1
|
Ogawa M, Usami S, Takahama R, Iwamoto K, Nabeta T, Kawashima S, Kojima R, Ohyama J, Hayakawa T, Nabae Y, Moriya M. One-pot gram-scale rapid synthesis of MN 4 complexes with 14-membered ring macrocyclic ligand as a precursor for carbon-based ORR and CO 2RR catalysts. Dalton Trans 2024; 53:4426-4431. [PMID: 38318980 DOI: 10.1039/d3dt04129h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Herein, CoN4, CuN4, and NiN4 complexes with a 14-membered ring hexaazamacrocycle ligand H2HAM were synthesised as precursors for ORR and CO2RR catalysts via a one-pot, gram-scale synthesis procedure, which involved microwave heating for only 10 min. Detailed structures of the obtained 14MR-MN4 complex were revealed by single-crystal X-ray diffraction measurements.
Collapse
Affiliation(s)
- Mana Ogawa
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Sayaka Usami
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Ryo Takahama
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Kazuko Iwamoto
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Tomomi Nabeta
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Shin Kawashima
- Corporate Research & Development, Asahi Kasei Corporation, 2767-11 Niihama, Shionasu, Kojima, Kurashiki, Okayama 711-8510, Japan
| | - Ryoichi Kojima
- Corporate Research & Development, Asahi Kasei Corporation, 2767-11 Niihama, Shionasu, Kojima, Kurashiki, Okayama 711-8510, Japan
| | - Junya Ohyama
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Teruaki Hayakawa
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 S8-26, Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Yuta Nabae
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 S8-26, Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Makoto Moriya
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- College of Science, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
2
|
Muniz CN, Archer CA, Applebaum JS, Alagaratnam A, Schaab J, Djurovich PI, Thompson ME. Two-Coordinate Coinage Metal Complexes as Solar Photosensitizers. J Am Chem Soc 2023. [PMID: 37319428 DOI: 10.1021/jacs.3c02825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Generating sustainable fuel from sunlight plays an important role in meeting the energy demands of the modern age. Herein, we report two-coordinate carbene-metal-amide (cMa, M = Cu(I) and Au(I)) complexes that can be used as sensitizers to promote the light-driven reduction of water to hydrogen. The cMa complexes studied here absorb visible photons (εvis > 103 M-1 cm-1), maintain long excited-state lifetimes (τ ∼ 0.2-1 μs), and perform stable photoinduced charge transfer to a target substrate with high photoreducing potential (E+/* up to -2.33 V vs Fc+/0 based on a Rehm-Weller analysis). We pair these coinage metal complexes with a cobalt-glyoxime electrocatalyst to photocatalytically generate hydrogen and compare the performance of the copper- and gold-based cMa complexes. We also find that the two-coordinate complexes herein can perform photodriven hydrogen production from water without the addition of the cobalt-glyoxime electrocatalyst. In this "catalyst-free" system, the cMa sensitizer partially decomposes to give metal nanoparticles that catalyze water reduction. This work identifies two-coordinate coinage metal complexes as promising abundant metal, solar fuel photosensitizers that offer exceptional tunability and photoredox properties.
