1
|
Wei H, Smith JP. Machine Learning for Deconvolution and Segmentation of Hyperspectral Imaging Data from Biopharmaceutical Resins. Mol Pharm 2024; 21:5565-5576. [PMID: 39288012 DOI: 10.1021/acs.molpharmaceut.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Biopharmaceutical resins are pivotal inert matrices used across industry and academia, playing crucial roles in a myriad of applications. For biopharmaceutical process research and development applications, a deep understanding of the physical and chemical properties of the resin itself is frequently required, including for drug purification, drug delivery, and immobilized biocatalysis. Nevertheless, the prevailing methodologies currently employed for elucidating these important aspects of biopharmaceutical resins are often lacking, frequently require significant sample alteration, are destructive or ionizing in nature, and may not adequately provide representative information. In this work, we propose the use of unsupervised machine learning technologies, in the form of both non-negative matrix factorization (NMF) and k-means segmentation, in conjugation with Raman hyperspectral imaging to rapidly elucidate the molecular and spatial properties of biopharmaceutical resins. Leveraging our proposed technology, we offer a new approach to comprehensively understanding important resin-based systems for application across biopharmaceuticals and beyond. Specifically, focusing herein on a representative resin widely utilized across the industry (i.e., Immobead 150P), our findings showcase the ability of our machine learning-based technology to molecularly identify and spatially resolve all chemical species present. Further, we offer a comprehensive evaluation of optimal excitation for hyperspectral imaging data collection, demonstrating results across 532, 638, and 785 nm excitation. In all cases, our proposed technology deconvoluted, both spatially and spectrally, resin and glass substrates via NMF. After NMF deconvolution, image segmentation was also successfully accomplished in all data sets via k-means clustering. To the best of our knowledge, this is the first report utilizing the combination of two unsupervised machine learning methodologies, combining NMF and k-means, for the rapid deconvolution and segmentation of biopharmaceutical resins. As such, we offer a powerful new data-rich experimentation tool for application across multidisciplinary fields for a deeper understanding of resins.
Collapse
Affiliation(s)
- Hong Wei
- Process Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Joseph P Smith
- Process Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
2
|
Nigro M, Sánchez-Moreno I, Benito-Arenas R, Valino AL, Iribarren AM, Veiga N, García-Junceda E, Lewkowicz ES. Synthesis of Chiral Acyclic Pyrimidine Nucleoside Analogues from DHAP-Dependent Aldolases. Biomolecules 2024; 14:750. [PMID: 39062466 PMCID: PMC11274987 DOI: 10.3390/biom14070750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Dihydroxyacetone phosphate (DHAP)-dependent aldolases catalyze the aldol addition of DHAP to a variety of aldehydes and generate compounds with two stereocenters. This reaction is useful to synthesize chiral acyclic nucleosides, which constitute a well-known class of antiviral drugs currently used. In such compounds, the chirality of the aliphatic chain, which mimics the open pentose residue, is crucial for activity. In this work, three DHAP-dependent aldolases: fructose-1,6-biphosphate aldolase from rabbit muscle, rhanmulose-1-phosphate aldolase from Thermotoga maritima, and fuculose-1-phosphate aldolase from Escherichia coli, were used as biocatalysts. Aldehyde derivatives of thymine and cytosine were used as acceptor substrates, generating new acyclic nucleoside analogues containing two new stereocenters with conversion yields between 70% and 90%. Moreover, structural analyses by molecular docking were carried out to gain insights into the diasteromeric excess observed.
Collapse
Affiliation(s)
- Mariano Nigro
- Laboratorio de Biotransformaciones y Química de Ácidos Nucleicos, Universidad Nacional de Quilmes, Bernal 1876, Argentina; (M.N.); (A.L.V.); (A.M.I.)
| | - Israél Sánchez-Moreno
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain; (I.S.-M.); (R.B.-A.)
| | - Raúl Benito-Arenas
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain; (I.S.-M.); (R.B.-A.)
| | - Ana L. Valino
- Laboratorio de Biotransformaciones y Química de Ácidos Nucleicos, Universidad Nacional de Quilmes, Bernal 1876, Argentina; (M.N.); (A.L.V.); (A.M.I.)
| | - Adolfo M. Iribarren
- Laboratorio de Biotransformaciones y Química de Ácidos Nucleicos, Universidad Nacional de Quilmes, Bernal 1876, Argentina; (M.N.); (A.L.V.); (A.M.I.)
| | - Nicolás Veiga
- Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República (UdelaR), Av. Gral. Flores 2124, Montevideo 11800, Uruguay;
| | - Eduardo García-Junceda
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain; (I.S.-M.); (R.B.-A.)
| | - Elizabeth S. Lewkowicz
- Laboratorio de Biotransformaciones y Química de Ácidos Nucleicos, Universidad Nacional de Quilmes, Bernal 1876, Argentina; (M.N.); (A.L.V.); (A.M.I.)
