1
|
Yusuf BO, Umar M, Kotob E, Abdulhakam A, Taialla OA, Awad MM, Hussain I, Alhooshani KR, Ganiyu SA. Recent Advances in Bimetallic Catalysts for Methane Steam Reforming in Hydrogen Production: Current Trends, Challenges, and Future Prospects. Chem Asian J 2024; 19:e202300641. [PMID: 37740712 DOI: 10.1002/asia.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
As energy demand continues to rise and the global population steadily grows, there is a growing interest in exploring alternative, clean, and renewable energy sources. The search for alternatives, such as green hydrogen, as both a fuel and an industrial feedstock, is intensifying. Methane steam reforming (MSR) has long been considered a primary method for hydrogen production, despite its numerous advantages, the activity and stability of the conventional Ni catalysts are major concerns due to carbon formation and metal sintering at high temperatures, posing significant drawbacks to the process. In recent years, significant attention has been given to bimetallic catalysts as a potential solution to overcome the challenges associated with methane steam reforming. Thus, this review focuses on the recent advancements in bimetallic catalysts for hydrogen production through methane steam reforming. The review explores various aspects including reactor type, catalyst selection, and the impact of different operating parameters such as reaction temperature, pressure, feed composition, reactor configuration, and feed and sweep gas flow rates. The analysis and discussion revolve around key performance indicators such as methane conversion, hydrogen recovery, and hydrogen yield.
Collapse
Affiliation(s)
- Basiru O Yusuf
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Mustapha Umar
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Esraa Kotob
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Abdullahi Abdulhakam
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Omer Ahmed Taialla
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Mohammed Mosaad Awad
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Ijaz Hussain
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Khalid R Alhooshani
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Saheed A Ganiyu
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Sae-Tang N, Saconsint S, Srifa A, Koo-Amornpattana W, Assabumrungrat S, Fukuhara C, Ratchahat S. Simultaneous production of syngas and carbon nanotubes from CO 2/CH 4 mixture over high-performance NiMo/MgO catalyst. Sci Rep 2024; 14:16282. [PMID: 39009758 PMCID: PMC11250814 DOI: 10.1038/s41598-024-66938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 07/05/2024] [Indexed: 07/17/2024] Open
Abstract
Direct conversion of biogas via the integrative process of dry reforming of methane (DRM) and catalytic methane decomposition (CDM) has received a great attention as a promising green catalytic process for simultaneous production of syngas and carbon nanotubes (CNTs). In this work, the effects of reaction temperature of 700-1100 °C and CH4/CO2 ratio of biogas were investigated over NiMo/MgO catalyst in a fixed bed reactor under industrial feed condition of pure biogas. The reaction at 700 °C showed a rapid catalyst deactivation within 3 h due to the formation of amorphous carbon on catalyst surface. At higher temperature of 800-900 °C, the catalyst can perform the excellent performance for producing syngas and carbon nanotubes. Interestingly, the smallest diameter and the highest graphitization of CNTs was obtained at high temperature of 1000 °C, while elevating temperature to 1100 °C leads to agglomeration of Ni particles, resulting in a larger size of CNTs. The reaction temperature exhibits optimum at 800 °C, providing the highest CNTs yield with high graphitization, high syngas purity up to 90.04% with H2/CO ratio of 1.1, and high biogas conversion (XCH4 = 86.44%, XCO2 = 95.62%) with stable performance over 3 h. The typical composition biogas (CH4/CO2 = 1.5) is favorable for the integration process, while the CO2 rich biogas caused a larger grain size of catalyst and a formation of molybdenum oxide nanorods (MoO3). The long-term stability of NiMo/MgO catalyst at 800 °C showed a stable trend (> 20 h). The experimental findings confirm that NiMo/MgO can perform the excellent activity and high stability at the optimum condition, allowing the process to be more promising for practical applications.
Collapse
Affiliation(s)
- Nonthicha Sae-Tang
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Supanida Saconsint
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Atthapon Srifa
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Wanida Koo-Amornpattana
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Suttichai Assabumrungrat
- Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Choji Fukuhara
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University, Shizuoka, 432-8561, Japan
| | - Sakhon Ratchahat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
3
|
Cai L, Han S, Xu W, Chen S, Shi X, Lu J. Formation of a Porous Crystalline Mg 1-xAl 2O y Overlayer on Metal Catalysts via Controlled Solid-State Reactions for High-temperature Stable Catalysis. Angew Chem Int Ed Engl 2024; 63:e202404398. [PMID: 38698730 DOI: 10.1002/anie.202404398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/13/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Catalyst deactivation by sintering and coking is a long-standing issue in metal-catalyzed harsh high-temperature hydrocarbon reactions. Ultrathin oxide coatings of metal nanocatalysts have recently appeared attractive to address this issue, while the porosity of the overlayer is difficult to control to preserve the accessibility of embedded metal nanoparticles, thus often leading to a large decrease in activity. Here, we report that a nanometer-thick alumina coating of MgAl2O4-supported metal catalysts followed by high-temperature reduction can transform a nonporous amorphous alumina overlayer into a porous Mg1-xAl2Oy crystalline spinel structure with a pore size of 2-3 nm and weakened acidity. The high porosity stems from the restrained Mg migration from the MgAl2O4 support to the alumina overlayer through solid-state reactions at high temperatures. The resulting Ni/MgAl2O4 and Pt/MgAl2O4 catalysts with a porous crystalline Mg1-xAl2Oy overlayer achieved remarkably high stability while preserving much higher activity than the corresponding alumina-coated Ni and Pt catalysts on MgO and Al2O3 supports in the reactions of dry reforming of methane and propane dehydrogenation, respectively.
