction pathways and to identify opportunities for a circular chemical economy. Our review shows that at present the field of data brings about most bottlenecks, such as data completion and data linkage, but also offers the principal opportunity for advancement.
Collapse
Affiliation(s)
- Jana M Weber
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, UK. .,Chemical Data Intelligence (CDI) Pte Ltd, Robinson Road, #02-00, 068898, Singapore
| | - Zhen Guo
- Chemical Data Intelligence (CDI) Pte Ltd, Robinson Road, #02-00, 068898, Singapore.,Cambridge Centre for Advanced Research and Education in Singapore, CARES Ltd. 1 CREATE Way, CREATE Tower #05-05, 138602, Singapore
| | - Chonghuan Zhang
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Artur M Schweidtmann
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Alexei A Lapkin
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, UK. .,Chemical Data Intelligence (CDI) Pte Ltd, Robinson Road, #02-00, 068898, Singapore.,Cambridge Centre for Advanced Research and Education in Singapore, CARES Ltd. 1 CREATE Way, CREATE Tower #05-05, 138602, Singapore
| |
Collapse
|
11
|
Fadlallah S, Flourat AL, Mouterde LMM, Annatelli M, Peru AAM, Gallos A, Aricò F, Allais F. Sustainable Hyperbranched Functional Materials via Green Polymerization of Readily Accessible Levoglucosenone-Derived Monomers. Macromol Rapid Commun 2021; 42:e2100284. [PMID: 34347323 DOI: 10.1002/marc.202100284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/19/2021] [Indexed: 01/20/2023]
Abstract
The homopolymerization in basic conditions of the recently reported bis(γ-lactone), 2H-HBO-HBO, is herein described for the first time. The solvent-free polymerization of this pentafunctional levoglucosenone (LGO) derivative affords fully renewable poly(vinyl-ether lactone) copolymers with a highly hyperbranched structure. This investigation stems from the polycondensation trials between 2H-HBO-HBO and di(methyl carbonate) isosorbide (DCI) that fails to give the anticipated polycarbonates. Such unexpected behavior is ascribed to the higher reactivity of the 2H-HBO-HBO hydroxy groups toward its α,β-conjugated endocyclic C═C, rather than the DCI methylcarbonate moieties. The different mechanistic scenarios involved in 2H-HBO-HBO homopolymerization are addressed and a possible structure of poly(2H-HBO-HBO) is suggested. Furthermore, the readily accessible (S)-γ-hydroxymethyl-α,β-butenolide (HBO) is also polymerized for the first time at a relatively large scale, without any prior modification, resulting in a new hyperbranched polymer with an environmental factor (E factor) ≈0. These new HBO-based polymers have a great potential for industrial-scale production due to their interesting properties and easy preparation via a low-cost, green, and efficient process.