| |
Collapse
|
3
|
Křen V, Kroutil W, Hall M. A Career in Biocatalysis: Kurt Faber. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vladimir Křen
- Institute of Microbiology, Czech Academy of Sciences, Laboratory of Biotransformation, 14220 Prague, Czech Republic
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed, University of Graz, 8010 Graz, Austria
| | - Mélanie Hall
- Institute of Chemistry, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
4
|
Abstract
Biocatalysis has an enormous impact on chemical synthesis. The waves in which biocatalysis has developed, and in doing so changed our perception of what organic chemistry is, were reviewed 20 and 10 years ago. Here we review the consequences of these waves of development. Nowadays, hydrolases are widely used on an industrial scale for the benign synthesis of commodity and bulk chemicals and are fully developed. In addition, further enzyme classes are gaining ever increasing interest. Particularly, enzymes catalysing selective C-C-bond formation reactions and enzymes catalysing selective oxidation and reduction reactions are solving long-standing synthetic challenges in organic chemistry. Combined efforts from molecular biology, systems biology, organic chemistry and chemical engineering will establish a whole new toolbox for chemistry. Recent developments are critically reviewed.
Collapse
Affiliation(s)
- Ulf Hanefeld
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Frank Hollmann
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| |
Collapse
|
5
|
Coloma J, Guiavarc'h Y, Hagedoorn PL, Hanefeld U. Immobilisation and flow chemistry: tools for implementing biocatalysis. Chem Commun (Camb) 2021; 57:11416-11428. [PMID: 34636371 DOI: 10.1039/d1cc04315c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The merger of enzyme immobilisation and flow chemistry has attracted the attention of the scientific community during recent years. Immobilisation enhances enzyme stability and enables recycling, flow chemistry allows process intensification. Their combination is desirable for the development of more efficient and environmentally friendly biocatalytic processes. In this feature article, we aim to point out important metrics for successful enzyme immobilisation and for reporting flow biocatalytic processes. Relevant examples of immobilised enzymes used in flow systems in organic, biphasic and aqueous systems are discussed. Finally, we describe recent developments to address the cofactor recycling hurdle.
Collapse
Affiliation(s)
- José Coloma
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, The Netherlands. .,Universidad Laica Eloy Alfaro de Manabí, Avenida Circunvalación s/n, P. O. Box 13-05-2732, Manta, Ecuador
| | - Yann Guiavarc'h
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, The Netherlands. .,Laboratory Reactions and Process Engineering, University of Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | - Peter-Leon Hagedoorn
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Ulf Hanefeld
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
6
|
Gambacorta G, Sharley JS, Baxendale IR. A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein J Org Chem 2021; 17:1181-1312. [PMID: 34136010 PMCID: PMC8182698 DOI: 10.3762/bjoc.17.90] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Due to their intrinsic physical properties, which includes being able to perform as volatile liquids at room and biological temperatures, fragrance ingredients/intermediates make ideal candidates for continuous-flow manufacturing. This review highlights the potential crossover between a multibillion dollar industry and the flourishing sub-field of flow chemistry evolving within the discipline of organic synthesis. This is illustrated through selected examples of industrially important transformations specific to the fragrances and flavours industry and by highlighting the advantages of conducting these transformations by using a flow approach. This review is designed to be a compendium of techniques and apparatus already published in the chemical and engineering literature which would constitute a known solution or inspiration for commonly encountered procedures in the manufacture of fragrance and flavour chemicals.
Collapse
Affiliation(s)
- Guido Gambacorta
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - James S Sharley
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - Ian R Baxendale
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
7
|
Plž M, Petrovičová T, Rebroš M. Semi-Continuous Flow Biocatalysis with Affinity Co-Immobilized Ketoreductase and Glucose Dehydrogenase. Molecules 2020; 25:molecules25184278. [PMID: 32961948 PMCID: PMC7570937 DOI: 10.3390/molecules25184278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The co-immobilization of ketoreductase (KRED) and glucose dehydrogenase (GDH) on highly cross-linked agarose (sepharose) was studied. Immobilization of these two enzymes was performed via affinity interaction between His-tagged enzymes (six histidine residues on the N-terminus of the protein) and agarose matrix charged with nickel (Ni2+ ions). Immobilized enzymes were applied in a semicontinuous flow reactor to convert the model substrate; α-hydroxy ketone. A series of biotransformation reactions with a substrate conversion of >95% were performed. Immobilization reduced the requirement for cofactor (NADP+) and allowed the use of higher substrate concentration in comparison with free enzymes. The immobilized system was also tested on bulky ketones and a significant enhancement in comparison with free enzymes was achieved.