Collapse
Affiliation(s)
- Lihua Cai
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
| | - Shanlei Han
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
| | - Wenlong Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
| | - Si Chen
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
| | - Xianxian Shi
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
| | - Junling Lu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Zhang K, Wang R, Zhong X, Jiang F. Preparation and Application of a Novel S-Scheme Nanoheterojunction Photocatalyst (LaNi 0.6Fe 0.4O 3/g-C 3N 4). ACS OMEGA 2024; 9:28422-28436. [PMID: 38973884 PMCID: PMC11223155 DOI: 10.1021/acsomega.4c02333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
Rapid recombination of photogenerated electrons and holes affects the performance of a semiconductor device and limits the efficiency of photocatalytic water splitting for hydrogen production. The use of an S-scheme nanoscale heterojunction catalyst for the separation of photogenerated charge carriers is a feasible approach to achieve high-efficiency photocatalytic hydrogen evolution. Therefore, we synthesized a three-dimensional S-scheme nanoscale heterojunction catalyst (LaNi0.6Fe0.4O3/g-C3N4) and investigated its activity in photocatalytic water splitting. An analysis of the band structure (XPS, UPS, and Mott-Schottky) indicated effective interfacial charge transfer in an S-scheme nanoscale heterojunction composed of two n-type semiconductors. X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) spectroscopy confirmed that the light-induced charge transfer followed the S-scheme mechanism. Based on the capture test (EPR) of •OH free radicals, it can be seen that the enhanced activity is attributed to the S-scheme carrier migration mechanism in heterojunction, which promotes the rapid adsorption of H+ by the abundant amino sites in g-C3N4, thus effectively generating H2. The 2D/2D LaNi0.6Fe0.4O3/g-C3N4 heterojunction has a good interface and produces a built-in electric field, improving the separation of e- and h+ while increasing the oxygen vacancy. The synergistic effect of the heterostructure and oxygen vacancy makes the photocatalyst significantly better than LaNi0.6Fe0.4O3 and g-C3N4 in visible light. The hydrogen evolution rate of the composite catalyst (LaNi0.6Fe0.4O3/g-C3N4-70 wt %) was 34.50 mmol·h-1·g-1, which was 40.6 times and 9.2 times higher than that of the catalysts (LaNiO3 and g-C3N4), respectively. After 25 h of cyclic testing, the catalyst (LaNi0.6Fe0.4O3/g-C3N4-70 wt %) composite material still exhibited excellent hydrogen evolution performance and photostability. It was confirmed that the synergistic effect between abundant active sites, enriched oxygen vacancies, and 2D/2D heterojunctions improved the photoinduced carrier separation and the light absorption efficiency of visible light. This study opens up new possibilities for the logical design of efficient photodecomposition using 2D/2D heterojunctions combined with oxygen vacancies.
Collapse
Affiliation(s)
- Kexin Zhang
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Rui Wang
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
- Institute
of Chemical Engineering and Technology, Xi’an Jiao Tong University, Xi’an 710049, China
| | - Xin Zhong
- Department
of Chemistry, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Fubin Jiang
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
- Department
of Chemistry, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
5
|
Fakeeha AH, Al-Fatesh AS, Srivastava VK, Ibrahim AA, Abahussain AA, Abu-Dahrieh JK, Alotibi MF, Kumar R. Hydrogen Production from Gadolinium-Promoted Yttrium-Zirconium-Supported Ni Catalysts through Dry Methane Reforming. ACS OMEGA 2023; 8:22108-22120. [PMID: 37360458 PMCID: PMC10286284 DOI: 10.1021/acsomega.3c02229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Hydrogen production from dry reforming of methane (DRM) not only concerns with green energy but also involves the consumption of two greenhouse gases CH4 and CO2. The lattice oxygen endowing capacity, thermostability, and efficient anchoring of Ni has brought the attention of the DRM community over the yttria-zirconia-supported Ni system (Ni/Y + Zr). Herein, Gd-promoted Ni/Y + Zr is characterized and investigated for hydrogen production through DRM. The H2-TPR → CO2-TPD → H2-TPR cyclic experiment indicates that most of the catalytic active site (Ni) remains present during the DRM reaction over all catalyst systems. Upon Y addition, the tetragonal zirconia-yttrium oxide phase stabilizes the support. Gadolinium promotional addition up to 4 wt % modifies the surface by formation of the cubic zirconium gadolinium oxide phase, limits the size of NiO, and makes reducible NiO moderately interacted species available over the catalyst surface and resists coke deposition. The 5Ni4Gd/Y + Zr catalyst shows about ∼80% yield of hydrogen constantly up to 24 h at 800 °C.