Collapse
Affiliation(s)
- Collin N Muniz
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Claire A Archer
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jack S Applebaum
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Anushan Alagaratnam
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jonas Schaab
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
4
|
Potocny AM, Phelan BT, Sprague-Klein EA, Mara MW, Tiede DM, Chen LX, Mulfort KL. Harnessing Intermolecular Interactions to Promote Long-Lived Photoinduced Charge Separation from Copper Phenanthroline Chromophores. Inorg Chem 2022; 61:19119-19133. [DOI: 10.1021/acs.inorgchem.2c02648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Andrea M. Potocny
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - Brian T. Phelan
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - Emily A. Sprague-Klein
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - Michael W. Mara
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - David M. Tiede
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - Lin X. Chen
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| | - Karen L. Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| |
Collapse
|
5
|
Recent developments of photoactive Cu(I) and Ag(I) complexes with diphosphine and related ligands. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Chen Y, Yuan H, Lei Q, Ming M, Du J, Tao Y, Cheng B, Han Z. Improving Photocatalytic Hydrogen Production through Incorporating Copper to Organic Photosensitizers. Inorg Chem 2022; 61:12545-12551. [PMID: 35926191 DOI: 10.1021/acs.inorgchem.2c01153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organic dyes have been investigated extensively as promising photosensitizers in noble-metal-free photocatalytic systems for hydrogen production. However, other than functional group optimization, there are very few methods reported to be effective in improving their photocatalytic activity. Herein, we report the incorporation of Cu2+ into purpurin and gallein dyes for visible-light-driven hydrogen production. These Cu-dye chromophores significantly promote the photocatalytic activity of homogeneous systems when paired with a series of molecular Ni or Fe catalysts. Under optimal conditions, the Cu-purpurin and Cu-gallein photosensitizers exhibit more than 20-fold increases in turnover frequencies for hydrogen evolution when compared with purpurin and gallein. Catalytic systems with the Cu-purpurin chromophore show no decrease in activity over 120 h. Based on electrochemical and fluorescence quenching experiments, the enhancement of photocatalytic activity is likely due to the fact that Cu2+ can facilitate the transfer of electrons from the photosensitizers to the catalysts through creating highly reducing centers.
Collapse
Affiliation(s)
- Ya Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Huiqing Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Qinqin Lei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Mei Ming
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiehao Du
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuan Tao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Banggui Cheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiji Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Rentschler M, Boden PJ, Argüello Cordero MA, Steiger ST, Schmid MA, Yang Y, Niedner-Schatteburg G, Karnahl M, Lochbrunner S, Tschierlei S. Unexpected Boost in Activity of a Cu(I) Photosensitizer by Stabilizing a Transient Excited State. Inorg Chem 2022; 61:12249-12261. [PMID: 35877171 DOI: 10.1021/acs.inorgchem.2c01468] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we present a slight but surprisingly successful structural modification of the previously reported heteroleptic Cu(I) photosensitizer Cubiipo ([(xantphos)Cu(biipo)]PF6; biipo = 16H-benzo-[4',5']-isoquinolino-[2',1':1,2]-imidazo-[4,5-f]-[1,10]-phenanthrolin-16-one). As a key feature, biipo bears a naphthalimide unit at the back, which is directly fused to a phenanthroline moiety to extend the conjugated π-system. This ligand was now altered to include two additional methyl groups at the 2,9-positions at the phenanthroline scaffold. Comparing the novel Cudmbiipo complex to its predecessor, ultrafast transient absorption spectroscopy reveals the efficient suppression of a major deactivation pathway by stabilization of a transient triplet state. Furthermore, quantitative measurements of singlet oxygen evolution in solution confirmed that a larger fraction of the excited-state population is transferred to the photocatalytically active ligand-centered triplet 3LC state with a much longer lifetime of ∼30 μs compared to Cubiipo (2.6 μs). In addition, Cudmbiipo was compared with the well-established reference complex Cubcp ([(xantphos)Cu(bathocuproine)]PF6) in terms of its photophysical and photocatalytic properties by applying time-resolved femto- and nanosecond absorption, step-scan Fourier transform infrared (FTIR), and emission spectroscopies. Superior light-harvesting properties and a greatly enhanced excited-state lifetime with respect to Cubcp enable Cudmbiipo to be more active in exemplary photocatalytic applications, i.e., in the formation of singlet oxygen and the isomerization of (E)-stilbene.
