1
|
Nairan A, Feng Z, Zheng R, Khan U, Gao J. Engineering Metallic Alloy Electrode for Robust and Active Water Electrocatalysis with Large Current Density Exceeding 2000 mA cm -2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401448. [PMID: 38518760 DOI: 10.1002/adma.202401448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Indexed: 03/24/2024]
Abstract
The amelioration of brilliantly effective electrocatalysts working at high current density for the oxygen evolution reaction (OER) is imperative for cost-efficient electrochemical hydrogen production. Yet, the kinetically sluggish and unstable catalysts remain elusive to large-scale hydrogen (H2) generation for industrial applications. Herein, a new strategy is demonstrated to significantly enhance the intrinsic activity of Ni1-xFex nanochain arrays through a trace proportion of heteroatom phosphorus doping that permits robust water splitting at an extremely large current density of 1000 and 2000 mA cm-2 for 760 h. The in situ formation of Ni2P and Ni5P4 on Ni1-xFex nanochain arrays surface and hierarchical geometry of the electrode significantly promote the reaction kinetics and OER activity. The OER electrode provides exceptionally low overpotentials of 222 and 327 mV at current densities of 10 and 2000 mA cm-2 in alkaline media, dramatically lower than benchmark IrO2 and is among the most active catalysts yet reported. Remarkably, the alkaline electrolyzer renders a low voltage of 1.75 V at a large current density of 1000 mA cm-2, indicating outperformed overall water splitting. The electrochemical fingerprints demonstrate vital progress toward large-scale H2 production for industrial water electrolysis.
Collapse
Affiliation(s)
- Adeela Nairan
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhuo Feng
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruiming Zheng
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Usman Khan
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Junkuo Gao
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
2
|
Quan X, Ma J, Shao Q, Li H, Sun L, Huang G, Yan S, Hong Z, Wang Y, Wang X. Tungsten doped FeCoP 2 nanoparticles embedded into carbon for highly efficient oxygen evolution reaction. RSC Adv 2024; 14:16639-16648. [PMID: 38784417 PMCID: PMC11110020 DOI: 10.1039/d4ra02326a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Designing active and stable electrocatalysts with economic efficiency for oxygen evolution reaction (OER) is essential for developing water splitting process at an industrial scale. Herein, we rationally designed a tungsten doped iron cobalt phosphide incorporated with carbon (Wx-FeCoP2/C), prepared by a mechanochemical approach. X-ray photoelectron spectroscopy (XPS) revealed that the doping of W led to an increasing of Co3+/Co2+ and Fe3+/Fe2+ molar ratios, which contributed to the enhanced OER performance. As a result, a current density of 10 mA cm-2 was achieved in 1 M KOH at an overpotential of 264 mV on the optimized W0.1-FeCoP2/C. Moreover, at high current density of 100 mA cm-2, the overpotential value was 310 mV, and the corresponding Tafel slope was measured to be 48.5 mV dec-1, placing it among the best phosphide-based catalysts for OER. This work is expected to enlighten the design strategy of highly efficient phosphide-based OER catalysts.
Collapse
Affiliation(s)
- Xinyao Quan
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Jiajia Ma
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Qianshuo Shao
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Haocong Li
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Lingxiang Sun
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Guili Huang
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Su Yan
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Zhanglian Hong
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Yuning Wang
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Xiaoqing Wang
- College of Materials and Chemical Engineering, Chuzhou University 239000 Chuzhou China
| |
Collapse
|
3
|
Wang Z, Li M, Fu B, Cao W, Bo X. Recycling cobalt from spent lithium-ion batteries for designing the novel cobalt nitride followers: Towards efficient overall water splitting and advanced zinc-air batteries. J Colloid Interface Sci 2024; 662:218-230. [PMID: 38350345 DOI: 10.1016/j.jcis.2024.02.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
Although cobalt nitride (CoN)-based nanomaterials have been widely designed as advanced oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and oxygen reduction reaction (ORR) catalysts, the continuous consumption of lithium-ion batteries (LIBs) has led to a high price of cobalt metal. Therefore, in the future, recycling valuable Co elements from spent devices and boosting their service efficiency will inevitably promote the utilization of Co-based materials in water splitting and zinc-air batteries (ZABs). Herein, we realize the Co recycling from spent LIBs by a simple hydrometallurgy method. Under the assistance of hexamethylenetetramine and polystyrene spheres, after the hydrothermal and pyrolysis treatment in the NH3 atmosphere, the as-reclaimed cobalt oxalates were successfully transformed into novel three-dimensional (3D) CoN nanoflowers (denoted as CoN NFs). Benefiting from the unique 3D flower-like architectures, intrinsic high conductivity, large surface area, uniformly dispersed CoN nanoparticles, and the synergistic effect between Co3N and CoO phases, the 3D flower-like CoN NFs exhibited excellent OER catalytic activity. The performance was much better than commercial RuO2 in the 1.0 M KOH solution. Furthermore, the CoN NFs-based water splitting cell needed a voltage of 1.608 V to achieve the current density of 10 mA cm-2, which is even 16 mV smaller than that of Pt/C||RuO2 benchmark (1.624 V). Meanwhile, the CoN NFs-derived ZAB exhibited a high peak power density of 107.3 mW cm-2 (vs. 103.2 mW cm-2 of Pt/C-RuO2-based ZAB) and a low charge-discharge voltage gap (0.93 V vs. 1.43 V of Pt/C-RuO2-based ZAB). Due to the excellent structural and elemental stabilities, the corresponding water splitting cell and ZAB had outstanding durability. This work successfully explored an advanced industrial chain from recycling Co metal in spent devices to designing the high-efficiency HER/OER/ORR electrocatalysts for advanced water splitting devices and ZABs. This will further promote the value-added utilization of valuable Co metal in various energy storage or conversion devices.
Collapse
Affiliation(s)
- Zhuang Wang
- School of Light Industry, Harbin University of Commerce, Harbin, China.
| | - Mian Li
- National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Bin Fu
- School of Light Industry, Harbin University of Commerce, Harbin, China
| | - Wenping Cao
- School of Light Industry, Harbin University of Commerce, Harbin, China
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
4
|
Wang M, Zhou L, Li Z, Xu H, Tang Y. Amorphous Nickel Hydroxide Shell on Ni 8P 3 Nanorods for Boosted Highly Stable Overall Water Splitting at High Current. Inorg Chem 2024; 63:1702-1708. [PMID: 38181171 DOI: 10.1021/acs.inorgchem.3c04125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Developing highly active, highly stable, and cheap electrocatalysts for water splitting is of great significance for hydrogen production. Herein, we report an amorphous Ni(OH)2-clothed transition Ni8P3 catalyst, in which the amorphous Ni(OH)2 shell provides catalytic active sites and serves as a proton conductive encapsulation layer to ensure efficient proton supply to the active Ni8P3 sites. As expected, the Ni8P3@Ni(OH)2 catalyst exhibits significant water decomposition performance at low and high current densities of 10, 100, and 1000 mA cm-2 at 1.45, 1.71, and 2.21 V, respectively, which is comparable to those of commercial electrocatalysts. In particular, the prepared Ni8P3@Ni(OH)2 electrodes possess exceptional long-term durability (200 h) at high current (over 1 A). The significantly improved water-splitting activity and durability in alkaline medium are expected to make them attractive catalyst materials to produce renewable chemical fuels.