Collapse
Affiliation(s)
- Sami Fadlallah
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3, Rue des Rouges-Terres, Pomacle, 51110, France
| | - Amandine L Flourat
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3, Rue des Rouges-Terres, Pomacle, 51110, France
| | - Louis M M Mouterde
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3, Rue des Rouges-Terres, Pomacle, 51110, France
| | - Mattia Annatelli
- Department of Environmental Science, Informatics and Statistics, University Ca'Foscari of Venice, Via Torino155, Venezia Mestre, Venice, 30172, Italy
| | - Aurélien A M Peru
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3, Rue des Rouges-Terres, Pomacle, 51110, France
| | - Antoine Gallos
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3, Rue des Rouges-Terres, Pomacle, 51110, France
| | - Fabio Aricò
- Department of Environmental Science, Informatics and Statistics, University Ca'Foscari of Venice, Via Torino155, Venezia Mestre, Venice, 30172, Italy
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3, Rue des Rouges-Terres, Pomacle, 51110, France
| |
Collapse
|
12
|
Peng Z, Zhang B, Hu G, Du K, Xie X, Wu K, Wu J, Gong Y, Shu Y, Cao Y. Green and efficient synthesis of micro-nano LiMn0.8Fe0.2PO4/C composite with high-rate performance for Li-ion battery. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Egorova KS, Galushko AS, Ananikov VP. Introducing tox‐Profiles of Chemical Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ksenia S. Egorova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky prospect 47 Moscow 119991 Russia
| | - Alexey S. Galushko
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky prospect 47 Moscow 119991 Russia
| | - Valentine P. Ananikov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky prospect 47 Moscow 119991 Russia
| |
Collapse
|
14
|
Egorova KS, Galushko AS, Ananikov VP. Introducing tox-Profiles of Chemical Reactions. Angew Chem Int Ed Engl 2020; 59:22296-22305. [PMID: 33002316 DOI: 10.1002/anie.202003082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/19/2020] [Indexed: 12/23/2022]
Abstract
In this Essay, we present a critical analysis of two common practices in modern chemistry-that is, of using speculations about the "greenness" and "nontoxicity" of developed synthesis procedures and of a priori labelling various compounds derived from natural sources as being environmentally safe. We note that every organic molecule that contains functional groups should be biologically active. Thus, analysis of the particular greenness and the potential environmental impact of a given chemical process should account for the biological activity of all its components in a measureable (rather than empirical) way. We highlight the necessity of clarifying discussions on biological activity and toxicity and propose possible ways of introducing tox-Profiles as a reliable overview of the overall toxicity of chemical reactions.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia
| | - Alexey S Galushko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia
| |
Collapse
|
15
|
Qin Y, Martindale BCM, Sun R, Rieth AJ, Nocera DG. Solar-driven tandem photoredox nickel-catalysed cross-coupling using modified carbon nitride. Chem Sci 2020; 11:7456-7461. [PMID: 34123028 PMCID: PMC8159281 DOI: 10.1039/d0sc02131h] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Nickel-catalysed aryl amination and etherification are driven with sunlight using a surface-modified carbon nitride to extend the absorption of the photocatalyst into a wide range of the visible region. In contrast to traditional homogeneous photochemical methodologies, the lower cost and higher recyclability of the metal-free photocatalyst, along with the use of readily available sunlight, provides an efficient and sustainable approach to promote nickel-catalysed cross-couplings.
Collapse
Affiliation(s)
- Yangzhong Qin
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Benjamin C M Martindale
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Rui Sun
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Adam J Rieth
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| |
Collapse
|
16
|
Sun R, Qin Y, Nocera DG. General Paradigm in Photoredox Nickel‐Catalyzed Cross‐Coupling Allows for Light‐Free Access to Reactivity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916398] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rui Sun
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Yangzhong Qin
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| |
Collapse
|
17
|
Sun R, Qin Y, Nocera DG. General Paradigm in Photoredox Nickel‐Catalyzed Cross‐Coupling Allows for Light‐Free Access to Reactivity. Angew Chem Int Ed Engl 2020; 59:9527-9533. [DOI: 10.1002/anie.201916398] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Sun
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Yangzhong Qin
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| |
Collapse
|
18
|
Rodygin KS, Vikenteva YA, Ananikov VP. Calcium-Based Sustainable Chemical Technologies for Total Carbon Recycling. CHEMSUSCHEM 2019; 12:1483-1516. [PMID: 30938099 DOI: 10.1002/cssc.201802412] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/18/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Calcium carbide, a stable solid compound composed of two atoms of carbon and one of calcium, has proven its effectiveness in chemical synthesis, due to the safety and convenience of handling the C≡C acetylenic units. The areas of CaC2 application are very diverse, and the development of calcium-mediated approaches resolves several important challenges. This Review aims to discuss the laboratory chemistry of calcium carbide, and to go beyond its frontiers to organic synthesis, life sciences, materials and construction, carbon dioxide capturing, alloy manufacturing, and agriculture. The recyclability of calcium carbide and the availability of large-scale industrial production facilities, as well as the future possibility of fossil-resource-independent manufacturing, position this compound as a key chemical platform for sustainable development. Easy regeneration and reuse of the carbide highlight calcium-based sustainable chemical technologies as promising instruments for total carbon recycling.