Collapse
Affiliation(s)
- Martin Rentschler
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Pit Jean Boden
- Chemistry Department and State Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Miguel A Argüello Cordero
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Straße 23, 18051 Rostock, Germany
| | - Sophie Theres Steiger
- Chemistry Department and State Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Marie-Ann Schmid
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Yingya Yang
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Gereon Niedner-Schatteburg
- Chemistry Department and State Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Michael Karnahl
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Stefan Lochbrunner
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Straße 23, 18051 Rostock, Germany
| | - Stefanie Tschierlei
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| |
Collapse
|
8
|
Gimeno L, Phelan BT, Sprague-Klein EA, Roisnel T, Blart E, Gourlaouen C, Chen LX, Pellegrin Y. Bulky and Stable Copper(I)-Phenanthroline Complex: Impact of Steric Strain and Symmetry on the Excited-State Properties. Inorg Chem 2022; 61:7296-7307. [PMID: 35507920 PMCID: PMC9116384 DOI: 10.1021/acs.inorgchem.1c03901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The steric strain around copper(I) in typical [Cu(NNR)2]+ complexes, where NNR is a diimine ligand substituted in α-positions of the nitrogen atoms by R, is known to strongly impact the excited-state properties. Generally speaking, the larger the R, the longer the emission lifetime and the higher the quantum yield. However, the stability of the coordination scaffold can be at stake if the steric strain imposed by R is too large. In this work, we explore a way of fine-tuning the steric strain around Cu(I) to reach a balance between high emission quantum yield and stability in a highly bulky copper(I) complex. Taking stable [Cu(dipp)2]+ and unstable [Cu(dtbp)2]+ (where dipp and dtbp are, respectively, 2,9-diisopropyl-1,10-phenanthroline and 2,9-di-tert-butyl-1,10-phenanthroline) as the boundary of two least and most sterically strained structures, we designed and characterized the nonsymmetrical ligand 2-isopropyl-9-tert-butyl-1,10-phenanthroline (L1) and corresponding complex [Cu(L1)2]+ (Cu1). The key experimental findings are that Cu1 exhibits a rigid tetrahedral geometry in the ground state, close to that of [Cu(dtbp)2]+ and with an intermediate stability between that of [Cu(dipp)2]+ and [Cu(dtbp)2]+. Conversely, the nonsymmetrical nature of ligand L1 leads to a shorter emission lifetime and smaller quantum yield than those of either [Cu(dipp)2]+ or [Cu(dtbp)2]+. This peculiar behavior is rationalized through the in depth analysis of the ultrafast dynamics of the excited state measured with optical transient absorption spectroscopy and theoretical calculations performed on the ground and excited state of Cu1. Our main findings are that the obtained complex is significantly more stable than [Cu(dtbp)2]+ despite the sterically strained coordination sphere. The nonsymmetrical nature of the ligand translates into a strongly distorted structure in the excited state. The distortion can be described as a rocking motion of one ligand, entailing the premature extinction of the excited state via several deactivation channels.
Collapse
Affiliation(s)
- Lea Gimeno
- Université de Nantes, CNRS, CEISAM UMR6230, F-44000 Nantes, France
| | - Brian T Phelan
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Emily A Sprague-Klein
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Thierry Roisnel
- Université de Rennes CNRS, Institut des Sciences Chimiques de Rennes, UMR6226, F-35000 Rennes, France
| | - Errol Blart
- Université de Nantes, CNRS, CEISAM UMR6230, F-44000 Nantes, France
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique Institut de Chimie UMR 7177 CNRS-Université de Strasbourg, 4, Rue Blaise Pascal CS 90032, F-67081 Strasbourg Cedex, France
| | - Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yann Pellegrin
- Université de Nantes, CNRS, CEISAM UMR6230, F-44000 Nantes, France
| |
Collapse
|
9
|
Gimeno L, Queffelec C, Blart E, Pellegrin Y. Copper(I) Bis(diimine) Complexes with High Photooxidation Power: Reductive Quenching of the Excited State with a Benzimidazoline Sacrificial Donor. ACS OMEGA 2022; 7:13112-13119. [PMID: 35474762 PMCID: PMC9026092 DOI: 10.1021/acsomega.2c00531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The reductive quenching of photoexcited photosensitizers is a very efficient way to achieve challenging reduction reactions. In this process, the excited photosensitizer is reduced by a sacrificial electron donor. This mechanism is rarely observed with copper(I) bis(diimine) complexes, which are nevertheless acknowledged as very promising photosensitizers. This is due to the fact that they are very poor photooxidants and prove unable to react with common donors once promoted in their excited state. In this article, we evidence the rare reductive quenching cycle with two specially designed copper(I) complexes. These complexes exhibit improved photooxidation power thanks to an optimized coordination sphere made of strongly π-accepting ligands. Reductive quenching of the excited state of the latter complexes with a classical benzimidazoline sacrificial donor is monitored, and reduced complexes are accumulated during prolonged photolysis. Trials to utilize the photogenerated reductive power are presented.