Collapse
Affiliation(s)
- Anis H. Fakeeha
- Chemical
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Ahmed S. Al-Fatesh
- Chemical
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | | | - Ahmed A. Ibrahim
- Chemical
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Abdulaziz A.M. Abahussain
- Chemical
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Jehad K. Abu-Dahrieh
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| | - Mohammed F. Alotibi
- Institute
of Refining and Petrochemicals Technologies, King Abdulaziz City for
Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Kingdom
of Saudi Arabia
| | - Rawesh Kumar
- Department
of Chemistry, Indus University, Ahmedabad, Gujarat 382115, India
| |
Collapse
|
6
|
Das S, Anjum U, Lim KH, He Q, Hoffman AS, Bare SR, Kozlov SM, Gates BC, Kawi S. Genesis of Active Pt/CeO 2 Catalyst for Dry Reforming of Methane by Reduction and Aggregation of Isolated Platinum Atoms into Clusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207272. [PMID: 36942900 DOI: 10.1002/smll.202207272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Atomically dispersed metal catalysts offer the advantages of efficient metal utilization and high selectivities for reactions of technological importance. Such catalysts have been suggested to be strong candidates for dry reforming of methane (DRM), offering prospects of high selectivity for synthesis gas without coke formation, which requires ensembles of metal sites and is a challenge to overcome in DRM catalysis. However, investigations of the structures of isolated metal sites on metal oxide supports under DRM conditions are lacking, and the catalytically active sites remain undetermined. Data characterizing the DRM reaction-driven structural evolution of a cerium oxide-supported catalyst, initially incorporating atomically dispersed platinum, and the corresponding changes in catalyst performance are reported. X-ray absorption and infrared spectra show that the reduction and agglomeration of isolated cationic platinum atoms to form small platinum clusters/nanoparticles are necessary for DRM activity. Density functional theory calculations of the energy barriers for methane dissociation on atomically dispersed platinum and on platinum clusters support these observations. The results emphasize the need for in-operando experiments to assess the active sites in such catalysts. The inferences about the catalytically active species are suggested to pertain to a broad class of catalytic conversions involving the rate-limiting dissociation of light alkanes.
Collapse
Affiliation(s)
- Sonali Das
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119260, Singapore
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, 400076, India
| | - Uzma Anjum
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Qian He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sergey M Kozlov
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119260, Singapore
| |
Collapse
|
7
|
Liu H, Tang Y, Ma X, Yue W. Catalytic pyrolysis of corncob with Ni/CaO catalysts for hydrogen-rich gas: Synthesis modes and catalyst/biomass ratios. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
8
|
Kwon Y, Eichler JE, Floto ME, Smith LA, Satkoski AM, Mullins CB. A study of refractory carbon deposits on Ni/Al
2
O
3
catalysts for dry reforming of methane. ChemistrySelect 2023. [DOI: 10.1002/slct.202203734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Yongtak Kwon
- John J. McKetta Department of Chemical Engineering The University of Texas at Austin Austin Texas 78712 USA
| | - J. Ehren Eichler
- Department of Chemistry The University of Texas at Austin Austin Texas 78712 USA
| | - Michael E. Floto
- Department of Chemistry The University of Texas at Austin Austin Texas 78712 USA
| | - Lettie A. Smith
- Department of Chemistry The University of Texas at Austin Austin Texas 78712 USA
| | - Aaron M. Satkoski
- Department of Geological Sciences Jackson School of Geosciences The University of Texas at Austin Austin Texas 78712 USA
| | - C. Buddie Mullins
- John J. McKetta Department of Chemical Engineering The University of Texas at Austin Austin Texas 78712 USA
- Department of Chemistry The University of Texas at Austin Austin Texas 78712 USA
| |
Collapse
|
9
|
Dry reforming of methane over Ni catalysts supported on micro- and mesoporous silica. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Jabbour K, El Hassan N, Arabi M, Chemali R, Nasr Y. A thermodynamic methodology toward an optimized methane decomposition process for enhanced hydrogen production and low carbon accumulation: Effect of non-hydrocarbon co-feeds. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Recent progress in plasma-catalytic conversion of CO2 to chemicals and fuels. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Zhang X, Deng J, Lan T, Shen Y, Zhong Q, Ren W, Zhang D. Promoting Methane Dry Reforming over Ni Catalysts via Modulating Surface Electronic Structures of BN Supports by Doping Carbon. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Jiang Deng
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Tianwei Lan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Yongjie Shen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Qingdong Zhong
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Wei Ren
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| |
Collapse
|
13
|
Recent advances and perspectives of perovskite-derived Ni-based catalysts for CO2 reforming of biogas. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Gao X, Cai P, Wang Z, Lv X, Kawi S. Surface Acidity/Basicity and Oxygen Defects of Metal Oxide: Impacts on Catalytic Performances of CO2 Reforming and Hydrogenation Reactions. Top Catal 2022. [DOI: 10.1007/s11244-022-01708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Cao ANT, Le Phuong DH, Phuong PTT, Trinh TH, Nguyen TM, Pham PTH. Carbon Dioxide Reforming of Methane Over Co/Al2O3 Catalysts Doped with Manganese. Top Catal 2022. [DOI: 10.1007/s11244-022-01709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Hussien AGS, Polychronopoulou K. A Review on the Different Aspects and Challenges of the Dry Reforming of Methane (DRM) Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3400. [PMID: 36234525 PMCID: PMC9565677 DOI: 10.3390/nano12193400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/24/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
The dry reforming of methane (DRM) reaction is among the most popular catalytic reactions for the production of syngas (H2/CO) with a H2:CO ratio favorable for the Fischer-Tropsch reaction; this makes the DRM reaction important from an industrial perspective, as unlimited possibilities for production of valuable products are presented by the FT process. At the same time, simultaneously tackling two major contributors to the greenhouse effect (CH4 and CO2) is an additional contribution of the DRM reaction. The main players in the DRM arena-Ni-supported catalysts-suffer from both coking and sintering, while the activation of the two reactants (CO2 and CH4) through different approaches merits further exploration, opening new pathways for innovation. In this review, different families of materials are explored and discussed, ranging from metal-supported catalysts, to layered materials, to organic frameworks. DRM catalyst design criteria-such as support basicity and surface area, bimetallic active sites and promoters, and metal-support interaction-are all discussed. To evaluate the reactivity of the surface and understand the energetics of the process, density-functional theory calculations are used as a unique tool.