Collapse
Affiliation(s)
- Minmin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Li Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Zukun Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Hao Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanfeng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
5
|
Ali A, Long F, Shen PK. Innovative Strategies for Overall Water Splitting Using Nanostructured Transition Metal Electrocatalysts. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Wang T, Sun B, Tang K, Shen W, Chen C, Sun D. Sustainable bacterial cellulose derived composites for high-efficiency hydrogen evolution reaction. Int J Biol Macromol 2023; 242:125173. [PMID: 37268083 DOI: 10.1016/j.ijbiomac.2023.125173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Incorporating heteroatoms into carbon structure has been demonstrated to be efficient for hydrogen evolution reaction (HER). However, the preparation complexity and poor durability are insufficient for the future hydrogen economy. In this work, the preparation of ZIF-67/BC precursor with BC as the template was done for the in-situ growth of MOFs (ZIF-67) crystals, followed by the carbonization and phosphating of ZIF-67/BC to prepare the CoP-NC/CBC N-doped composite carbon material with CoP as the primary active material. The results show that as an HER catalyst, CoP-NC/CBC can provide a current density of 10 mA cm-2 at an overpotential of 182 mV in the acidic electrolyte of 0.5 M H2SO4 or the same current density at an overpotential of 151 mV in the alkaline electrolyte of 1.0 M KOH. The work validates a design idea for advanced non-precious metal-based HER catalysts with high activity and stability.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bianjing Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Kaiyuan Tang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wei Shen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
8
|
Guo B, Ding Y, Huo H, Wen X, Ren X, Xu P, Li S. Recent Advances of Transition Metal Basic Salts for Electrocatalytic Oxygen Evolution Reaction and Overall Water Electrolysis. NANO-MICRO LETTERS 2023; 15:57. [PMID: 36862225 PMCID: PMC9981861 DOI: 10.1007/s40820-023-01038-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/12/2023] [Indexed: 05/19/2023]
Abstract
Electrocatalytic oxygen evolution reaction (OER) has been recognized as the bottleneck of overall water splitting, which is a promising approach for sustainable production of H2. Transition metal (TM) hydroxides are the most conventional and classical non-noble metal-based electrocatalysts for OER, while TM basic salts [M2+(OH)2-x(Am-)x/m, A = CO32-, NO3-, F-, Cl-] consisting of OH- and another anion have drawn extensive research interest due to its higher catalytic activity in the past decade. In this review, we summarize the recent advances of TM basic salts and their application in OER and further overall water splitting. We categorize TM basic salt-based OER pre-catalysts into four types (CO32-, NO3-, F-, Cl-) according to the anion, which is a key factor for their outstanding performance towards OER. We highlight experimental and theoretical methods for understanding the structure evolution during OER and the effect of anion on catalytic performance. To develop bifunctional TM basic salts as catalyst for the practical electrolysis application, we also review the present strategies for enhancing its hydrogen evolution reaction activity and thereby improving its overall water splitting performance. Finally, we conclude this review with a summary and perspective about the remaining challenges and future opportunities of TM basic salts as catalysts for water electrolysis.
Collapse
Affiliation(s)
- Bingrong Guo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yani Ding
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Institute of Carbon Neutral Energy Technology, School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Haohao Huo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xinxin Wen
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xiaoqian Ren
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Siwei Li
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
9
|
Jiang J, Wu Y, Chen H, Wan Z, Ding D, Xia L, Guo X, Yu P. Annealing and electrochemically activated amorphous ribbons: Surface nanocrystallization and oxidation effects enhanced for oxygen evolution performance. J Colloid Interface Sci 2023; 633:303-313. [PMID: 36459935 DOI: 10.1016/j.jcis.2022.11.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Annealing and cyclic voltammetry (CV) are essential for the activation of amorphous alloy ribbons. Various amorphous alloy ribbons have been activated in the fields of environmental catalysts using either annealing or CV. However, the combination of the two methods for improving the oxygen evolution reaction (OER) performance has rarely been reported. This combination is expected to significantly improve the OER performance of amorphous ribbons. Here, we developed an "annealing +CV-activation" integrated strategy to treat a free-standing NiFeBSiP ribbon, which as an efficient and stable oxygen-evolving electrode. The "annealing +CV-activation" strategy induces the nanocrystallization and oxidation effects on the surface of the NiFeBSiP ribbon. The effects significantly increase the electron transfer ability, the Ni/Fe/P oxidation state and the surface area of the NiFeBSiP ribbon, which consequently leads to enhancing the OER performance. As a result, the treated ribbon exhibits a low overpotential of 269 mV at 10 mA cm-2 and a small Tafel slope of 40.5 mV dec-1, which are much better than the OER performance of the as-spun ribbon. The enhanced OER performance of the NiFeBSiP ribbon demonstrates the significant and promising effect of the "annealing +CV-activation" integrated strategy for designing high-efficiency amorphous alloy ribbons electrocatalysts.
Collapse
Affiliation(s)
- Junying Jiang
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Yong Wu
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Hongguo Chen
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Zhuqing Wan
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Ding Ding
- Institute of Materials & Laboratory for Microstructure, Shanghai University, Shanghai 200072, China
| | - Lei Xia
- Institute of Materials & Laboratory for Microstructure, Shanghai University, Shanghai 200072, China
| | - Xiaolong Guo
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Peng Yu
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
10
|
Salvò D, Mosconi D, Neyman A, Bar-Sadan M, Calvillo L, Granozzi G, Cattelan M, Agnoli S. Nanoneedles of Mixed Transition Metal Phosphides as Bifunctional Catalysts for Electrocatalytic Water Splitting in Alkaline Media. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:683. [PMID: 36839051 PMCID: PMC9963911 DOI: 10.3390/nano13040683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
In this work, mixed Ni/Co and Ni/Fe metal phosphides with different metal ratios were synthesized through the phosphidization of high-surface-area hydroxides grown hydrothermally on carbon cloth. The materials were characterized by means of X-ray photoemission spectroscopy, X-ray diffraction, energy dispersive X-ray analysis, and electron microscopies. The electrocatalytic performance in the electrochemical water splitting was tested in alkaline media. With the aim of determining the chemical stability of the mixed phosphides and the possible changes undergone under catalytic conditions, the materials were characterized before and after the electrochemical tests. The best performances in the hydrogen evolution reaction were achieved when synergic interactions are established among the metal centers, as suggested by the outstanding performances (50 mV to achieve 10 mA/cm2) of materials containing the highest amount of ternary compounds, i.e., NiCoP and NiFeP. The best performances in the oxygen evolution reaction were reached by the Ni-Fe materials. Under these conditions, it was demonstrated that a strong oxidation of the surface and the dissolution of the phosphide/phosphate component takes place, with the consequent formation of the corresponding metal oxides and hydroxides.