Collapse
Affiliation(s)
- Konstantin S Rodygin
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Yulia A Vikenteva
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
19
|
Sun R, Qin Y, Ruccolo S, Schnedermann C, Costentin C, Nocera DG. Elucidation of a Redox-Mediated Reaction Cycle for Nickel-Catalyzed Cross Coupling. J Am Chem Soc 2018; 141:89-93. [DOI: 10.1021/jacs.8b11262] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rui Sun
- Department of Chemistry and Chemical Biology, Harvard University
, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Yangzhong Qin
- Department of Chemistry and Chemical Biology, Harvard University
, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Serge Ruccolo
- Department of Chemistry and Chemical Biology, Harvard University
, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Christoph Schnedermann
- Department of Chemistry and Chemical Biology, Harvard University
, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Cyrille Costentin
- Laboratoire d’Electrochimie Moléculaire, Unité Mixte de Recherche Université − CNRS No. 7591, Bâtiment Lavoisier, Université Paris Diderot, Sorbonne Paris Cité
, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University
, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
20
|
Ruccolo S, Qin Y, Schnedermann C, Nocera DG. General Strategy for Improving the Quantum Efficiency of Photoredox Hydroamidation Catalysis. J Am Chem Soc 2018; 140:14926-14937. [DOI: 10.1021/jacs.8b09109] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Serge Ruccolo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138−2902, United States
| | - Yangzhong Qin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138−2902, United States
| | - Christoph Schnedermann
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138−2902, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138−2902, United States
| |
Collapse
|
21
|
Kaiser D, Yang J, Wuitschik G. Using Data Analysis To Evaluate and Compare Chemical Syntheses. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dustin Kaiser
- F. Hoffmann-La Roche Ltd., Process Chemistry & Catalysis, Small Molecules Technical Development, Grenzacherstrasse, Basel 4070, Switzerland
| | - Jianbo Yang
- Asymchem Inc. No. 71, 7th Avenue TEDA, Tianjin 300457, P.R. China
| | - Georg Wuitschik
- F. Hoffmann-La Roche Ltd., Process Chemistry & Catalysis, Small Molecules Technical Development, Grenzacherstrasse, Basel 4070, Switzerland
| |
Collapse
|
22
|
Bai H, Sun R, Chen X, Yang L, Huang C. Microwave-Assisted, Solvent-Free, Three-Component Domino Protocol: Efficient Synthesis of Polysubstituted-2-Pyridone Derivatives. ChemistrySelect 2018. [DOI: 10.1002/slct.201800606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hairui Bai
- Engineering Research Center of Biopolymer Functional Materials of Yunnan; School of Chemistry and Environment; Yunnan Minzu University, Kunming; 650500, P. R. China
| | - Rongrong Sun
- Engineering Research Center of Biopolymer Functional Materials of Yunnan; School of Chemistry and Environment; Yunnan Minzu University, Kunming; 650500, P. R. China
| | - Xuebing Chen
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan; School of Science; Honghe University, Mengzi; 661100, P. R. China
| | - Lijuan Yang
- Engineering Research Center of Biopolymer Functional Materials of Yunnan; School of Chemistry and Environment; Yunnan Minzu University, Kunming; 650500, P. R. China
| | - Chao Huang
- Engineering Research Center of Biopolymer Functional Materials of Yunnan; School of Chemistry and Environment; Yunnan Minzu University, Kunming; 650500, P. R. China
| |
Collapse
|
23
|
Clarke CJ, Tu WC, Levers O, Bröhl A, Hallett JP. Green and Sustainable Solvents in Chemical Processes. Chem Rev 2018; 118:747-800. [DOI: 10.1021/acs.chemrev.7b00571] [Citation(s) in RCA: 897] [Impact Index Per Article: 149.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Coby J. Clarke
- Department of Chemical Engineering, Imperial College, London SW7 2AZ, United Kingdom
| | - Wei-Chien Tu
- Department of Chemical Engineering, Imperial College, London SW7 2AZ, United Kingdom
| | - Oliver Levers
- Department of Chemical Engineering, Imperial College, London SW7 2AZ, United Kingdom
| | - Andreas Bröhl
- Department of Chemical Engineering, Imperial College, London SW7 2AZ, United Kingdom
| | - Jason P. Hallett
- Department of Chemical Engineering, Imperial College, London SW7 2AZ, United Kingdom
| |
Collapse
|
24
|
|
25
|
Verduyckt J, De Vos DE. Controlled defunctionalisation of biobased organic acids. Chem Commun (Camb) 2017; 53:5682-5693. [DOI: 10.1039/c7cc01380a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Considerable progress has been made in the field of hydrogenation, decarboxylation and deamination of both citric and amino acids to valuable chemicals, which is why they should be (re)considered as valid biobased platform chemicals.