Collapse
Affiliation(s)
- Aseel G. S. Hussien
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Main Campus, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Kyriaki Polychronopoulou
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Main Campus, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
17
|
Kwon Y, Eichler JE, Mullins CB. NiAl2O4 as a beneficial precursor for Ni/Al2O3 catalysts for the dry reforming of methane. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Chen S, Yang B. Activity and stability of alloyed NiCo catalyst for the dry reforming of methane: A combined DFT and microkinetic modeling study. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Gao X, Ashok J, Kawi S. A review on roles of pretreatment atmospheres for the preparation of efficient Ni-based catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Chatla A, Almanassra IW, Kallem P, Atieh MA, Alawadhi H, Akula V, Banat F. Dry (CO2) reforming of methane over zirconium promoted Ni-MgO mixed oxide catalyst: Effect of Zr addition. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Baharudin L, Rahmat N, Othman NH, Shah N, Syed-Hassan SSA. Formation, control, and elimination of carbon on Ni-based catalyst during CO2 and CH4 conversion via dry reforming process: A review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Helal A, Shaheen Shah S, Usman M, Khan MY, Aziz MA, Mizanur Rahman M. Potential Applications of Nickel-Based Metal-Organic Frameworks and their Derivatives. CHEM REC 2022; 22:e202200055. [PMID: 35695377 DOI: 10.1002/tcr.202200055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/13/2022] [Indexed: 12/15/2022]
Abstract
Metal-Organic Frameworks (MOFs), a novel class of porous extended crystalline structures, are favored in different fields of heterogeneous catalysis, CO2 separation and conversion, and energy storage (supercapacitors) due to their convenience of synthesis, structural tailor-ability, tunable pore size, high porosity, large specific surface area, devisable structures, and adjustable compositions. Nickel (Ni) is a ubiquitous element extensively applied in various fields of catalysis and energy storage due to its low cost, high abundance, thermal and chemical stability, and environmentally benign nature. Ni-based MOFs and their derivatives provide us with the opportunity to modify different properties of the Ni center to improve their potential as heterogeneous catalysts or energy storage materials. The recent achievements of Ni-MOFs and their derivatives as catalysts, membrane materials for CO2 separation and conversion, electrode materials and their respective performance have been discussed in this review.
Collapse
Affiliation(s)
- Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohd Yusuf Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,K.A. CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad Mizanur Rahman
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
23
|
State-of-art modifications of heterogeneous catalysts for CO2 methanation - active sites, surface basicity and oxygen defects. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Miri SS, Meshkani F, Rastegarpanah A, Rezaei M. Influence of Fe, La, Zr, Ce, and Ca on the catalytic performance and coke formation in dry reforming of methane over Ni/MgO.Al2O3 catalyst. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.116956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
|
26
|
Nabgan W, Nabgan B, Tuan Abdullah TA, Ikram M, Jadhav AH, Jalil AA, Ali MW. Highly Active Biphasic Anatase-Rutile Ni-Pd/TNPs Nanocatalyst for the Reforming and Cracking Reactions of Microplastic Waste Dissolved in Phenol. ACS OMEGA 2022; 7:3324-3340. [PMID: 35128243 PMCID: PMC8811771 DOI: 10.1021/acsomega.1c05488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/12/2022] [Indexed: 05/13/2023]
Abstract
Solvent-based recycling of plastic can offer the main improvement when it is employed for pyrolysis-catalytic steam reforming. In this research, plastic waste dissolved in phenol was used as a feed for catalytic cracking and steam reforming reactions for valuable liquid fuels and hydrogen production, which is gaining the attention of researchers globally. Microplastic wastes (MPWs) are tiny plastic particles that arise due to product creation and breakdown of larger plastics. They can be found mainly in several habitats, including seas and freshwater ecosystems. MPWs harm aquatic species, turtles, and birds and were chosen to recover in this study that can be reacted on the catalyst surface. Biphasic anatase-rutile TiO2 with spherical-shaped support for Ni and Pd metals with nanosized particles was synthesized via the hydrothermal treatment method, and its chemical and physical properties were characterized accordingly. According to temperature-programmed desorption of carbon dioxide (CO2-TPD) and temperature-programmed reduction of hydrogen (H2-TPR) results, the incorporation of Pd into Ni/TNPs enhanced the basicity of the support surface and the redox properties of catalysts, which were strongly linked to the improved hydrogen yield (71%) and phenol conversion (79%) at 600 °C. The Ni-Pd/TNPs nanocatalyst, with remarkable stability for 72 h of time on stream, is a promising catalyst for the MPW-phenol cracking and steam reforming reactions toward H2 production for clean energy generation and other environmental applications. Besides, this study has also highlighted the opportunities of overcoming the risk of microplastic waste and converting it into valuable fuels such as decamethyltetrasiloxane, phenanthrene, methyl palmitate, benzenepropanoic acid, benzoic acid, azulene, xanthene, anisole, biphenyl, phthalic acid, diisooctyl phthalate, etc.