Collapse
Affiliation(s)
- Davide Salvò
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Avanzare Innovación Tecnológica S.L., Av. Lentiscares, 4-6, 26370 Navarrete, Spain
- Organometallic Molecular Materials (MATMO), Departamento de Química-Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios, 53, 26006 Logroño, Spain
| | - Dario Mosconi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Alevtina Neyman
- Department of Chemistry, Ben Gurion University, Beer Sheva 84105, Israel
| | - Maya Bar-Sadan
- Department of Chemistry, Ben Gurion University, Beer Sheva 84105, Israel
| | - Laura Calvillo
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Gaetano Granozzi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Mattia Cattelan
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
11
|
Fabrication of Surface Etched NiFe2O4-NiSe2 Nanocomposite as an Efficient Electrocatalyst for Oxygen Evolution Reaction. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
12
|
Direct Growth of TiO2–MoO2/MnO2–MoO2 on Plasma-Treated Carbon-Cloth Surface for High-Performance Supercapacitor and Oxygen Evolution Reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Bai H, Chen D, Ma Q, Qin R, Xu H, Zhao Y, Chen J, Mu S. Atom Doping Engineering of Transition Metal Phosphides for Hydrogen Evolution Reactions. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Ashraf J, Akbarinejad A, Hisey CL, Bryant DT, Wang J, Zhu B, Evans CW, Williams DE, Chamley LW, Barker D, Pilkington LI, Travas-Sejdic J. Conducting Polymer-Coated Carbon Cloth Captures and Releases Extracellular Vesicles by a Rapid and Controlled Redox Process. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32880-32889. [PMID: 35820023 DOI: 10.1021/acsami.2c06481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Electrochemical techniques offer great opportunities for the capture of chemical and biological entities from complex mixtures and their subsequent release into clean buffers for analysis. Such methods are clean, robust, rapid, and compatible with a wide range of biological fluids. Here, we designed an electrochemically addressable system, based on a conducting terpolymer [P(EDOT-co-EDOTSAc-co-EDOTEG)] coated onto a carbon cloth substrate, to selectively capture and release biological entities using a simple electrochemical redox process. The conducting terpolymer composition was optimized and the terpolymer-coated carbon cloth was extensively characterized using electrochemical analysis, Raman and Fourier transform-infrared spectroscopy, water contact angle analysis, and scanning electron microscopy. The conductive terpolymer possesses a derivative of EDOT with an acetylthiomethyl moiety (EDOTSAc), which is converted into a "free" thiol that then undergoes reversible oxidation/reduction cycles at +1.0 V and -0.8 V (vs Ag/AgCl), respectively. That redox process enables electrochemical capture and on-demand release. We first demonstrated the successful electrochemical capture/release of a fluorescently labeled IgG antibody. The same capture/release procedure was then applied to release extracellular vesicles (EVs), originating from both MCF7 and SKBR3 breast cancer cell line bioreactors. EVs were captured using the substrate-conjugated HER2 antibody which was purified from commercially available trastuzumab. Capture and release of breast cancer EVs using a trastuzumab-derived HER2 antibody has not been reported before (to the best of our knowledge). A rapid (2 min) release at a low potential (-0.8 V) achieved a high release efficiency (>70%) of the captured, HER2+ve, SKBR3 EVs. The developed system and the electrochemical method are efficient and straightforward and have vast potential for the isolation and concentration of various biological targets from large volumes of biological and other (e.g., environmental) samples.
Collapse
Affiliation(s)
- Jesna Ashraf
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Alireza Akbarinejad
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Colin L Hisey
- Hub for Extracellular Vesicles Investigations (HEVI), Department of Obstetrics and Gynaecology, The University of Auckland, Auckland 1023, New Zealand
| | - Devon T Bryant
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Julie Wang
- Hub for Extracellular Vesicles Investigations (HEVI), Department of Obstetrics and Gynaecology, The University of Auckland, Auckland 1023, New Zealand
| | - Bicheng Zhu
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Clive W Evans
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - David E Williams
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Lawrence W Chamley
- Hub for Extracellular Vesicles Investigations (HEVI), Department of Obstetrics and Gynaecology, The University of Auckland, Auckland 1023, New Zealand
| | - David Barker
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Lisa I Pilkington
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
15
|
Deng R, Guo M, Wang C, Zhang Q. Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting: From catalytic mechanism and synthesis method to optimization design. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Adegoke KA, Maxakato NW. Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Liang Z, Xue Y, Wang X, Zhang X, Tian J, Cui H. The incorporation of cocatalyst cobalt sulfide into graphitic carbon nitride: Boosted photocatalytic hydrogen evolution performance and mechanism exploration. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Xu W, Ni X, Zhang L, Yang F, Peng Z, Huang Y, Liu Z. Tuning the electronic structure of tungsten oxide for enhanced hydrogen evolution reaction in alkaline electrolyte. ChemElectroChem 2022. [DOI: 10.1002/celc.202101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Xu
- Shanghai Institute of Microsystem and Information Technology state key laboratory of functional materials for informatics 865 Changning Road Shanghai CHINA
| | - Xingming Ni
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University school of physical science and technology CHINA
| | - Lunjia Zhang
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University school of physical science and technology CHINA
| | - Fan Yang
- ShanghaiTech University School of Physical Science and Technology school of Physical Science and Technology CHINA
| | - Zheng Peng
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University school of physical science and technology CHINA
| | - Yifan Huang
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University school of physical science and technology CHINA
| | - Zhi Liu
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University School of Physical Science and Technology 393 Middle Huaxia Road, Pudong, Shanghai, 201210 201210 Shanghai CHINA
| |
Collapse
|
19
|
Hu Z, Hao L, Quan F, Guo R. Recent developments of Co3O4-based materials as catalysts for the oxygen evolution reaction. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01688a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The demand for the development of clean and efficient energy is becoming increasingly pressing due to depleting fossil fuels and environmental concerns.
Collapse
Affiliation(s)
- Zhenyu Hu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Liping Hao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Fan Quan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| |
Collapse
|
20
|
Xiang D, Zhang B, Zhang H, Shen L. One-Step Synthesis of Bifunctional Nickel Phosphide Nanowires as Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. Front Chem 2021; 9:773018. [PMID: 34722465 PMCID: PMC8552028 DOI: 10.3389/fchem.2021.773018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
The Ni2P nanowires were simply synthesized via a rapid one-step hydrothermal approach, in which deionized water, red phosphorus, nickel acetate, and hexadecyl trimethyl ammonium bromide were used as the solvent, phosphor and nickel sources, and active agent, respectively. The as-synthesized Ni2P nanowire clusters were composed of uniform nanowires with length of about 10 μm and diameter of about 40 nm. The Ni2P nanowires exhibited enhanced electrocatalytic activity for both hydrogen evolution reaction and oxygen evolution reaction This work provides good guidance for the rational design of nickel phosphides with unique nanostructures for highly efficient overall water splitting.