Collapse
|
8
|
Affiliation(s)
- Romain Morodo
- Center for Integrated Technology and Organic Synthesis MolSys Research Unit University of Liège B‐4000 Liège (Sart Tilman) Belgium
| | - Pauline Bianchi
- Center for Integrated Technology and Organic Synthesis MolSys Research Unit University of Liège B‐4000 Liège (Sart Tilman) Belgium
| | - Jean‐Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis MolSys Research Unit University of Liège B‐4000 Liège (Sart Tilman) Belgium
| |
Collapse
|
9
|
Finnigan W, Citoler J, Cosgrove SC, Turner NJ. Rapid Model-Based Optimization of a Two-Enzyme System for Continuous Reductive Amination in Flow. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- William Finnigan
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Joan Citoler
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sebastian C. Cosgrove
- Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nicholas J. Turner
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
10
|
Tasnádi G, Staśko M, Ditrich K, Hall M, Faber K. Preparative-Scale Enzymatic Synthesis of rac-Glycerol-1-phosphate from Crude Glycerol Using Acid Phosphatases and Phosphate. CHEMSUSCHEM 2020; 13:1759-1763. [PMID: 31944595 PMCID: PMC7187357 DOI: 10.1002/cssc.201903236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Glycerol is a byproduct of biodiesel production and is generated in large amounts, which has resulted in an increased interest in its valorization. In addition to its use as an energy source directly, the chemical modification of glycerol may result in value-added derivatives. Herein, acid phosphatases employed in the synthetic mode were evaluated for the enzymatic phosphorylation of glycerol. Nonspecific acid phosphatases could tolerate glycerol concentrations up to 80 wt % and pyrophosphate concentrations up to 20 wt % and led to product titers up to 167 g L-1 in a kinetic approach. In the complementary thermodynamic approach, phytases were able to condense glycerol and inorganic monophosphate directly. This unexpected behavior enabled the simple and cost-effective production of rac-glycerol-1-phosphate from crude glycerol obtained from a biodiesel plant. A preparative-scale synthesis on a 100 mL-scale resulted in the production of 16.6 g of rac-glycerol-1-phosphate with a reasonable purity (≈75 %).
Collapse
Affiliation(s)
- Gábor Tasnádi
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
- Austrian Centre of Industrial BiotechnologyPetersgasse 148010GrazAustria
| | - Marcin Staśko
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
- Current address: Opole University of TechnologyFaculty of Mechanical Engineering, 5 Mikołajczyka Street45-271OpolePoland
| | - Klaus Ditrich
- White Biotechnology Research BiocatalysisBASF SECarl-Bosch-Strasse 3867056LudwigshafenGermany
| | - Mélanie Hall
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Kurt Faber
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| |
Collapse
|
11
|
Lukesch M, Tasnádi G, Ditrich K, Hall M, Faber K. Characterization of alkaline phosphatase PhoK from Sphingomonas sp. BSAR-1 for phosphate monoester synthesis and hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140291. [DOI: 10.1016/j.bbapap.2019.140291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
|
12
|
Hartley CJ, Williams CC, Scoble JA, Churches QI, North A, French NG, Nebl T, Coia G, Warden AC, Simpson G, Frazer AR, Jensen CN, Turner NJ, Scott C. Engineered enzymes that retain and regenerate their cofactors enable continuous-flow biocatalysis. Nat Catal 2019. [DOI: 10.1038/s41929-019-0353-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Bloemendal VRLJ, Moons SJ, Heming JJA, Chayoua M, Niesink O, van Hest JCM, Boltje TJ, Rutjes FPJT. Chemoenzymatic Synthesis of Sialic Acid Derivatives Using Immobilized N-Acetylneuraminate Lyase in a Continuous Flow Reactor. Adv Synth Catal 2019; 361:2443-2447. [PMID: 31598119 PMCID: PMC6774325 DOI: 10.1002/adsc.201900146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/01/2019] [Indexed: 12/12/2022]
Abstract
The synthesis of N-acetylneuraminic acid (Neu5Ac) derivatives is drawing more and more attention in glycobiology research because of the important role of sialic acids in e. g. cancer, bacterial, and healthy cells. Chemical preparation of these carbohydrates typically relies on multistep synthetic procedures leading to low overall yields. Herein we report a continuous flow process involving N-acetylneuraminate lyase (NAL) immobilized on Immobead 150P (Immobead-NAL) to prepare Neu5Ac derivatives. Batch experiments with Immobead-NAL showed equal activity as the native enzyme. Moreover, by using a fivefold excess of either N-acetyl-D-mannosamine (ManNAc) or pyruvate the conversion and isolated yield of Neu5Ac were significantly improved. To further increase the efficiency of the process, a flow setup was designed providing a chemoenzymatic entry into a series of N-functionalized Neu5Ac derivatives in conversions of 48-82%, and showing excellent stability over 1 week of continuous use.