Collapse
Affiliation(s)
- Jasper Verduyckt
- Centre for Surface Chemistry and Catalysis
- Department of Microbial and Molecular Systems
- KU Leuven – University of Leuven
- Leuven Chem&Tech
- 3001 Heverlee
| | - Dirk E. De Vos
- Centre for Surface Chemistry and Catalysis
- Department of Microbial and Molecular Systems
- KU Leuven – University of Leuven
- Leuven Chem&Tech
- 3001 Heverlee
| |
Collapse
|
26
|
Catalytic aerobic oxidation of lignin-derived bio-oils using oxovanadium and copper complex catalysts and ionic liquids. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.07.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Rühling A, Rakers L, Glorius F. Long Alkyl Chain NHC Palladium Complexes for the Amination and Hydrodehalogenation of Aryl Chlorides in Lipophilic Media. ChemCatChem 2016. [DOI: 10.1002/cctc.201600963] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Andreas Rühling
- Westfälische Wilhelms-Universität Münster; Organisch-Chemisches Institut; Corrensstraße 40 48419 Münster Germany
| | - Lena Rakers
- Westfälische Wilhelms-Universität Münster; Organisch-Chemisches Institut; Corrensstraße 40 48419 Münster Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster; Organisch-Chemisches Institut; Corrensstraße 40 48419 Münster Germany
| |
Collapse
|
28
|
Javanshir S, Saghiran Pourshiri N, Dolatkhah Z, Farhadnia M. Caspian Isinglass, a versatile and sustainable biocatalyst for domino synthesis of spirooxindoles and spiroacenaphthylenes in water. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1779-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Vanden Eynde JJ. How Efficient Is My (Medicinal) Chemistry? Pharmaceuticals (Basel) 2016; 9:ph9020026. [PMID: 27196914 PMCID: PMC4932544 DOI: 10.3390/ph9020026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/03/2016] [Accepted: 05/10/2016] [Indexed: 11/27/2022] Open
Abstract
“Greening” a chemical transformation is not about only changing the nature of a solvent or decreasing the reaction temperature. There are metrics enabling a critical quantification of the efficiency of an experimental protocol. Some of them are applied to different sequences for the preparation of paracetamol in order to understand their performance parameters and elucidate pathways for improvement.
Collapse
|
30
|
Abstract
Solvents are widely recognized to be of great environmental concern. The reduction of their use is one of the most important aims of green chemistry. In addition to this, the appropriate selection of solvent for a process can greatly improve the sustainability of a chemical production process. There has also been extensive research into the application of so-called green solvents, such as ionic liquids and supercritical fluids. However, most examples of solvent technologies that give improved sustainability come from the application of well-established solvents. It is also apparent that the successful implementation of environmentally sustainable processes must be accompanied by improvements in commercial performance.