Collapse
Affiliation(s)
- Dong Xiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
| | - Biao Zhang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
| | - Hongsheng Zhang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
| | - Liangping Shen
- Hubei Yangtze Memory Labs, Hubei University, Wuhan, China.,Hubei Key Laboratory of Ferro and Piezoelectric Materials and Devices, School of Microelectronics, Hubei University, Wuhan, China
| |
Collapse
|
21
|
Mugheri AQ, Sangah AA, otho A, Memon SA, Mahmoud KH, El‐Bahy ZM. Efficient
Mn‐Ni‐Co
nanocomposite–based electrocatalyst for oxygen evolution reaction in alkaline media. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Ali Asghar Sangah
- Department of Basic Sciences and Related Studies Mehran University of Engineering and Technology Jamshoro Pakistan
| | - Aijaz otho
- Institute of Plant Sciences University of Sindh Jamshoro Pakistan
| | | | - Khaled H. Mahmoud
- Department of Physics College of Khurma University College, Taif University Taif Saudi Arabia
| | - Zeinhom M. El‐Bahy
- Department of Chemistry Faculty of Science, Al‐Azhar University Cairo Egypt
| |
Collapse
|
22
|
Zhang J, Liu Y, Zhang J, Zhang Y, Yuan S, Wang D, Lian J, Jiang Q, Wang G. A self-supporting bifunctional catalyst electrode made of amorphous and porous CoP3 nanoneedle array: exhaling during overall water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Akbayrak M, Önal AM. Metal oxides supported cobalt nanoparticles: Active electrocatalysts for oxygen evolution reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Guo C, Shi Y, Lu S, Yu Y, Zhang B. Amorphous nanomaterials in electrocatalytic water splitting. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63740-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Tuo Y, Lu Q, Chen C, Liu T, Pan Y, Zhou Y, Zhang J. The facile synthesis of core-shell PtCu nanoparticles with superior electrocatalytic activity and stability in the hydrogen evolution reaction. RSC Adv 2021; 11:26326-26335. [PMID: 35479446 PMCID: PMC9037382 DOI: 10.1039/d1ra04001d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/18/2021] [Indexed: 11/21/2022] Open
Abstract
Pt is the most efficient electrocatalyst for the hydrogen evolution reaction (HER); however, it is a high cost material with scarce resources. In order to balance performance and cost in a Pt-based electrocatalyst, we prepared a series of PtCu bimetallic nanoparticles (NPs) with different Pt/Cu ratios through a facile synthetic strategy to optimize the utilization of Pt atoms. PtCu NPs demonstrate a uniform particle size distribution with exposed (111) facets that are highly active for the HER. A synergetic effect between Pt and Cu leads to electron transfer from Pt to Cu, which is favorable for the desorption of H intermediates. Therefore, the as-synthesized carbon black (CB) supported PtCu catalysts showed enhanced catalytic performance in the HER compared with a commercial Pt/C electrocatalyst. Typically, Pt1Cu3/CB showed excellent HER performance, with only 10 mV (acid) and 17 mV (alkaline) overpotentials required to achieve a current density of 10 mA cm-2. This is because the Pt1Cu3 NPs, with a small average particle size (7.70 ± 0.04 nm) and Pt-Cu core and Pt-rich shell structure, display the highest electrochemically active surface area (24.7 m2 gPt -1) out of the as-synthesized PtCu/CB samples. Furthermore, Pt1Cu3/CB showed good electrocatalytic stability, with current density drops of only 9.3% and 12.8% in acidic solution after 24 h and in alkaline solution after 9 h, respectively. This study may shed new light on the rational design of active and durable hydrogen evolution catalysts with low amounts of Pt.
Collapse
Affiliation(s)
- Yongxiao Tuo
- School of Materials Science and Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Qing Lu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 China
| | - Chen Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 China
| | - Tenglong Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 China
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China) Qingdao 266580 China .,State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 China
| |
Collapse
|
26
|
Yao D, Gu L, Zuo B, Weng S, Deng S, Hao W. A strategy for preparing high-efficiency and economical catalytic electrodes toward overall water splitting. NANOSCALE 2021; 13:10624-10648. [PMID: 34132310 DOI: 10.1039/d1nr02307a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrolyzing water technology to prepare high-purity hydrogen is currently an important field in energy development. However, the preparation of efficient, stable, and inexpensive hydrogen production technology from electrolyzed water is a major problem in hydrogen energy production. The key technology for hydrogen production from water electrolysis is to prepare highly efficient catalytic, stable and durable electrodes, which are used to reduce the overpotential of the hydrogen evolution reaction and the oxygen evolution reaction of electrolyzed water. The main strategies for preparing catalytic electrodes include: (i) choosing cheap, large specific surface area and stable base materials, (ii) modulating the intrinsic activity of the catalytic material through elemental doping and lattice changes, and (iii) adjusting the morphology and structure to increase the catalytic activity. Based on these findings, herein, we review the recent work in the field of hydrogen production by water electrolysis, introduce the preparation of catalytic electrodes based on nickel foam, carbon cloth and new flexible materials, and summarize the catalytic performance of metal oxides, phosphides, sulfides and nitrides in the hydrogen evolution and oxygen evolution reactions. Secondly, parameters such as the overpotential, Tafel slope, active site, turnover frequency, and stability are used as indicators to measure the performance of catalytic electrode materials. Finally, taking the material cost of the catalytic electrode as a reference, the successful preparations are comprehensively compared. The overall aim is to shed some light on the exploration of high-efficiency and economical electrodes in energy chemistry and also demonstrate that there is still room for discovering new combinations of electrodes including base materials, composition lattice changes and morphologies.
Collapse
Affiliation(s)
- Dongxue Yao
- University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | | | | | | | | | | |
Collapse
|
27
|
Wang H, Wang H, Wan H, Wu D, Chen G, Zhang N, Cao Y, Liu X, Ma R. Ultrathin Nanosheet-Assembled Co-Fe Hydroxide Nanotubes: Sacrificial Template Synthesis, Topotactic Transformation, and Their Application as Electrocatalysts for Efficient Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46578-46587. [PMID: 32997942 DOI: 10.1021/acsami.0c15253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogen as a reliable, sustainable, and efficient energy carrier can effectively alleviate global environmental issues and energy crisis. However, the electrochemical splitting of water for large-scale hydrogen generation is still impeded by the sluggish kinetics of the oxygen evolution reaction (OER) at the anode. Considering the synergistic effect of Co and Fe on the improvement of OER catalytic activity, we prepared Co-Fe hydroxide nanotubes through a facile sacrificial template route. The resultant Co0.8Fe0.2 hydroxide nanotubes exhibited remarkable electrocatalytic performance for OER in 1.0 M KOH, with a small overpotential of about 246 mV at 10 mA cm-2 and a Tafel slope of 53 mV dec-1. The Co0.8Fe0.2P nanotubes were further prepared by a phosphidation treatment, exhibiting excellent OER catalytic performance with an overpotential as low as 240 mV at 10 mA cm-2. Besides, the Co0.8Fe0.2P nanotubes supported on a Ni foam (Co0.8Fe0.2P/NF) used as both positive and negative poles in a two-electrode system achieved a cell voltage of about 1.67 V at 10 mA cm-2 and exhibited outstanding stability. A water splitting system was constructed by Co0.8Fe0.2P/NF electrodes connected with a crystalline silicon solar cell, demonstrating the application as an electrocatalyst.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Haoji Wang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hao Wan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Dan Wu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yijun Cao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiaohe Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Renzhi Ma
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
28
|
Amorphous NiFe phosphides supported on nanoarray-structured nitrogen-doped carbon paper for high-performance overall water splitting. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136873] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Ashraf MA, Yang Y, Zhang D, Pham BT. Bifunctional and binder-free S-doped Ni-P nanospheres electrocatalyst fabricated by pulse electrochemical deposition method for overall water splitting. J Colloid Interface Sci 2020; 577:265-278. [DOI: 10.1016/j.jcis.2020.05.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022]
|
30
|