Collapse
|
10
|
Alberto R, Müller P, Probst B, Spingler B, Blacque O. Polar substituents enable efficient catalysis for a class of cobalt polypyridyl hydrogen evolving catalyst. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202100237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Roger Alberto
- University of Zürich Department of Chemistry Winterthurerstr. 190 CH-8057 Zürich SWITZERLAND
| | - Peter Müller
- University of Zurich Faculty of Mathematics and Science: Universitat Zurich Mathematisch-Naturwissenschaftliche Fakultat Chemistry SWITZERLAND
| | - Benjamin Probst
- University of Zurich Faculty of Mathematics and Science: Universitat Zurich Mathematisch-Naturwissenschaftliche Fakultat Chemistry SWITZERLAND
| | - Bernhard Spingler
- University of Zurich Faculty of Mathematics and Science: Universitat Zurich Mathematisch-Naturwissenschaftliche Fakultat Chemistry SWITZERLAND
| | - Olivier Blacque
- University of Zurich Faculty of Science: Universitat Zurich Mathematisch-Naturwissenschaftliche Fakultat Chemistry SWITZERLAND
| |
Collapse
|
11
|
Guda A, Windisch J, Probst B, van Bokhoven JA, Alberto R, Nachtegaal M, Chen LX, Smolentsev G. Excited-state structure of copper phenanthroline-based photosensitizers. Phys Chem Chem Phys 2021; 23:26729-26736. [PMID: 34842872 DOI: 10.1039/d1cp02823e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cu diimine complexes present a noble metal free alternative to classical Ru, Re, Ir and Pt based photosensitizers in solution photochemistry, photoelectrochemical or dye-sensitized solar cells. Optimization of these dyes requires understanding of factors governing the key photochemical properties: excited state lifetime and emission quantum yield. The involvement of exciplex formation in the deactivation of the photoexcited state is a key question. We investigate the excited-state structure of [Cu(dmp)2]+ and [Cu(dsbtmp)2]+ (dmp = 2,9-dimethyl-1,10-phenanthroline, dsbtmp = 2,9-di-sec-butyl-3,4,7,8-tetramethyl-1,10-phenanthroline) using pump-probe X-ray absorption spectroscopy (XAS) and DFT. Features of XAS that distinguish flattened tetrahedral site and 5-coordinated geometry with an additional solvent near Cu(II) center are identified. Pump-probe XAS demonstrates that for both complexes the excited state is 4-coordinated. For [Cu(dmp)2]+ the exciplex is 0.24 eV higher in energy than the flattened triplet state, therefore it can be involved in deactivation pathways as a non-observable state that forms slower than it decays. For [Cu(dsbtmp)2]+ the excited-state structure is characterized by Cu-N distances of 1.98 and 2.07 Å and minor distortions, leading to a 3 orders of magnitude longer excited-state lifetime.