Collapse
Affiliation(s)
- Victor R. L. J. Bloemendal
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegen, TheNetherlands
| | - Sam J. Moons
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegen, TheNetherlands
| | - Jurriaan J. A. Heming
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegen, TheNetherlands
| | - Mohamed Chayoua
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegen, TheNetherlands
| | - Olaf Niesink
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegen, TheNetherlands
| | - Jan C. M. van Hest
- Bio-organic chemistryEindhoven University of TechnologyP.O. Box 513 (STO 3.31)5600 MBEindhoven, TheNetherlands
| | - Thomas J. Boltje
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegen, TheNetherlands
| | - Floris P. J. T. Rutjes
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegen, TheNetherlands
| |
Collapse
|
14
|
Žnidaršič‐Plazl P. The Promises and the Challenges of Biotransformations in Microflow. Biotechnol J 2019; 14:e1800580. [DOI: 10.1002/biot.201800580] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/11/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Polona Žnidaršič‐Plazl
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 113, SI‐1000 Ljubljana Slovenia
| |
Collapse
|
15
|
Fraas R, Hübner JF, Diehm J, Faas R, Hausmann R, Franzreb M. A Compartmented Microfluidic Reactor for Protein Modification Via Solid-phase Reactions — Semi-automated Examination of Two PEGylation Routes. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-017-0322-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Thompson MP, Peñafiel I, Cosgrove SC, Turner NJ. Biocatalysis Using Immobilized Enzymes in Continuous Flow for the Synthesis of Fine Chemicals. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00305] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Matthew P. Thompson
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Itziar Peñafiel
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Sebastian C. Cosgrove
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Nicholas J. Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
17
|
Romero-Fernández M, Moreno-Perez S, H Orrego A, Martins de Oliveira S, I Santamaría R, Díaz M, Guisan JM, Rocha-Martin J. Designing continuous flow reaction of xylan hydrolysis for xylooligosaccharides production in packed-bed reactors using xylanase immobilized on methacrylic polymer-based supports. BIORESOURCE TECHNOLOGY 2018; 266:249-258. [PMID: 29982045 DOI: 10.1016/j.biortech.2018.06.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
The present study focuses on the development and optimization of a packed-bed reactor (PBR) for continuous production of xylooligosaccharides (XOS) from xylan. For this purpose, three different methacrylic polymer-based supports (Relizyme R403/S, Purolite P8204F and Purolite P8215F) activated with glyoxyl groups were morphologically characterized and screened for the multipoint covalent immobilization of a xylanase. Based on its physical and mechanical properties, maximum protein loading and thermal stability, Relizyme R403/S was selected to set up a PRB for continuous production of XOS from corncob xylan. The specific productivity for XOS at 10 mL/min flow rate was 3277 gXOS genzyme-1 h-1 with a PBR. This PBR conserved >90% of its initial activity after 120 h of continuous operation.
Collapse
Affiliation(s)
- Maria Romero-Fernández
- Department of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP), CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Sonia Moreno-Perez
- Department of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP), CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain; Pharmacy and Biotechnology Department, School of Biomedical Sciences, Universidad Europea, Madrid, Spain
| | - Alejandro H Orrego
- Department of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP), CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Sandro Martins de Oliveira
- Department of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP), CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Ramón I Santamaría
- Biología Funcional y Genómica (IBFG), Departamento de Microbiología y Genética, CSIC-USAL, Salamanca, Spain
| | - Margarita Díaz
- Biología Funcional y Genómica (IBFG), Departamento de Microbiología y Genética, CSIC-USAL, Salamanca, Spain
| | - Jose M Guisan
- Department of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP), CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP), CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
18
|
Nagy F, Tasnádi G, Balogh‐Weiser D, Bell E, Hall M, Faber K, Poppe L. Smart Nanoparticles for Selective Immobilization of Acid Phosphatases. ChemCatChem 2018; 10:3490-3499. [PMID: 30263083 PMCID: PMC6146910 DOI: 10.1002/cctc.201800405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Indexed: 01/24/2023]
Abstract
An easy to use method combining the selectivity of metal chelate affinity binding with strong covalent linking was developed for immobilization of non-specific acid phosphatases bearing a His-tag from crude cell lysate. Silica nanoparticles were grafted with aminopropyl functions which were partially transformed further with EDTA dianhydride to chelators. The heterofunctionalized nanoparticles charged with Ni2+ as the most appropriate metal ion were applied as support. First, the His-tagged phosphatases were selectively bound to the metal-chelate functions of the support. Then, the enzyme-charged silica nanoparticles were further stabilized by forming a covalent linkage between nucleophilic moieties at the enzyme surface and free amino groups of the support using neopentylglycol diglycidylether as the most effective bifunctional linking agent. The phosphatase biocatalysts obtained by this method exhibited better phosphate transfer activity with a range of alcohols and PPi as phosphate donor in aqueous medium applying batch and continuous-flow modes than the ones immobilized on conventional supports. Furthermore, this novel strategy opens up novel possibility for efficient immobilization of other His-tagged recombinant enzymes.