Jiang Y, Lu Y. Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting. NANOSCALE 2020; 12:9327-9351. [PMID: 32315016 DOI: 10.1039/d0nr01279c] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Investigating renewable and clean energy materials as alternatives to fossil fuels can be foreseen as a potential solution to the global problems of energy shortages and environmental pollution. Recently, transition metal boride (TMB)-based materials have emerged as the rising star as efficient electrocatalysts for hydrogen evolution reaction (HER) and/or oxygen evolution reaction (OER). In this review, an overview of the most recent developments in the use of TMB-based materials as electrocatalysts for HER/OER or overall water splitting has been presented. Initially, we provide a comprehensive introduction of the fundamentals of electrochemical water splitting. Then, the synthesis approaches of TMB materials are summarized and compared. Emphasis is put on the various strategies for further improving the electrocatalytic performance of TMBs. Finally, challenges and future perspectives for TMBs in water-splitting applications are proposed.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
31
|
Pu Z, Liu T, Zhao W, Shi X, Liu Y, Zhang G, Hu W, Sun S, Liao S. Versatile Route To Fabricate Precious-Metal Phosphide Electrocatalyst for Acid-Stable Hydrogen Oxidation and Evolution Reactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11737-11744. [PMID: 32057234 DOI: 10.1021/acsami.9b23426] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Highly active catalyst for the hydrogen oxidation/evolution reactions (HOR and HER) plays an essential role for the water-to-hydrogen reversible conversion. Currently, increasing attention has been concentrated on developing low-cost, high-activity, and long-life catalytic materials, especially for acid media due to the promise of proton exchange membrane (PEM)-based electrolyzers and polymer electrolyte fuel cells. Although non-precious-metal phosphide (NPMP) catalysts have been widely researched, their electrocatalytic activity toward HER is still not satisfactory compared to that of Pt catalysts. Herein, a series of precious-metal phosphides (PMPs) supported on graphene (rGO), including IrP2-rGO, Rh2P-rGO, RuP-rGO, and Pd3P-rGO, are prepared by a simple, facile, eco-friendly, and scalable approach. As an example, the resultant IrP2-rGO displays better HER electrocatalytic performance and longer durability than the benchmark materials of commercial Pt/C under acidic, neutral, and basic electrolytes. To attain a current density of 10 mA cm-2, IrP2-rGO shows overpotentials of 8, 51, and 13 mV in 0.5 M dilute sulfuric acid, 1.0 M phosphate-buffered saline (PBS), and 1.0 M potassium hydroxide solutions, respectively. Additionally, IrP2-rGO also exhibits exceptional HOR performance in the 0.1 M HClO4 medium. Therefore, this work offers a vital addition to the development of a number of PMPs with excellent activity toward HOR and HER.
Collapse
Affiliation(s)
- Zonghua Pu
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Tingting Liu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, China
| | - Weiyue Zhao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiudong Shi
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yanchen Liu
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique (INRS)-Énergie Matériaux et Télécommunications (EMT), Varennes, Quebec J3X 1S2, Canada
| | - Weihua Hu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, China
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS)-Énergie Matériaux et Télécommunications (EMT), Varennes, Quebec J3X 1S2, Canada
| | - Shijun Liao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
32
|
Wang P, Qi J, Li C, Chen X, Wang T, Liang C. N‐Doped Carbon Nanotubes Encapsulating Ni/MoN Heterostructures Grown on Carbon Cloth for Overall Water Splitting. ChemElectroChem 2020. [DOI: 10.1002/celc.202000023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pan Wang
- State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Ji Qi
- State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Chuang Li
- State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Xiao Chen
- State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Tonghua Wang
- State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Changhai Liang
- State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| |
Collapse
|
33
|
Wang J, Yang Z, Zhang M, Gong Y. Vertically stacked bilayer heterostructure CoFe2O4@Ni3S2 on a 3D nickel foam as a high-performance electrocatalyst for the oxygen evolution reaction. NEW J CHEM 2020. [DOI: 10.1039/c9nj05077a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The as-obtained CoFe2O4@Ni3S2/NF can serve as an active and stable water oxidation catalyst under electrochemical reaction conditions.
Collapse
Affiliation(s)
- Jingyi Wang
- Materials Science and Engineering Institute
- Taiyuan University of Technology
- China
| | - Zhi Yang
- Chemical Engineering and Technology Institute
- North University of China
- Taiyuan
- China
| | - Meilin Zhang
- Chemical Engineering and Technology Institute
- North University of China
- Taiyuan
- China
| | - Yaqiong Gong
- Chemical Engineering and Technology Institute
- North University of China
- Taiyuan
- China
| |
Collapse
|
34
|
Zhang L, Zhang T, Dai K, Zhao L, Wei Q, Zhang B, Xiang X. Ultrafine Co3O4 nanolayer-shelled CoWP nanowire array: a bifunctional electrocatalyst for overall water splitting. RSC Adv 2020; 10:29326-29335. [PMID: 35521139 PMCID: PMC9055948 DOI: 10.1039/d0ra05950a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023] Open
Abstract
The development of bifunctional electrocatalysts based on highly efficient non-noble metals is pivotal for overall water splitting. Here, a composite electrode of Co3O4@CoWP is synthesized, where an ultrathin layer composed of Co3O4 nanoparticles is grown on CoWP nanowires supported on a carbon cloth (CC). The Co3O4@CoWP/CC electrode exhibits excellent electrocatalytic activity and improved kinetics towards both the oxygen and hydrogen evolution reactions (OER and HER). The Co3O4@CoWP/CC electrode achieves a current density of 10 mA cm−2 at a low overpotential of 269 mV for the OER and −10 mA cm−2 at 118 mV for the HER in 1.0 M KOH solution. The voltage applied to a two-electrode water electrolyzer for overall water splitting, while employing the Co3O4@CoWP/CC electrode as both an anode and a cathode, in order to reach a current density of 10 mA cm−2, is 1.61 V, which is better than that for the majority of reported non-noble electrocatalysts. Moreover, the Co3O4@CoWP/CC electrode exhibits good stability over 24 h with slight attenuation. The electrode benefits from the enhanced adsorption of oxygen intermediates on Co3O4 during the OER, the increased ability for water dissociation and the optimized H adsorption/desorption ability of CoWP nanowires during the HER. This study provides a feasible approach for cost-effective and high-performance non-noble metal bifunctional catalysts for overall water electrolysis. A hierarchical 3D self-supporting CoWP nanowire array shelled with an ultrathin Co3O4 nanolayer on carbon cloth (Co3O4@CoWP/CC) exhibits superior overall water electrolysis capability.![]()
Collapse
Affiliation(s)
- Lili Zhang
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
- State Key Laboratory of Chemical Resource Engineering
| | - Tingting Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - Kaiqing Dai
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Liqing Zhao
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Qinghe Wei
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Bing Zhang
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| |
Collapse
|
35
|
Younis MA, Lyu S, Zhao Q, Lei C, Zhang P, Yang B, Li Z, Lei L, Hou Y, Feng X. Noble metal-free two dimensional carbon-based electrocatalysts for water splitting. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s42833-019-0006-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractNoble metal materials are widely employed as benchmark electrocatalysts to achieve electrochemical water splitting which comprises of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). However, the high cost and scarcity limit the wide ranging commercial applications of noble metal-based catalysts. Development of noble metal-free two dimensional (2D) carbon-based materials can not only reduce the consumption of noble metals, but also create materials with the characteristics of high active surface area, abundance, easy functionalization, and chemical stability, which may carve a way to promising electrochemical water splitting. In this review, noble metal-free 2D carbon-based electrocatalysts, including heteroatom (B, S, N, P, F, and O) doped graphene, 2D porous carbons modified with heteroatoms and/or transition metals, and 2D carbon-based hybrids are introduced as cost-effective alternatives to the noble metal-based electrocatalysts with comparable efficiencies to conduct HER, OER, and overall water splitting. This review emphasizes on current development in synthetic strategies and structure–property relationships of noble metal-free 2D carbon-based electrocatalysts, together with major challenges and perspectives of noble metal-free 2D carbon-based electrocatalysts for further electrochemical applications.