Collapse
Affiliation(s)
- Alexander Guda
- The Smart Materials Research Institute, Southern Federal University Rostov-on-Don, 344090, Russia
| | - Johannes Windisch
- Department of Chemistry, University of Zurich, Zurich, 8057, Switzerland
| | - Benjamin Probst
- Department of Chemistry, University of Zurich, Zurich, 8057, Switzerland
| | - Jeroen A van Bokhoven
- Paul Scherrer Institute, Villigen, 5232, Switzerland. .,Department of Chemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Roger Alberto
- Department of Chemistry, University of Zurich, Zurich, 8057, Switzerland
| | | | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne 60439, IL, USA.,Department of Chemistry, Northwestern University, Evanston 60208, IL, USA
| | | |
Collapse
|
12
|
Giereth R, Obermeier M, Forschner L, Karnahl M, Schwalbe M, Tschierlei S. Exploring the Full Potential of Photocatalytic Carbon Dioxide Reduction Using a Dinuclear Re
2
Cl
2
Complex Assisted by Various Photosensitizers. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Robin Giereth
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
- Department of Energy Conversion Institute of Physical and Theoretical Chemistry Technische Universität Braunschweig Gaußstr. 17 38106 Braunschweig Germany
| | - Martin Obermeier
- Institute of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Lukas Forschner
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Michael Karnahl
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Matthias Schwalbe
- Institute of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Stefanie Tschierlei
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
- Department of Energy Conversion Institute of Physical and Theoretical Chemistry Technische Universität Braunschweig Gaußstr. 17 38106 Braunschweig Germany
| |
Collapse
|
13
|
Doettinger F, Yang Y, Schmid MA, Frey W, Karnahl M, Tschierlei S. Cross-Coupled Phenyl- and Alkynyl-Based Phenanthrolines and Their Effect on the Photophysical and Electrochemical Properties of Heteroleptic Cu(I) Photosensitizers. Inorg Chem 2021; 60:5391-5401. [PMID: 33764043 DOI: 10.1021/acs.inorgchem.1c00416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the aims of increasing the antenna system and improving the photophysical properties of Cu(I)-based photosensitizers, the backbone of 2,9-dimethyl-1,10-phenanthroline was selectively extended in the 5,6-position. Applying specifically tailored Suzuki-Miyaura and "chemistry-on-the-complex" Sonogashira cross-coupling reactions enabled the development of two sets of structurally related diimine ligands with a broad variety of different phenyl- and alkynyl-based substituents. The resulting 11 novel heteroleptic Cu(I) complexes, including five solid-state structures, were studied with respect to their structure-property relationships. Both sets of substituents are able to red-shift the absorption maxima and to increase the absorptivity. For the alkynyl-based complexes, this is accompanied by a significant anodic shift of the reduction potentials. The phenyl-based substituents strongly influence the emission wavelength and quantum yield of the resulting Cu(I) complexes and lead to an increase in the emission lifetime of up to 504 ns, which clearly indicates competition with the benchmark system [(xantphos)Cu(bathocuproine)]PF6.
Collapse
Affiliation(s)
- Florian Doettinger
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.,Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Yingya Yang
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Marie-Ann Schmid
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Michael Karnahl
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Stefanie Tschierlei
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
14
|
Velasco L, Llanos L, Levín P, Vega A, Yu J, Zhang X, Lemus L, Aravena D, Moonshiram D. Structure and excited-state dynamics of dimeric copper(i) photosensitizers investigated by time-resolved X-ray and optical transient absorption spectroscopy. Phys Chem Chem Phys 2021; 23:3656-3667. [PMID: 33527942 DOI: 10.1039/d0cp06080a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved X-ray (tr-XAS) and optical transient absorption (OTA) spectroscopy in the picosecond time scale coupled with Density Functional theory (DFT) and X-ray absorption near-edge structure (XANES) calculations are applied to study three homoleptic Cu(i) dimeric chromophores with ethyl and longer propyl spacers, denoted as [Cu2(mphenet)2]Cl2 (C1), [Cu2(mphenet)2](ClO4)2 (C2) and [Cu2(mphenpr)2](ClO4)2 (C3) (where mphenet = 1,2-bis(9-methyl-1,10-phenanthrolin-2-yl)ethane and mphenpr = 1,3-bis(9-methyl-1,10-phenanthrolin-2-yl)propane). Tr-XAS analysis after light illumination at ∼ 100 ps illustrate the formation of a flattened triplet excited state in all 3 complexes. Optical transient absorption (OTA) analysis for C1 monitored in water and C2 and C3 measured in acetonitrile reveals distinct excited-state lifetimes of 169 ps, 670 ps and 1600 ps respectively. These differences are associated to changes in the solvent (comparing C1 and C2) and the flexibility of the ligand to adapt after Cu flattening upon excitation (C2 and C3). Our results are important for the improved structural dynamics of these types of Cu-based dimeric compounds, and can guide the integration of these chromophores into more complex solar energy conversion schemes.