Collapse
Affiliation(s)
- Walid Nabgan
- School
of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
- Centre
of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Bahador Nabgan
- School
of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
- Centre
of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Tuan Amran Tuan Abdullah
- School
of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
- Centre
of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, Punjab 54000, Pakistan
| | - Arvind H. Jadhav
- Centre
for Nano and Material Science, JAIN University, Jain Global Campus, Bangalore 562112, Karnataka, India
| | - Aishah Abdul Jalil
- School
of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
- Centre
of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohamad Wijayanuddin Ali
- School
of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
- Centre
of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
27
|
Anchieta CG, Assaf EM, Assaf JM. Syngas production by methane tri-reforming: Effect of Ni/CeO2 synthesis method on oxygen vacancies and coke formation. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Dielectric Barrier Discharge Plasma-Assisted Catalytic CO2 Hydrogenation: Synergy of Catalyst and Plasma. Catalysts 2022. [DOI: 10.3390/catal12010066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CO2 hydrogenation is an effective way to convert CO2 to value-added chemicals (e.g., CH4 and CH3OH). As a thermal catalytic process, it suffers from dissatisfactory catalytic performances (low conversion/selectivity and poor stability) and high energy input. By utilizing the dielectric barrier discharge (DBD) technology, the catalyst and plasma could generate a synergy, activating the whole process in a mild condition, and enhancing the conversion efficiency of CO2 and selectivity of targeted product. In this review, a comprehensive summary of the applications of DBD plasma in catalytic CO2 hydrogenation is provided in detail. Moreover, the state-of-the-art design of the reactor and optimization of reaction parameters are discussed. Furthermore, several mechanisms based on simulations and experiments are provided. In the end, the existing challenges of this hybrid system and corresponding solutions are proposed.
Collapse
|
29
|
Gao X, Lin X, Xie X, Li J, Wu X, Li Y, Kawi S. Modification strategies of heterogeneous catalysts for water-gas shift reactions. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00537e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Featured by high energy density, hydrogen has been deemed as a clean and renewable energy source compared with conventional fossil fuels. Water-gas shift reaction (WGSR) exhibits great potential in the...
Collapse
|
30
|
Lee CH, Kwon BW, Oh JH, Kim S, Han J, Nam SW, Yoon SP, Lee KB, Ham HC. Integration of dry-reforming and sorption-enhanced water gas shift reactions for the efficient production of high-purity hydrogen from anthropogenic greenhouse gases. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
31
|
Luo F, Wang Z, Li X, Lang L, Li X, Yin X. Highly dispersed Ni-based catalysts derived from the LaNiO 3 perovskite for dry methane reforming: promotional effect of the Ni 0–Ni 2+ dipole inlaid on the support. NEW J CHEM 2022. [DOI: 10.1039/d1nj06013a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hyperdispersed Ni-based catalyst from LaNiO3 performed well in dry methane reforming reaction, which was attributed to the promotional effect of the Ni0–Ni2+ dipole.
Collapse
Affiliation(s)
- Fengying Luo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zeyu Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiangnan Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Lin Lang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Xinjun Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Xiuli Yin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| |
Collapse
|
32
|
Xu J, Tian H, Chen K, Zhang Q, Liu Y, Cao W, Guo F. A coupling bimetallic Ni–La/MCM-41 catalyst enhanced by radio frequency (RF) plasma for dry reforming. NEW J CHEM 2022. [DOI: 10.1039/d1nj05029j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ni–La–Imp–P exhibited excellent stability and less carbon deposition (only 5.94%) after reacting at 700 °C for 20 h.
Collapse
Affiliation(s)
- Junqiang Xu
- School of Chemistry & Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Huan Tian
- School of Chemistry & Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Kaipeng Chen
- School of Chemistry & Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Qiang Zhang
- School of Chemistry & Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yalin Liu
- School of Chemistry & Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Wuyi Cao
- School of Chemistry & Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Fang Guo
- School of Chemistry & Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| |
Collapse
|
33
|
Kweon S, Bae J, Cho YH, Lee S, Kim J, Jo D, Shin CH, Park MB, Min HK. Defect-stabilized nickel on beta zeolite as a promising catalyst for dry reforming of methane. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02363b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four different Ni-containing beta zeolite (Ni-BEA) catalysts were synthesized and applied for dry reforming of methane (DRM). Ni-BEA(I) exhibiting a nickel silicate was synthesized via the single-step interzeolite transformation of...