Collapse
|
36
|
Li G, Duan H, Cheng W, Wang C, Hu W, Sun Z, Tan H, Li N, Ji Q, Wang Y, Lu Y, Yan W. Interlayer Photoelectron Transfer Boosted by Bridged Ru IV Atoms in GaS Nanosheets for Efficient Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45561-45567. [PMID: 31713409 DOI: 10.1021/acsami.9b13678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photocatalytic water splitting over layered nanosheet (NS) catalysts has caught a lot of attention for renewable hydrogen fuel production. However, the weak van der Waals interlayer interactions make it a great challenge to realize an effective dissociation of photogenerated excitons and efficient charge transfer across the interior of layered catalysts during the photocatalysis process. Here, we propose an intercalation strategy of high-valence RuIV atoms to render two-dimensional GaS NS photocatalysts with rapid electron-hole dissociation and long photocarrier lifetime in visible-light-driven water splitting. Experimental and theoretical results unravel that the intercalated single-site Ru, confined in interlayer of GaS NSs, with a hexagonal structural configuration of "Ru1-S6", can serve as an electron-trapped high-speed channel toward simultaneously accelerating electron-hole pairs dissociation and promoting photoelectron transportation through the van der Waals interlayer. Consequently, the as-developed Ru-intercalated GaS NSs can give a notable H2 production rate of 340 μmol g-1 h-1 under visible-light irradiation and an apparent yield of 7% at 420 nm, 38 times that of pure GaS NSs. This study opens up a feasible way for a new design of highly active layered photocatalysts toward high-efficiency solar energy conversion.
Collapse
Affiliation(s)
- Guinan Li
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Hengli Duan
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Weiren Cheng
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Chao Wang
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Wei Hu
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Hao Tan
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Na Li
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Qianqian Ji
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Yao Wang
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Ying Lu
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| |
Collapse
|
37
|
Rafai S, Qiao C, Wang Z, Cao C, Mahmood T, Naveed M, Younas W, Khalid S. Cobalt Phosphide Ultrathin and Freestanding Sheets Prepared through Microwave Chemical Vapor Deposition: A Highly Efficient Oxygen Evolution Reaction Catalyst. ChemElectroChem 2019. [DOI: 10.1002/celc.201901363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Souleymen Rafai
- Research Centre of Materials Science Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green ApplicationsBeijing Institute of Technology Beijing 100081 China
| | - Chen Qiao
- Research Centre of Materials Science Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green ApplicationsBeijing Institute of Technology Beijing 100081 China
| | - Zhitao Wang
- Research Centre of Materials Science Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green ApplicationsBeijing Institute of Technology Beijing 100081 China
| | - Chuanbao Cao
- Research Centre of Materials Science Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green ApplicationsBeijing Institute of Technology Beijing 100081 China
| | - Tariq Mahmood
- Government College Women University Sialkot Pakistan
| | - Muhammad Naveed
- Research Centre of Materials Science Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green ApplicationsBeijing Institute of Technology Beijing 100081 China
| | - Waqar Younas
- Research Centre of Materials Science Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green ApplicationsBeijing Institute of Technology Beijing 100081 China
| | - Syed Khalid
- Research Centre of Materials Science Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green ApplicationsBeijing Institute of Technology Beijing 100081 China
| |
Collapse
|
38
|
Huang H, Yan M, Yang C, He H, Jiang Q, Yang L, Lu Z, Sun Z, Xu X, Bando Y, Yamauchi Y. Graphene Nanoarchitectonics: Recent Advances in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903415. [PMID: 31496036 DOI: 10.1002/adma.201903415] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/23/2019] [Indexed: 05/24/2023]
Abstract
Under the double pressures of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power resource, has become an important trend in the development of sustainable energy-production and energy-consumption systems. In this regard, the electrocatalytic hydrogen evolution reaction (HER) provides an efficient and clean pathway for the mass production of hydrogen fuel and has motivated the design and construction of highly active HER electrocatalysts of an acceptable cost. In particular, graphene-based electrocatalysts commonly exhibit an enhanced HER performance owing to their distinctive structural merits, including a large surface area, high electrical conductivity, and good chemical stability. Considering the rapidly growing research enthusiasm for this topic over the last several years, herein, a panoramic review of recent advances in graphene-based electrocatalysts is presented, covering various advanced synthetic strategies, microstructural characterizations, and the applications of such materials in HER electrocatalysis. Lastly, future perspectives on the challenges and opportunities awaiting this emerging field are proposed and discussed.
Collapse
Affiliation(s)
- Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China
| | - Minmin Yan
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China
| | - Cuizhen Yang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China
| | - Haiyan He
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China
| | - Quanguo Jiang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China
| | - Lu Yang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China
| | - Zhiyong Lu
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China
| | - Ziqi Sun
- School of Chemistry Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Xingtao Xu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Yoshio Bando
- Institute of Molecular Plus, Tianjin University, No. 11 Building, No. 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
- Australian Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Korea
| |
Collapse
|
39
|
Parra-Puerto A, Ng KL, Fahy K, Goode AE, Ryan MP, Kucernak A. Supported Transition Metal Phosphides: Activity Survey for HER, ORR, OER, and Corrosion Resistance in Acid and Alkaline Electrolytes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03359] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Kai Ling Ng
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
| | - Kieran Fahy
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
| | - Angela E. Goode
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Mary P. Ryan
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Anthony Kucernak
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
40
|
Ren Z, Ren X, Zhang L, Fu C, Li X, Zhang Y, Gao B, Yang L, Chu PK, Huo K. Tungsten‐Doped CoP Nanoneedle Arrays Grown on Carbon Cloth as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ChemElectroChem 2019. [DOI: 10.1002/celc.201901417] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zhiguo Ren
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology Luoyu Road 1037 Wuhan 430074 China
| | - Xiaochuan Ren
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology Luoyu Road 1037 Wuhan 430074 China
| | - Liao Zhang
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology Luoyu Road 1037 Wuhan 430074 China
- China-EU Institute for Clean and Renewable EnergyHuazhong University of Science and Technology Luoyu Road 1037 Wuhan 430074 China
| | - Cehuang Fu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for NanotechnologySchool of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Xiaofang Li
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology Luoyu Road 1037 Wuhan 430074 China
| | - Yingxi Zhang
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology Luoyu Road 1037 Wuhan 430074 China
- Department of Physics and Department of Materials Science and EngineeringCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| | - Biao Gao
- The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and Technology Wuhan 430081 China
- Department of Physics and Department of Materials Science and EngineeringCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for NanotechnologySchool of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Paul K. Chu
- Department of Physics and Department of Materials Science and EngineeringCity University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| | - Kaifu Huo
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology Luoyu Road 1037 Wuhan 430074 China
| |
Collapse
|
41
|
Yue S, Wang S, Jiao Q, Feng X, Zhan K, Dai Y, Feng C, Li H, Feng T, Zhao Y. Preparation of Yolk-Shell-Structured Co x Fe 1-x P with Enhanced OER Performance. CHEMSUSCHEM 2019; 12:4461-4470. [PMID: 31381812 DOI: 10.1002/cssc.201901604] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/30/2019] [Indexed: 06/10/2023]
Abstract
The design and development of low-cost, highly efficient, and stable electrocatalysts to take the place of noble-metal catalysts for the oxygen evolution reaction (OER) remain a significant challenge. Herein, the synthesis of yolk-shell-structured binary transition metal phosphide Cox Fe1-x P with different Co/Fe ratios by phosphidation of a cobalt ferrite precursor is reported. The as-synthesized Cox Fe1-x P catalysts were used for the OER. All yolk-shell Cox Fe1-x P catalysts with different Co/Fe ratios showed much better performance than the corresponding solid catalyst. The formation of Co oxides on the catalyst surface during OER and the optimal Co/Fe ratio were found to be critical to their activity. Among the as-prepared Cox Fe1-x P catalysts, that with a Co/Fe ratio of 0.47/0.53 (Co0.47 Fe0.53 P) exhibited the best performance. Co0.47 Fe0.53 P has an overpotential of 277 mV at a current density of 10 mA cm-2 , a Tafel slope of 37 mV dec-1 , and superior stability in alkaline medium. The outstanding performance is partly ascribed to the transfer of valence electrons from Co to P and Fe. The Co0.47 Fe0.53 P matrix with excellent conductivity and Fe phosphate that is stable on the surface of the catalyst are also helpful for the OER performance. In addition, the yolk-shell structure of Co0.47 Fe0.53 P increases the contact area between electrolyte and catalyst. These characteristics of Co0.47 Fe0.53 P greatly improve its OER performance. This optimized binary transition metal phosphide provides a new approach for the design of nonprecious-metal electrocatalysts.