Collapse
Affiliation(s)
- Lucía Velasco
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Calle Faraday, 9, 28049 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rentschler M, Iglesias S, Schmid MA, Liu C, Tschierlei S, Frey W, Zhang X, Karnahl M, Moonshiram D. The Coordination Behaviour of Cu I Photosensitizers Bearing Multidentate Ligands Investigated by X-ray Absorption Spectroscopy. Chemistry 2020; 26:9527-9536. [PMID: 32162730 PMCID: PMC7496955 DOI: 10.1002/chem.201905601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/20/2020] [Indexed: 12/05/2022]
Abstract
A systematic series of four novel homo‐ and heteroleptic CuI photosensitizers based on tetradentate 1,10‐phenanthroline ligands of the type X^N^N^X containing two additional donor moieties in the 2,9‐position (X=SMe or OMe) were designed. Their solid‐state structures were assessed by X‐ray diffraction. Cyclic voltammetry, UV‐vis absorption, emission and X‐ray absorption spectroscopy were then used to determine their electrochemical, photophysical and structural features in solution. Following, time‐resolved X‐ray absorption spectroscopy in the picosecond time scale, coupled with time‐dependent density functional theory calculations, provided in‐depth information on the excited state electron configurations. For the first time, a significant shortening of the Cu−X distance and a change in the coordination mode to a pentacoordinated geometry is shown in the excited states of the two homoleptic complexes. These findings are important with respect to a precise understanding of the excited state structures and a further stabilization of this type of photosensitizers.
Collapse
Affiliation(s)
- Martin Rentschler
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Sirma Iglesias
- Instituto Madrileño de Estudios Avanzados en, Nanociencia (IMDEA Nanociencia), Calle Faraday, 9, 28049, Madrid, Spain
| | - Marie-Ann Schmid
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Cunming Liu
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| | - Stefanie Tschierlei
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| | - Michael Karnahl
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Dooshaye Moonshiram
- Instituto Madrileño de Estudios Avanzados en, Nanociencia (IMDEA Nanociencia), Calle Faraday, 9, 28049, Madrid, Spain
| |
Collapse
|
16
|
Shirley H, Parkin S, Delcamp JH. Photoinduced Generation of a Durable Thermal Proton Reduction Catalyst with in Situ Conversion of Mn(bpy)(CO)3Br to Mn(bpy)2Br2. Inorg Chem 2020; 59:11266-11272. [DOI: 10.1021/acs.inorgchem.0c00480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hunter Shirley
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
17
|
Giereth R, Mengele AK, Frey W, Kloß M, Steffen A, Karnahl M, Tschierlei S. Copper(I) Phosphinooxazoline Complexes: Impact of the Ligand Substitution and Steric Demand on the Electrochemical and Photophysical Properties. Chemistry 2020; 26:2675-2684. [PMID: 31747089 PMCID: PMC7065177 DOI: 10.1002/chem.201904379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Indexed: 12/29/2022]
Abstract
A series of seven homoleptic CuI complexes based on hetero-bidentate P^N ligands was synthesized and comprehensively characterized. In order to study structure-property relationships, the type, size, number and configuration of substituents at the phosphinooxazoline (phox) ligands were systematically varied. To this end, a combination of X-ray diffraction, NMR spectroscopy, steady-state absorption and emission spectroscopy, time-resolved emission spectroscopy, quenching experiments and cyclic voltammetry was used to assess the photophysical and electrochemical properties. Furthermore, time-dependent density functional theory calculations were applied to also analyze the excited state structures and characteristics. Surprisingly, a strong dependency on the chirality of the respective P^N ligand was found, whereas the specific kind and size of the different substituents has only a minor impact on the properties in solution. Most importantly, all complexes except C3 are photostable in solution and show fully reversible redox processes. Sacrificial reductants were applied to demonstrate a successful electron transfer upon light irradiation. These properties render this class of photosensitizers as potential candidates for solar energy conversion issues.