Collapse
Affiliation(s)
- Tom Welton
- Department of Chemistry , Imperial College London , London SW7 2AZ, UK
| |
Collapse
|
31
|
Marelli E, Chartoire A, Le Duc G, Nolan SP. Arylation of Amines in Alkane Solvents by using Well-Defined Palladium-N-Heterocyclic Carbene Complexes. ChemCatChem 2015. [DOI: 10.1002/cctc.201500841] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Enrico Marelli
- EaStChem School of Chemistry; University of St Andrews; North Haugh St Andrews Fife KY16 9ST UK
| | - Anthony Chartoire
- EaStChem School of Chemistry; University of St Andrews; North Haugh St Andrews Fife KY16 9ST UK
| | - Gaetan Le Duc
- EaStChem School of Chemistry; University of St Andrews; North Haugh St Andrews Fife KY16 9ST UK
| | - Steven P. Nolan
- Chemistry Department; College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| |
Collapse
|
32
|
Holtmann D, Fraaije MW, Arends IWCE, Opperman DJ, Hollmann F. The taming of oxygen: biocatalytic oxyfunctionalisations. Chem Commun (Camb) 2015; 50:13180-200. [PMID: 24902635 DOI: 10.1039/c3cc49747j] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The scope and limitations of oxygenases as catalysts for preparative organic synthesis is discussed.
Collapse
Affiliation(s)
- Dirk Holtmann
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
33
|
Amara Z, Bellamy JFB, Horvath R, Miller SJ, Beeby A, Burgard A, Rossen K, Poliakoff M, George MW. Applying green chemistry to the photochemical route to artemisinin. Nat Chem 2015; 7:489-95. [DOI: 10.1038/nchem.2261] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/09/2015] [Indexed: 12/26/2022]
|
34
|
Pascanu V, Hansen PR, Bermejo Gómez A, Ayats C, Platero-Prats AE, Johansson MJ, Pericàs MÀ, Martín-Matute B. Highly functionalized biaryls via Suzuki-Miyaura cross-coupling catalyzed by Pd@MOF under batch and continuous flow regimes. CHEMSUSCHEM 2015; 8:123-130. [PMID: 25421122 DOI: 10.1002/cssc.201402858] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 06/04/2023]
Abstract
A diverse set of more than 40 highly functionalized biaryls was synthesized successfully through the Suzuki-Miyaura cross-coupling reaction catalyzed by Pd nanoparticles supported in a functionalized mesoporous MOF (8 wt % Pd@MIL-101(Cr)-NH2 ). This could be achieved under some of the mildest conditions reported to date and a strong control over the leaching of metallic species could be maintained, despite the presence of diverse functional groups and/or several heteroatoms. Some of the targeted molecules are important intermediates in the synthesis of pharmaceuticals and we clearly exemplify the versatility of this catalytic system, which affords better yields than currently existing commercial procedures. Most importantly, Pd@MIL-101-NH2 was packed in a micro-flow reactor, which represents the first report of metallic nanoparticles supported on MOFs employed in flow chemistry for catalytic applications. A small library of 11 isolated compounds was created in a continuous experiment without replacing the catalyst, demonstrating the potential of the catalyst for large-scale applications.