Collapse
Affiliation(s)
- Song Yue
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shanshan Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qingze Jiao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- School of Materials and Environment, Beijing Institute of Technology, Zhuhai, 519085, P. R. China
| | - Xueting Feng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Kun Zhan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yiqing Dai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Caihong Feng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hansheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Tongying Feng
- School of Materials and Environment, Beijing Institute of Technology, Zhuhai, 519085, P. R. China
| | - Yun Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
42
|
Tong J, Li W, Bo L, Li Y, Li T, Zhang Q. Simple preparation of Ni2P/Ni(PO3)2 inlayed in nitrogen-sulfur self-doped ultrathin holey carbon nanosheets with excellent electrocatalytic activities for water splitting. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134579] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Masa J, Schuhmann W. The Role of Non‐Metallic and Metalloid Elements on the Electrocatalytic Activity of Cobalt and Nickel Catalysts for the Oxygen Evolution Reaction. ChemCatChem 2019. [DOI: 10.1002/cctc.201901151] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Justus Masa
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| |
Collapse
|
44
|
Dang Y, He J, Wu T, Yu L, Kerns P, Wen L, Ouyang J, Suib SL. Constructing Bifunctional 3D Holey and Ultrathin CoP Nanosheets for Efficient Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29879-29887. [PMID: 31343153 DOI: 10.1021/acsami.9b08238] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pursuing cost-effective water-splitting catalysts is still a significant scientific challenge to produce renewable fuels and chemicals from various renewable feedstocks. The construction of controllable binder-free nanostructures with self-standing holey and ultrathin nanosheets is one of the promising approaches. Herein, by employing a combination of the potentiodynamic mode of electrodeposition and low-temperature phosphidation, three-dimensional (3D) holey CoP ultrathin nanosheets are fabricated on a carbon cloth (PD-CoP UNSs/CC) as bifunctional catalysts. Electrochemical tests show that the PD-CoP UNSs/CC exhibits outstanding hydrogen evolution reaction performance at all pH values with overpotentials of 47, 90, and 51 mV to approach 10 mA cm-2 in acidic, neutral, and alkaline media, respectively. Meanwhile, only a low overpotential of 268 mV is required to drive 20 mA cm-2 for the oxygen evolution reaction in alkaline media. Cyclic voltammetry and impedance studies suggest the enhanced performance is mainly attributed to the unique 3D holey ultrathin nanosheets, which could increase the electrochemically active area, facilitate the release of gas bubbles from electrode surfaces, and improve effective electrolyte diffusion. This work suggests an efficient path to design and fabricate non-noble bifunctional electrocatalysts for water splitting at a large scale.
Collapse
Affiliation(s)
| | | | - Tianli Wu
- Henan Key Laboratory of Photovoltaic Materials and School of Physics & Electronics , Henan University , Kaifeng 475004 , P. R. China
| | | | | | | | | | | |
Collapse
|
45
|
Alsabban MM, Yang X, Wahyudi W, Fu JH, Hedhili MN, Ming J, Yang CW, Nadeem MA, Idriss H, Lai Z, Li LJ, Tung V, Huang KW. Design and Mechanistic Study of Highly Durable Carbon-Coated Cobalt Diphosphide Core-Shell Nanostructure Electrocatalysts for the Efficient and Stable Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20752-20761. [PMID: 31091878 DOI: 10.1021/acsami.9b01847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The facile synthesis of hierarchically functional, catalytically active, and electrochemically stable nanostructures holds a tremendous promise for catalyzing the efficient and durable oxygen evolution reaction (OER) and yet remains a formidable challenge. Herein, we report the scalable production of core-shell nanostructures composed of carbon-coated cobalt diphosphide nanosheets, C@CoP2, via three simple steps: (i) electrochemical deposition of Co species, (ii) gas-phase phosphidation, and (iii) carbonization of CoP2 for catalytic durability enhancement. Electrochemical characterizations showed that C@CoP2 delivers an overpotential of 234 mV, retains its initial activity for over 80 h of continuous operation, and exhibits a fast OER rate of 63.8 mV dec-1 in base.
Collapse
Affiliation(s)
- Merfat M Alsabban
- Department of Chemistry , University of Jeddah , Jeddah 21959 , Kingdom of Saudi Arabia
| | | | | | | | | | | | | | - Muhammad A Nadeem
- SABIC, Corporate Research and Innovation (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Hicham Idriss
- SABIC, Corporate Research and Innovation (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | | | - Lain-Jong Li
- School of Materials Science and Engineering , University of New South Wales , Sydney 2052 , Australia
| | | | | |
Collapse
|
46
|
Heidari S, Singh JP, Feizi H, Bagheri R, Chae KH, Song Z, Khatamian M, Najafpour MM. Electrochemical water oxidation by simple manganese salts. Sci Rep 2019; 9:7749. [PMID: 31123332 PMCID: PMC6533286 DOI: 10.1038/s41598-019-44001-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 05/07/2019] [Indexed: 12/04/2022] Open
Abstract
Recently, it has been great efforts to synthesize an efficient water-oxidizing catalyst. However, to find the true catalyst in the harsh conditions of the water-oxidation reaction is an open area in science. Herein, we showed that corrosion of some simple manganese salts, MnCO3, MnWO4, Mn3(PO4)2 · 3H2O, and Mn(VO3)2 · xH2O, under the water-electrolysis conditions at pH = 6.3, gives an amorphous manganese oxide. This conversion was studied with X-ray absorption spectroscopy (XAS), as well as, scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDXS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), spectroelectrochemistry and electrochemistry methods. When using as a water-oxidizing catalyst, such results are important to display that long-term water oxidation can change the nature of the manganese salts.