Collapse
Affiliation(s)
- Flóra Nagy
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - Gábor Tasnádi
- Austrian Centre of Industrial Biotechnology,c/oDepartment of Chemistry, Organic & Bioorganic ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
- Department of Chemistry, Organic & Bioorganic ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Diána Balogh‐Weiser
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - Evelin Bell
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - Mélanie Hall
- Department of Chemistry, Organic & Bioorganic ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Kurt Faber
- Department of Chemistry, Organic & Bioorganic ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - László Poppe
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
- Biocatalysis and Biotransformation Research Center Faculty of Chemistry and Chemical EngineeringBabes-Bolyai University of Cluj-NapocaArany János str. 11400028Cluj-NapocaRomania
| |
Collapse
|
19
|
Li A, Cai L, Chen Z, Wang M, Wang N, Nakanishi H, Gao XD, Li Z. Recent advances in the synthesis of rare sugars using DHAP-dependent aldolases. Carbohydr Res 2017; 452:108-115. [PMID: 29096183 DOI: 10.1016/j.carres.2017.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 01/02/2023]
Abstract
The occurrence rates of non-communicable diseases like obesity, diabetes and hyperlipidemia have increased remarkably due to excessive consumption of a high-energy diet. Rare sugars therefore have become increasingly attractive owing to their unique nutritional properties. In the past two decades, various rare sugars have been successfully prepared guided by the "Izumoring strategy". As a valuable complement to the Izumoring approach, the controllable dihydroxyacetone phosphate (DHAP)-dependent aldolases have generally predictable regio- and stereoselectivity, which makes them powerful tools in C-C bond construction and rare sugar production. However, the main disadvantage for this group of aldolases is their strict substrate specificity toward the donor molecule DHAP, a very expensive and relatively unstable compound. Among the current methods involving DHAP, the one that couples DHAP production from inexpensive starting materials (for instance, glycerol, DL-glycerol 3-phosphate, dihydroxyacetone, and glucose) with aldol condensation appears to be the most promising. This review thus focuses on recent advances in the application of L-rhamnulose-1-phosphate aldolase (RhaD), L-fuculose-1-phosphate aldolase (FucA), and D-fructose-1,6-bisphosphate aldolase (FruA) for rare sugar synthesis in vitro and in vivo, while illustrating strategies for supplying DHAP in efficient and economical ways.
Collapse
Affiliation(s)
- Aimin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Li Cai
- Department of Chemistry, University of South Carolina Lancaster, 476 Hubbard Drive, Lancaster, SC, 29720, USA
| | - Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mayan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
20
|
Flow Bioreactors as Complementary Tools for Biocatalytic Process Intensification. Trends Biotechnol 2017; 36:73-88. [PMID: 29054312 DOI: 10.1016/j.tibtech.2017.09.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
Abstract
Biocatalysis has widened its scope and relevance since new molecular tools, including improved expression systems for proteins, protein and metabolic engineering, and rational techniques for immobilization, have become available. However, applications are still sometimes hampered by low productivity and difficulties in scaling up. A practical and reasonable step to improve the performances of biocatalysts (including both enzymes and whole-cell systems) is to use them in flow reactors. This review describes the state of the art on the design and use of biocatalysis in flow reactors. The encouraging successes of this enabling technology are critically discussed, highlighting new opportunities, problems to be solved and technological advances.
Collapse
|
21
|
Contente ML, Dall'Oglio F, Tamborini L, Molinari F, Paradisi F. Highly Efficient Oxidation of Amines to Aldehydes with Flow-based Biocatalysis. ChemCatChem 2017. [DOI: 10.1002/cctc.201701147] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martina L. Contente
- School of Chemistry; University of Nottingham; University Park Nottingham NG7 2RD UK
- UCD School of Chemistry; University College Dublin; Belfield Dublin 4 Ireland
| | - Federica Dall'Oglio
- Department of Pharmaceutical Sciences; DISFARM; University of Milan; Via Mangiagalli 25 20133 Milan Italy
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences; DISFARM; University of Milan; Via Mangiagalli 25 20133 Milan Italy
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Science, DeFENS; University of Milan; via Mangiagalli 25 20133 Milan Italy
| | - Francesca Paradisi
- School of Chemistry; University of Nottingham; University Park Nottingham NG7 2RD UK
- UCD School of Chemistry; University College Dublin; Belfield Dublin 4 Ireland
| |
Collapse
|
22
|
Affiliation(s)
- Roger A. Sheldon
- Molecular
Sciences Institute, School of Chemistry, University of Witwatersrand, Johannesburg, PO Wits 2050, South Africa
- Department
of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - John M. Woodley
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
23
|
Tasnádi G, Zechner M, Hall M, Baldenius K, Ditrich K, Faber K. Investigation of acid phosphatase variants for the synthesis of phosphate monoesters. Biotechnol Bioeng 2017; 114:2187-2195. [DOI: 10.1002/bit.26352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/18/2017] [Accepted: 06/05/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Gábor Tasnádi
- Austrian Centre of Industrial Biotechnology, c/o