Collapse
|
34
|
Qi R, An L, Guo Y, Zhang R, Wang ZJ. In Situ Fabrication of Ultrasmall Ni Nanoparticles from Ni(OH)2 Precursors for Efficient CO2 Reforming of Methane. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ronghua Qi
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lei An
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yu Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhou-jun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
35
|
Dai H, Zhu Y, Xiong S, Xiao X, Huang L, Deng J, Zhou C. Dry Reforming of Methane over Ni/MgO@Al Catalysts with Unique Features of Sandwich Structure. ChemistrySelect 2021. [DOI: 10.1002/slct.202102788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Dai
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
- Department of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Yongqing Zhu
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| | - Siqi Xiong
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| | - Xin Xiao
- Department of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Lihong Huang
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| | - Jie Deng
- College of Pharmacy and Bioengineering Chengdu University Chengdu 610106 China
| | - Changjian Zhou
- School of Chemistry and Chemical Engineering Yancheng Institute of Technology Yancheng Jiangsu Province 224051 China
| |
Collapse
|
36
|
Kim SM, Armutlulu A, Liao WC, Hosseini D, Stoian D, Chen Z, Abdala PM, Copéret C, Müller C. Structural insight into an atomic layer deposition (ALD) grown Al 2O 3 layer on Ni/SiO 2: impact on catalytic activity and stability in dry reforming of methane. Catal Sci Technol 2021; 11:7563-7577. [PMID: 34912540 PMCID: PMC8630620 DOI: 10.1039/d1cy01149a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/24/2021] [Indexed: 11/21/2022]
Abstract
The development of stable Ni-based dry reforming of methane (DRM) catalysts is a key challenge owing to the high operating temperatures of the process and the propensity of Ni for promoting carbon deposition. In this work, Al2O3-coated Ni/SiO2 catalysts have been developed by employing atomic layer deposition (ALD). The structure of the catalyst at each individual preparation step was characterized in detail through a combination of in situ XAS-XRD, ex situ 27Al NMR and Raman spectroscopy. Specifically, in the calcination step, the ALD-grown Al2O3 layer reacts with the SiO2 support and Ni, forming aluminosilicate and NiAl2O4. The Al2O3-coated Ni/SiO2 catalyst exhibits an improved stability for DRM when compared to the benchmark Ni/SiO2 and Ni/Al2O3 catalysts. In situ XAS-XRD during DRM together with ex situ Raman spectroscopy and TEM of the spent catalysts confirm that the ALD-grown Al2O3 layer suppresses the sintering of Ni, in turn reducing also coke formation significantly. In addition, the formation of an amorphous aluminosilicate phase by the reaction of the ALD-grown Al2O3 layer with the SiO2 support inhibited catalysts deactivation via NiAl2O4 formation, in contrast to the reference Ni/Al2O3 system. The in-depth structural characterization of the catalysts provided an insight into the structural dynamics of the ALD-grown Al2O3 layer, which reacts both with the support and the active metal, allowing to rationalize the high stability of the catalyst under the harsh DRM conditions.
Collapse
Affiliation(s)
- Sung Min Kim
- Department of Mechanical and Process Engineering, ETH Zurich Leonhardstrasse 27 8092 Zurich Switzerland
| | - Andac Armutlulu
- Department of Mechanical and Process Engineering, ETH Zurich Leonhardstrasse 27 8092 Zurich Switzerland
| | - Wei-Chih Liao
- Department of Chemistry and Applied Sciences, ETH Zurich Vladimir Prelog Weg 1-5 8093 Zurich Switzerland
| | - Davood Hosseini
- Department of Mechanical and Process Engineering, ETH Zurich Leonhardstrasse 27 8092 Zurich Switzerland
| | - Dragos Stoian
- Swiss-Norwegian Beamlines, ESRF BP 220 Grenoble 38043 France
| | - Zixuan Chen
- Department of Mechanical and Process Engineering, ETH Zurich Leonhardstrasse 27 8092 Zurich Switzerland
| | - Paula M Abdala
- Department of Mechanical and Process Engineering, ETH Zurich Leonhardstrasse 27 8092 Zurich Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Sciences, ETH Zurich Vladimir Prelog Weg 1-5 8093 Zurich Switzerland
| | - Christoph Müller
- Department of Mechanical and Process Engineering, ETH Zurich Leonhardstrasse 27 8092 Zurich Switzerland
| |
Collapse
|
37
|
Guharoy U, Reina TR, Liu J, Sun Q, Gu S, Cai Q. A theoretical overview on the prevention of coking in dry reforming of methane using non-precious transition metal catalysts. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Alam MI, Cheula R, Moroni G, Nardi L, Maestri M. Mechanistic and multiscale aspects of thermo-catalytic CO 2 conversion to C 1 products. Catal Sci Technol 2021; 11:6601-6629. [PMID: 34745556 PMCID: PMC8521205 DOI: 10.1039/d1cy00922b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/26/2021] [Indexed: 12/04/2022]
Abstract
The increasing environmental concerns due to anthropogenic CO2 emissions have called for an alternate sustainable source to fulfill rising chemical and energy demands and reduce environmental problems. The thermo-catalytic activation and conversion of abundantly available CO2, a thermodynamically stable and kinetically inert molecule, can significantly pave the way to sustainably produce chemicals and fuels and mitigate the additional CO2 load. This can be done through comprehensive knowledge and understanding of catalyst behavior, reaction kinetics, and reactor design. This review aims to catalog and summarize the advances in the experimental and theoretical approaches for CO2 activation and conversion to C1 products via heterogeneous catalytic routes. To this aim, we analyze the current literature works describing experimental analyses (e.g., catalyst characterization and kinetics measurement) as well as computational studies (e.g., microkinetic modeling and first-principles calculations). The catalytic reactions of CO2 activation and conversion reviewed in detail are: (i) reverse water-gas shift (RWGS), (ii) CO2 methanation, (iii) CO2 hydrogenation to methanol, and (iv) dry reforming of methane (DRM). This review is divided into six sections. The first section provides an overview of the energy and environmental problems of our society, in which promising strategies and possible pathways to utilize anthropogenic CO2 are highlighted. In the second section, the discussion follows with the description of materials and mechanisms of the available thermo-catalytic processes for CO2 utilization. In the third section, the process of catalyst deactivation by coking is presented, and possible solutions to the problem are recommended based on experimental and theoretical literature works. In the fourth section, kinetic models are reviewed. In the fifth section, reaction technologies associated with the conversion of CO2 are described, and, finally, in the sixth section, concluding remarks and future directions are provided.