Collapse
Affiliation(s)
- Sima Heidari
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Jitendra Pal Singh
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hadi Feizi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Robabeh Bagheri
- Surface Protection Research Group, Surface Department, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo, 315201, China
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Zhenlun Song
- Surface Protection Research Group, Surface Department, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo, 315201, China
| | - Maasoumeh Khatamian
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.
- Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| |
Collapse
|
47
|
Wang L, Wu H, Xi S, Chua ST, Wang F, Pennycook SJ, Yu ZG, Du Y, Xue J. Nitrogen-Doped Cobalt Phosphide for Enhanced Hydrogen Evolution Activity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17359-17367. [PMID: 31020826 DOI: 10.1021/acsami.9b01235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Development of highly efficient and durable hydrogen evolution reaction (HER) electrocatalysts has a direct impact on water splitting efficiency and cost-effectiveness. In this work, N-doped CoP2 is successfully synthesized for efficient HER in an alkaline electrolyte, which needs an overpotential of only 64 mV to drive a current density of 10 mA cm-2, with a small Tafel slope of 47.4 mV dec-1 and excellent stability for 15 h without any performance loss in 1 M KOH. This represents one of the best HER catalysts in the alkaline electrolyte so far. The successful doping of N into CoP2 is confirmed using X-ray photoelectron spectroscopy, X-ray absorption near-edge structure, and scanning transmission electron microscopy characterizations. It is revealed by first-principle calculations that the partial replacement of P with N not only facilitates electron transfer but also optimizes the Gibbs free energies of H*, H2O, and OH* adsorption on the P active sites, thus facilitating the HER process. This work highlights that anion modification of transition-metal phosphides would be an effective and feasible method to enhance their HER activities and provide new insights for the design of novel HER electrocatalysts.
Collapse
Affiliation(s)
- Ling Wang
- Department of Materials Science and Engineering, Faculty of Engineering , National University of Singapore , 9 Engineering Drive 1 , Singapore 117576
| | - Haijun Wu
- Department of Materials Science and Engineering, Faculty of Engineering , National University of Singapore , 9 Engineering Drive 1 , Singapore 117576
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences , A*STAR , 1 Pesek Road , Jurong Island, Singapore 627833
| | - Sing Teng Chua
- Department of Materials Science and Engineering, Faculty of Engineering , National University of Singapore , 9 Engineering Drive 1 , Singapore 117576
| | - Fenghe Wang
- Department of Materials Science and Engineering, Faculty of Engineering , National University of Singapore , 9 Engineering Drive 1 , Singapore 117576
| | - Stephen J Pennycook
- Department of Materials Science and Engineering, Faculty of Engineering , National University of Singapore , 9 Engineering Drive 1 , Singapore 117576
| | - Zhi Gen Yu
- Institute of High Performance Computing , A*STAR , Singapore 138632
| | - Yonghua Du
- Institute of Chemical and Engineering Sciences , A*STAR , 1 Pesek Road , Jurong Island, Singapore 627833
| | - Junmin Xue
- Department of Materials Science and Engineering, Faculty of Engineering , National University of Singapore , 9 Engineering Drive 1 , Singapore 117576
| |
Collapse
|
48
|
Pan Z, Niu P, Hou Y, Fang Y, Liu M, Wang X. LiCl as Phase-Transfer Catalysts to Synthesize Thin Co 2 P Nanosheets for Oxygen Evolution Reaction. CHEMSUSCHEM 2019; 12:1911-1915. [PMID: 30117677 DOI: 10.1002/cssc.201801691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Inorganic salts have been widely studied as templates for the synthesis of 2D layer structures. However, these salts normally can only serve as templates without any catalytic activity. Here, we report that LiCl used for the synthesis of ultrathin nanosheets not only serves as template for the synthesis of ultrathin Co2 P nanosheets with a thickness of 0.7 nm but also acts as a catalyst that induces the phase-transfer from CoP to Co2 P. The Co2 P nanosheets have a high electrochemical performance for oxygen evolution reaction.
Collapse
Affiliation(s)
- Zhiming Pan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Pingping Niu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Minghui Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, P. R. China
| |
Collapse
|
49
|
Liu Y, Ying Y, Fei L, Liu Y, Hu Q, Zhang G, Pang SY, Lu W, Mak CL, Luo X, Zhou L, Wei M, Huang H. Valence Engineering via Selective Atomic Substitution on Tetrahedral Sites in Spinel Oxide for Highly Enhanced Oxygen Evolution Catalysis. J Am Chem Soc 2019; 141:8136-8145. [PMID: 31017412 DOI: 10.1021/jacs.8b13701] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A major challenge that prohibits the practical application of single/double-transition metal (3d-M) oxides as oxygen evolution reaction (OER) catalysts is the high overpotentials during the electrochemical process. Herein, our theoretical calculation shows that Fe will be more energetically favorable in the tetrahedral site than Ni and Co, which can further regulate their electronic structure of binary NiCo spinel oxides for optimal adsorption energies of OER intermediates and improved electronic conductivity and hence boost their OER performance. X-ray absorption spectroscopy study on the as-synthesized NiCoFe oxide catalysts indicates that Fe preferentially dopes into tetrahedral sites of the lattice, which induces high proportions of Ni3+ and Co2+ on the octahedral sites (the active sites in OER). Consequently, this material exhibits a significantly enhanced OER performance with an ultralow overpotential of 201 mV cm-2 at 10 mA cm-2 and a small Tafel slope of 39 mV dec-1, which are much superior to state-of-the-art Ni-Co based catalysts.
Collapse
Affiliation(s)
- Yan Liu
- Department of Applied Physics , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong , China
| | - Yiran Ying
- Department of Applied Physics , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong , China
| | - Linfeng Fei
- Department of Applied Physics , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong , China
| | - Yi Liu
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Qingzhao Hu
- Department of Applied Physics , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong , China
| | - Guoge Zhang
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Sin Yi Pang
- Department of Applied Physics , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong , China
| | - Wei Lu
- University Research Facility in Materials Characterization and Device Fabrication , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong , China
| | - Chee Leung Mak
- Department of Applied Physics , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong , China
| | - Xin Luo
- Department of Applied Physics , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong , China
| | - Limin Zhou
- Department of Mechanical Engineering , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong , China
| | - Mingdeng Wei
- Institute of Advanced Energy Materials , Fuzhou University , Fuzhou 350002 , P. R. China
| | - Haitao Huang
- Department of Applied Physics , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong , China
| |
Collapse
|
50
|
Hou B, Fu J, Su H, Du X. Preparation of 3D nanostructured MnCo
2
S
4
as a robust electrocatalyst for overall water splitting. ChemistrySelect 2019. [DOI: 10.1002/slct.201900865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bin Hou
- School of Environment and SafetyNorth University of China Taiyuan 030051 China
| | - Jianpeng Fu
- School of Environment and SafetyNorth University of China Taiyuan 030051 China
| | - Hui Su
- School of Environment and SafetyNorth University of China Taiyuan 030051 China
| | - Xiaoqiang Du
- School of Chemical Engineering and TechnologyNorth University of China Taiyuan 030051 China
| |
Collapse
|