- Department of Chemistry; Organic & Bioorganic Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Michaela Zechner
- Department of Chemistry; Organic & Bioorganic Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Mélanie Hall
- Department of Chemistry; Organic & Bioorganic Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Kai Baldenius
- White Biotechnology Research Biocatalysis; BASF SE; Ludwigshafen 67056 Germany
| | - Klaus Ditrich
- White Biotechnology Research Biocatalysis; BASF SE; Ludwigshafen 67056 Germany
| | - Kurt Faber
- Department of Chemistry; Organic & Bioorganic Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
24
|
Schrittwieser JH, Velikogne S, Hall M, Kroutil W. Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules. Chem Rev 2017; 118:270-348. [DOI: 10.1021/acs.chemrev.7b00033] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Joerg H. Schrittwieser
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Stefan Velikogne
- ACIB
GmbH, Department of Chemistry, University of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Mélanie Hall
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
- ACIB
GmbH, Department of Chemistry, University of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| |
Collapse
|
25
|
Gruber P, Marques MPC, O'Sullivan B, Baganz F, Wohlgemuth R, Szita N. Conscious coupling: The challenges and opportunities of cascading enzymatic microreactors. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Pia Gruber
- Department of Biochemical Engineering; University College London; WC1H 0AH United Kingdom
| | - Marco P. C. Marques
- Department of Biochemical Engineering; University College London; WC1H 0AH United Kingdom
| | - Brian O'Sullivan
- Department of Biochemical Engineering; University College London; WC1H 0AH United Kingdom
| | - Frank Baganz
- Department of Biochemical Engineering; University College London; WC1H 0AH United Kingdom
| | | | - Nicolas Szita
- Department of Biochemical Engineering; University College London; WC1H 0AH United Kingdom
| |
Collapse
|
26
|
Dall'Oglio F, Contente ML, Conti P, Molinari F, Monfredi D, Pinto A, Romano D, Ubiali D, Tamborini L, Serra I. Flow-based stereoselective reduction of ketones using an immobilized ketoreductase/glucose dehydrogenase mixed bed system. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.01.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
27
|
Tasnádi G, Hall M, Baldenius K, Ditrich K, Faber K. Biocatalytic functionalization of hydroxyalkyl acrylates and phenoxyethanol via phosphorylation. J Biotechnol 2016; 233:219-27. [DOI: 10.1016/j.jbiotec.2016.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 11/25/2022]
|
28
|
Busto E. Recent Developments in the Preparation of Carbohydrate Derivatives from Achiral Building Blocks by using Aldolases. ChemCatChem 2016. [DOI: 10.1002/cctc.201600366] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Eduardo Busto
- Organic Chemistry I Department; Complutense University of Madrid; 28040 Madrid Spain
| |
Collapse
|
29
|
Schmidt NG, Eger E, Kroutil W. Building Bridges: Biocatalytic C-C-Bond Formation toward Multifunctional Products. ACS Catal 2016; 6:4286-4311. [PMID: 27398261 PMCID: PMC4936090 DOI: 10.1021/acscatal.6b00758] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Indexed: 12/12/2022]
Abstract
Carbon-carbon bond formation is the key reaction for organic synthesis to construct the carbon framework of organic molecules. The review gives a selection of biocatalytic C-C-bond-forming reactions which have been investigated during the last 5 years and which have already been proven to be applicable for organic synthesis. In most cases, the reactions lead to products functionalized at the site of C-C-bond formation (e.g., α-hydroxy ketones, aminoalcohols, diols, 1,4-diketones, etc.) or allow to decorate aromatic and heteroaromatic molecules. Furthermore, examples for cyclization of (non)natural precursors leading to saturated carbocycles are given as well as the stereoselective cyclopropanation of olefins affording cyclopropanes. Although many tools are already available, recent research also makes it clear that nature provides an even broader set of enzymes to perform specific C-C coupling reactions. The possibilities are without limit; however, a big library of variants for different types of reactions is required to have the specific enzyme for a desired specific (stereoselective) reaction at hand.
Collapse
Affiliation(s)
- Nina G. Schmidt
- ACIB
GmbH c/o, Department of Chemistry, University
of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Elisabeth Eger
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- ACIB
GmbH c/o, Department of Chemistry, University
of Graz, Heinrichstrasse
28, 8010 Graz, Austria
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
30
|
Tasnádi G, Lukesch M, Zechner M, Jud W, Hall M, Ditrich K, Baldenius K, Hartog AF, Wever R, Faber K. Exploiting Acid Phosphatases in the Synthesis of Phosphorylated Monoalcohols and Diols. European J Org Chem 2015. [PMCID: PMC4736442 DOI: 10.1002/ejoc.201501306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A set of phosphatases was evaluated for their potential to catalyze the regio‐ and stereoselective phosphorylation of alcohols using a high‐energy inorganic phosphate donor, such as di‐, tri‐ and polyphosphate. Parameters such as type and amount of phosphate donor and pH of the reaction were investigated in order to minimize the thermodynamically favored hydrolysis of the phosphate donor and the formed phosphate ester. Diols were monophosphorylated with high selectivities. This biocatalytic phosphorylation method provides selectively activated and/or protected synthetic intermediates for further chemical and/or enzymatic transformations and is applicable to a large scale (6.86 g) in a flow setup with immobilized phosphatase.