Collapse
Affiliation(s)
- Md Imteyaz Alam
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Raffaele Cheula
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Gianluca Moroni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Luca Nardi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| |
Collapse
|
39
|
The Effect of Preparation Method of Ni-Supported SiO2 Catalysts for Carbon Dioxide Reforming of Methane. Catalysts 2021. [DOI: 10.3390/catal11101221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Reforming methane to produce syngas is a subject that generates considerable interest. The process requires catalysts that possess high-performance active sites to activate stable C–H bonds. Herein, we report a facile synthetic strategy to prepare Ni-based catalysts by complexation–impregnation (Ni-G/SiO2-C) and precipitation–impregnation (Ni-G/SiO2-P) methods using glycine as a complexing agent. The particle size of Ni in both types of catalysts is decreased by adding glycine in the preparation process. Nevertheless, the preparation methods and amount of glycine play a significant role in the particle size and distribution of Ni over the Ni-based catalysts. The smaller particle size and narrower distribution of Ni were obtained in the Ni-G/SiO2-P catalyst. The catalysts were comparatively tested for carbon-dioxide reforming of methane (CDR). Ni-G/SiO2-P showed better CDR performance than Ni-G/SiO2-C and Ni/SiO2 and increased stability because of the smaller particle size and narrower distribution of Ni. Moreover, a high-performance Ni-based catalyst was prepared by optimizing the amount of glycine added. An unobservable deactivation was obtained over Ni-G-2/SiO2-P and Ni-G-3/SiO2-P for CDR during TOS = 20 h. Thus, a new promising method is described for the preparation of Ni-based catalysts for CDR.
Collapse
|
40
|
Zhang Y, Zeng R, Zu Y, Zhu L, Mei Y, Luo Y, He D. Low-temperature dry reforming of methane tuned by chemical speciations of active sites on the SiO2 and γ-Al2O3 supported Ni and Ni-Ce catalysts. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Nanoscale Ni enveloped in hydrochar prepared by one-step hydrothermal method for dry reforming of CH4 with CO2. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Anti-Coking and Anti-Sintering Ni/Al2O3 Catalysts in the Dry Reforming of Methane: Recent Progress and Prospects. Catalysts 2021. [DOI: 10.3390/catal11081003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Coking and metal sintering are limitations of large-scale applications of Ni/Al2O3 catalysts in DRM reactions. In this review, several modification strategies to enhance the anti-deactivation property of Ni/Al2O3 are proposed and discussed with the recently developed catalyst systems, including structure and morphology control, surface acidity/basicity, interfacial engineering and oxygen defects. In addition, the structure–performance relationship and deactivation/anti-deactivation mechanisms are illustrated in depth, followed by prospects for future work.
Collapse
|
43
|
Jang SW, Dutta S, Kumar A, Kim SM, You YW, Lee IS. Silica-Enveloped 2D-Sheet-to-Nanocrystals Conversion for Resilient Catalytic Dry Reforming of Methane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102851. [PMID: 34263553 DOI: 10.1002/smll.202102851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Here, lamellar confinement strategy is introduced for "sheet-to-nanocrystals (NCs)" conversion within a 2D-SiO2 envelope, which constructs a catalytic nanocartridge holding a platoon of isolated and in-plane-aligned ultrasmall Ni-NCs, performing as a robust and coking-resistant catalytic system for dry reforming of methane. Overcoming the problem of unavoidable bulk crystal growth from multiple sheets-stack or sheet-on-open-support, silica bilayer-encasing tightly clamps the atomic-thin Ni(OH)2 -nanosheet during thermal conversion and further hinders the migratory fusion of the resultant Ni-NCs. Upon heating-cooling cycle, the flapping silica envelope clutches the Ni-NCs like "eggs in a carton," subsequently, ensuring their thermal stability. Owing to the unique 2D-enveloped rigid architecture, Ni-NCs can circumvent sintering and coke deposition while tolerating the high temperatures (>700 °C) for long operation (>100 h), affording high conversions to syngas.