Collapse
Affiliation(s)
- Vlad Pascanu
- Department of Organic Chemistry and Berzelii Center EXSELENT, Arrhenius Laboratory, Stockholm University, Stockholm, 106 91 (Sweden)
| | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Pascanu V, Bermejo Gómez A, Ayats C, Platero-Prats AE, Carson F, Su J, Yao Q, Pericàs MÀ, Zou X, Martín-Matute B. Double-Supported Silica-Metal–Organic Framework Palladium Nanocatalyst for the Aerobic Oxidation of Alcohols under Batch and Continuous Flow Regimes. ACS Catal 2014. [DOI: 10.1021/cs501573c] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | | | - Carles Ayats
- Institute of Chemical Research of Catalonia, E-43007 Tarragona, Spain
| | | | | | | | | | - Miquel À. Pericàs
- Institute of Chemical Research of Catalonia, E-43007 Tarragona, Spain
- Department
of Organic Chemistry, University of Barcelona, E-08028 Barcelona, Spain
| | | | | |
Collapse
|
37
|
|
38
|
|
39
|
Besson M, Gallezot P, Pinel C. Conversion of biomass into chemicals over metal catalysts. Chem Rev 2013; 114:1827-70. [PMID: 24083630 DOI: 10.1021/cr4002269] [Citation(s) in RCA: 846] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michèle Besson
- Institut de Recherches sur la Catalyse et l'Environnement (IRCELYON), Université de Lyon/CNRS , 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | | | | |
Collapse
|
40
|
He M, Sun Y, Han B. Grüne Kohlenstoffwissenschaft: eine wissenschaftliche Grundlage für das Verknüpfen von Verarbeitung, Nutzung und Recycling der Kohlenstoffressourcen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209384] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
He M, Sun Y, Han B. Green Carbon Science: Scientific Basis for Integrating Carbon Resource Processing, Utilization, and Recycling. Angew Chem Int Ed Engl 2013; 52:9620-33. [DOI: 10.1002/anie.201209384] [Citation(s) in RCA: 627] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Indexed: 11/09/2022]
|
42
|
Andraos J. Safety/Hazard Indices: Completion of a Unified Suite of Metrics for the Assessment of “Greenness” for Chemical Reactions and Synthesis Plans. Org Process Res Dev 2013. [DOI: 10.1021/op300352w] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John Andraos
- CareerChem, 504-1129
Don Mills Road, Don Mills, Ontario M3B 2W4, Canada
| |
Collapse
|
43
|
Escribà M, Eras J, Balcells M, Canela-Garayoa R. H3PO4/metal halide induces a one-pot solvent-free esterification–halogenation of glycerol and diols. RSC Adv 2013. [DOI: 10.1039/c3ra41715h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
44
|
Andraos J. Inclusion of Environmental Impact Parameters in Radial Pentagon Material Efficiency Metrics Analysis: Using Benign Indices as a Step Towards a Complete Assessment of “Greenness” for Chemical Reactions and Synthesis Plans. Org Process Res Dev 2012. [DOI: 10.1021/op3001405] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John Andraos
- CareerChem, 504-1129 Don Mills Road, Don Mills, Ontario M3B 2W4, Canada
| |
Collapse
|
45
|
Ruiz-Mercado GJ, Smith RL, Gonzalez MA. Sustainability Indicators for Chemical Processes: I. Taxonomy. Ind Eng Chem Res 2012. [DOI: 10.1021/ie102116e] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gerardo J. Ruiz-Mercado
- ORISE Research Fellow, U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Raymond L. Smith
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Michael A. Gonzalez
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| |
Collapse
|
46
|
Ruiz-Mercado GJ, Smith RL, Gonzalez MA. Sustainability Indicators for Chemical Processes: II. Data Needs. Ind Eng Chem Res 2012. [DOI: 10.1021/ie200755k] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gerardo J. Ruiz-Mercado
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Raymond L. Smith
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Michael A. Gonzalez
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| |
Collapse
|
47
|
|
48
|
Augé J, Scherrmann MC. Determination of the global material economy (GME) of synthesis sequences—a green chemistry metric to evaluate the greenness of products. NEW J CHEM 2012. [DOI: 10.1039/c2nj20998e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Jiménez-González C, Constable DJC, Ponder CS. Evaluating the “Greenness” of chemical processes and products in the pharmaceutical industry—a green metrics primer. Chem Soc Rev 2012; 41:1485-98. [DOI: 10.1039/c1cs15215g] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Eissen M, Brinkmann T, Klein M, Schwartze B, Weiß M. Einsatz von Kennzahlen in frühen Phasen der Syntheseentwicklung - Zwei Fallstudien. CHEM-ING-TECH 2011. [DOI: 10.1002/cite.201100114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|