Collapse
Affiliation(s)
- Gábor Tasnádi
- Austrian Centre of Industrial Biotechnology, c/o Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Michael Lukesch
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, http://biocatalysis.uni‐graz.at
| | - Michaela Zechner
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, http://biocatalysis.uni‐graz.at
| | - Wolfgang Jud
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, http://biocatalysis.uni‐graz.at
| | - Mélanie Hall
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, http://biocatalysis.uni‐graz.at
| | - Klaus Ditrich
- White Biotechnology Research Biocatalysis, BASF SE, Carl‐Bosch‐Strasse 38, 67056 Ludwigshafen, Germany
| | - Kai Baldenius
- White Biotechnology Research Biocatalysis, BASF SE, Carl‐Bosch‐Strasse 38, 67056 Ludwigshafen, Germany
| | - Aloysius F. Hartog
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Ron Wever
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Kurt Faber
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, http://biocatalysis.uni‐graz.at
| |
Collapse
|
31
|
Ley SV, Fitzpatrick DE, Myers RM, Battilocchio C, Ingham RJ. Machine-Assisted Organic Synthesis. Angew Chem Int Ed Engl 2015; 54:10122-36. [PMID: 26193360 PMCID: PMC4834626 DOI: 10.1002/anie.201501618] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 12/11/2022]
Abstract
In this Review we describe how the advent of machines is impacting on organic synthesis programs, with particular emphasis on the practical issues associated with the design of chemical reactors. In the rapidly changing, multivariant environment of the research laboratory, equipment needs to be modular to accommodate high and low temperatures and pressures, enzymes, multiphase systems, slurries, gases, and organometallic compounds. Additional technologies have been developed to facilitate more specialized reaction techniques such as electrochemical and photochemical methods. All of these areas create both opportunities and challenges during adoption as enabling technologies.
Collapse
Affiliation(s)
- Steven V Ley
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK).
| | - Daniel E Fitzpatrick
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Rebecca M Myers
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Claudio Battilocchio
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Richard J Ingham
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
| |
Collapse
|
32
|
Ley SV, Fitzpatrick DE, Myers RM, Battilocchio C, Ingham RJ. Maschinengestützte organische Synthese. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501618] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Delville MME, Koch K, van Hest JCM, Rutjes FPJT. Chemoenzymatic flow cascade for the synthesis of protected mandelonitrile derivatives. Org Biomol Chem 2015; 13:1634-8. [DOI: 10.1039/c4ob02128b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Integrated two-step chemoenzymatic continuous flow process for the synthesis of protected cyanohydrins from aldehydes.
Collapse
Affiliation(s)
| | - Kaspar Koch
- FutureChemistry B.V
- 6525 EC Nijmegen
- The Netherlands
| | | | | |
Collapse
|
34
|
Phosphoryl transfer from α-d-glucose 1-phosphate catalyzed by Escherichia coli sugar-phosphate phosphatases of two protein superfamily types. Appl Environ Microbiol 2014; 81:1559-72. [PMID: 25527541 DOI: 10.1128/aem.03314-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Cori ester α-d-glucose 1-phosphate (αGlc 1-P) is a high-energy intermediate of cellular carbohydrate metabolism. Its glycosidic phosphomonoester moiety primes αGlc 1-P for flexible exploitation in glucosyl and phosphoryl transfer reactions. Two structurally and mechanistically distinct sugar-phosphate phosphatases from Escherichia coli were characterized in this study for utilization of αGlc 1-P as a phosphoryl donor substrate. The agp gene encodes a periplasmic αGlc 1-P phosphatase (Agp) belonging to the histidine acid phosphatase family. Had13 is from the haloacid dehydrogenase-like phosphatase family. Cytoplasmic expression of Agp (in E. coli Origami B) gave a functional enzyme preparation (kcat for phosphoryl transfer from αGlc 1-P to water, 40 s(-1)) that was shown by mass spectrometry to exhibit no free cysteines and the native intramolecular disulfide bond between Cys(189) and Cys(195). Enzymatic phosphoryl transfer from αGlc 1-P to water in H2 (18)O solvent proceeded with complete (18)O label incorporation into the phosphate released, consistent with catalytic reaction through O-1-P, but not C-1-O, bond cleavage. Hydrolase activity of both enzymes was not restricted to a glycosidic phosphomonoester substrate, and d-glucose 6-phosphate was converted with a kcat similar to that of αGlc 1-P. By examining phosphoryl transfer from αGlc 1-P to an acceptor substrate other than water (d-fructose or d-glucose), we discovered that Agp exhibited pronounced synthetic activity, unlike Had13, which utilized αGlc 1-P mainly for phosphoryl transfer to water. By applying d-fructose in 10-fold molar excess over αGlc 1-P (20 mM), enzymatic conversion furnished d-fructose 1-phosphate as the main product in a 55% overall yield. Agp is a promising biocatalyst for use in transphosphorylation from αGlc 1-P.