Collapse
Affiliation(s)
- Sun Woo Jang
- Center for Nanospace-Confined Chemical Reactions (NCCRs) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Soumen Dutta
- Center for Nanospace-Confined Chemical Reactions (NCCRs) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Amit Kumar
- Center for Nanospace-Confined Chemical Reactions (NCCRs) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Soo Min Kim
- Environment & Sustainable Resources Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Young-Woo You
- Environment & Sustainable Resources Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - In Su Lee
- Center for Nanospace-Confined Chemical Reactions (NCCRs) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
44
|
Guo Y, Tian L, Yan W, Qi R, Tu W, Wang ZJ. CeO2-Promoted Ni/SiO2 Catalysts for Carbon Dioxide Reforming of Methane: The Effect of Introduction Methodologies. Catal Letters 2021. [DOI: 10.1007/s10562-020-03479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Abstract
Abstract
The reforming of methane is an important industrial process, and reactor modeling and simulation is frequently employed as a design and analysis tool in understanding this process. While much research work is devoted to catalyst formulations, reaction mechanisms, and reactor designs, this review aims to summarize the literature concerning the simulation of methane reforming. Applications in industrial practice are highlighted, and the three main approaches to representing the reactions are briefly discussed. An overview of simulation studies focusing on methane reforming is presented. The three central methods for fixed-bed reactor modeling are discussed. Various approaches and modern examples are discussed, presenting their modeling methods and key findings. The overall objective of this paper is to provide a dedicated review of simulation work done for methane reforming and provide a reference for understanding this field and identifying possible new paths.
Collapse
|
46
|
A highly active Ni catalyst supported on Mg-substituted LaAlO3 for carbon dioxide reforming of methane. Catal Today 2021. [DOI: 10.1016/j.cattod.2019.12.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Mohammadi MM, Shah C, Dhandapani SK, Chen J, Abraham SR, Sullivan W, Buchner RD, Kyriakidou EA, Lin H, Lund CRF, Swihart MT. Single-Step Flame Aerosol Synthesis of Active and Stable Nanocatalysts for the Dry Reforming of Methane. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17618-17628. [PMID: 33821611 DOI: 10.1021/acsami.1c02180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We introduce a flame-based aerosol process for producing supported non-noble metal nanocatalysts from inexpensive aqueous metal salt solutions, using catalysts for the dry reforming of methane (DRM) as a prototype. A flame-synthesized nickel-doped magnesia (MgO) nanocatalyst (NiMgO-F) was fully physicochemically characterized and tested in a flow reactor system, where it showed stable DRM activity from 500 to 800 °C. A kinetic study was conducted, and apparent activation energies were extracted for the temperature range of 500-650 °C. It was then compared with a Ni-decorated MgO nanopowder prepared by wet impregnation of (1) flame-synthesized MgO (NiMgO-FI) and (2) a commercial MgO nanopowder (NiMgO-CI) and with (3) a NiMgO catalyst prepared by co-precipitation (NiMgO-CP). NiMgO-F showed the highest catalytic activity per mass and per metallic surface area and was stable for continuous H2 production at 700 °C for 50 h. Incorporation of potential promoters and co-catalysts was also demonstrated, but none showed significant performance improvement. More broadly, nanomaterials produced by this approach could be used as binary or multicomponent catalysts for numerous catalytic processes.
Collapse
Affiliation(s)
- Mohammad Moein Mohammadi
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Chintan Shah
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Sandeep Kumar Dhandapani
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Junjie Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Shema Rachel Abraham
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - William Sullivan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Raymond D Buchner
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Eleni A Kyriakidou
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Carl R F Lund
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
48
|
Shi C, Wang S, Ge X, Deng S, Chen B, Shen J. A review of different catalytic systems for dry reforming of methane: Conventional catalysis-alone and plasma-catalytic system. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101462] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Kweon S, An H, Shin CH, Park MB, Min HK. Nitrided Ni/N-zeolites as efficient catalysts for the dry reforming of methane. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Recent Developments in Dielectric Barrier Discharge Plasma-Assisted Catalytic Dry Reforming of Methane over Ni-Based Catalysts. Catalysts 2021. [DOI: 10.3390/catal11040455] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The greenhouse effect is leading to global warming and destruction of the ecological environment. The conversion of carbon dioxide and methane greenhouse gases into valuable substances has attracted scientists’ attentions. Dry reforming of methane (DRM) alleviates environmental problems and converts CO2 and CH4 into valuable chemical substances; however, due to the high energy input to break the strong chemical bonds in CO2 and CH4, non-thermal plasma (NTP) catalyzed DRM has been promising in activating CO2 at ambient conditions, thus greatly lowering the energy input; moreover, the synergistic effect of the catalyst and plasma improves the reaction efficiency. In this review, the recent developments of catalytic DRM in a dielectric barrier discharge (DBD) plasma reactor on Ni-based catalysts are summarized, including the concept, characteristics, generation, and types of NTP used for catalytic DRM and corresponding mechanisms, the synergy and performance of Ni-based catalysts with DBD plasma, the design of DBD reactor and process parameter optimization, and finally current challenges and future prospects are provided.
Collapse
|