Collapse
|
35
|
Hyperthermophilic aldolases as biocatalyst for C–C bond formation: rhamnulose 1-phosphate aldolase from Thermotoga maritima. Appl Microbiol Biotechnol 2014; 99:3057-68. [DOI: 10.1007/s00253-014-6123-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 12/22/2022]
|
36
|
|
37
|
Schrittwieser JH, Resch V. The role of biocatalysis in the asymmetric synthesis of alkaloids. RSC Adv 2013; 3:17602-17632. [PMID: 25580241 PMCID: PMC4285126 DOI: 10.1039/c3ra42123f] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/28/2013] [Indexed: 12/11/2022] Open
Abstract
Alkaloids are not only one of the most intensively studied classes of natural products, their wide spectrum of pharmacological activities also makes them indispensable drug ingredients in both traditional and modern medicine. Among the methods for their production, biotechnological approaches are gaining importance, and biocatalysis has emerged as an essential tool in this context. A number of chemo-enzymatic strategies for alkaloid synthesis have been developed over the years, in which the biotransformations nowadays take an increasingly 'central' role. This review summarises different applications of biocatalysis in the asymmetric synthesis of alkaloids and discusses how recent developments and novel enzymes render innovative and efficient chemo-enzymatic production routes possible.
Collapse
Affiliation(s)
- Joerg H Schrittwieser
- Department of Biotechnology , Delft University of Technology , Julianalaan 136 , 2628 BL Delft , The Netherlands . ; ; ; Tel: +31 152 782683
| | - Verena Resch
- Department of Biotechnology , Delft University of Technology , Julianalaan 136 , 2628 BL Delft , The Netherlands . ; ; ; Tel: +31 152 782683
| |
Collapse
|
38
|
Schoffelen S, van Hest JCM. Chemical approaches for the construction of multi-enzyme reaction systems. Curr Opin Struct Biol 2013; 23:613-21. [PMID: 23830209 DOI: 10.1016/j.sbi.2013.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 01/01/2023]
Abstract
Inspired by nature, researchers aim at bringing together different types of enzymes by the generation of multi-enzymatic structures. Amongst others, chemical methods have been exploited enabling the covalent linkage of a set of enzymes to the same macromolecular scaffold or direct cross-linking. Control over the relative position of enzymes in the system has been realized by sequential immobilization in microchannels and by positional co-localization on DNA nanostructures. So far, site-specific conjugation reactions such as the azide-alkyne cycloaddition, N-terminal transamination and enzyme-mediated cross-linking, have been applied to a limited extent only. These methods are expected to allow for co-immobilization of less robust enzymes, hence, an expansion in the diversity of immobilized biocatalytic cascades. In addition, the combination of multiple bioconjugation methods will provide control over the composition in scaffold-free multi-enzyme complexes.
Collapse
Affiliation(s)
- Sanne Schoffelen
- Department of Bio-organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | |
Collapse
|
39
|
Willemsen JS, van Hest JCM, Rutjes FPJT. Aqueous reductive amination using a dendritic metal catalyst in a dialysis bag. Beilstein J Org Chem 2013; 9:960-5. [PMID: 23766812 PMCID: PMC3678615 DOI: 10.3762/bjoc.9.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/02/2013] [Indexed: 11/26/2022] Open
Abstract
Water-soluble dendritic iridium catalysts were synthesized by attaching a reactive metal complex to DAB-Am dendrimers via an adapted asymmetric bipyridine ligand. These dendritic catalysts were applied in the aqueous reductive amination of valine while contained in a dialysis bag. Comparable conversions were observed as for the noncompartmentalized counterparts, albeit with somewhat longer reaction times. These results clearly show that the encapsulated catalyst system is suitable to successfully drive a complex reaction mixture with various equilibrium reactions to completion.
Collapse
Affiliation(s)
- Jorgen S Willemsen
- Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | | | |
Collapse
|
40
|
Affiliation(s)
- Dongbo Zhao
- Bayer Technology & Engineering (Shanghai) Co., Ltd., 82 Mu Hua Road, Shanghai Chemical Industry Park, Shanghai 201507, People’s Republic of China
| | - Kuiling Ding
- State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032,
People’s Republic of China
| |
Collapse
|
41
|
|