Collapse
Affiliation(s)
- Robin Giereth
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Alexander K Mengele
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Marvin Kloß
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Andreas Steffen
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Michael Karnahl
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Stefanie Tschierlei
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
18
|
Zhang Y, Zedler L, Karnahl M, Dietzek B. Excited-state dynamics of heteroleptic copper(i) photosensitizers and their electrochemically reduced forms containing a dipyridophenazine moiety – a spectroelectrochemical transient absorption study. Phys Chem Chem Phys 2019; 21:10716-10725. [DOI: 10.1039/c9cp00412b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heteroleptic copper(i) dipyridophenazine complexes were investigated by transient absorption spectroelectrochemistry to examine their multi-electron photoaccumulation properties.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Department Functional Interfaces
| | - Linda Zedler
- Department Functional Interfaces
- Leibniz Institute of Photonic Technology Jena (IPHT)
- 07745 Jena
- Germany
| | - Michael Karnahl
- Institute of Organic Chemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Department Functional Interfaces
| |
Collapse
|
19
|
Design of Molecular Water Oxidation Catalysts Stabilized by Ultrathin Inorganic Overlayers—Is Active Site Protection Necessary? INORGANICS 2018. [DOI: 10.3390/inorganics6040105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Anchored molecular catalysts provide a good step towards bridging the gap between homogeneous and heterogeneous catalysis. However, applications in an aqueous environment pose a serious challenge to anchoring groups in terms of stability. Ultrathin overlayers embedding these catalysts on the surface using atomic layer deposition (ALD) are an elegant solution to tackle the anchoring group instability. The propensity of ALD precursors to react with water leads to the question whether molecules containing aqua ligands, such as most water oxidation complexes, can be protected without side reactions and deactivation during the deposition process. We synthesized two iridium and two ruthenium-based water oxidation catalysts, which contained an aqua ligand (Ir–OH2 and Ru–OH2) or a chloride (Ir–Cl and Ru–Cl) that served as a protecting group for the former. Using a ligand exchange reaction on the anchored and partially embedded Ru–Cl, the optimal overlayer thickness was determined to be 1.6 nm. An electrochemical test of the protected catalysts on meso-ITO showed different behaviors for the Ru and the Ir catalysts. The former showed no onset difference between protected and non-protected versions, but limited stability. Ir–Cl displayed excellent stability, whilst the unprotected catalyst Ir–OH2 showed a later initial onset. Self-regeneration of the catalytic activity of Ir–OH2 under operating conditions was observed. We propose chloride ligands as generally applicable protecting groups for catalysts that are to be stabilized on surfaces using ALD.
Collapse
|
20
|
Mononuclear and dinuclear heteroleptic Cu(I) complexes based on pyridyl-triazole and DPEPhos with long-lived excited-state lifetimes. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Huckaba AJ, Shirley H, Lamb RW, Guertin S, Autry S, Cheema H, Talukdar K, Jones T, Jurss JW, Dass A, Hammer NI, Schmehl RH, Webster CE, Delcamp JH. A Mononuclear Tungsten Photocatalyst for H2 Production. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04242] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Aron J. Huckaba
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Hunter Shirley
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Robert W. Lamb
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Steve Guertin
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Shane Autry
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Hammad Cheema
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Kallol Talukdar
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Tanya Jones
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Jonah W. Jurss
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Amala Dass
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Nathan I. Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Russell H. Schmehl
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
22
|
Moonshiram D, Garrido‐Barros P, Gimbert‐Suriñach C, Picón A, Liu C, Zhang X, Karnahl M, Llobet A. Elucidating the Nature of the Excited State of a Heteroleptic Copper Photosensitizer by using Time‐Resolved X‐ray Absorption Spectroscopy. Chemistry 2018; 24:6464-6472. [DOI: 10.1002/chem.201800330] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Dooshaye Moonshiram
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 Mülheim an der Ruhr 45470 Germany
- Institute of Chemical Research of Catalonia (ICIQ) Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Pablo Garrido‐Barros
- Institute of Chemical Research of Catalonia (ICIQ) Avinguda Països Catalans 16 43007 Tarragona Spain
- Departament de Química Física i Inorganica Universitat Rovira i Virgili Campus Sescelades, C/Marcellí Domingo, s/n 43007 Tarragona Spain
| | - Carolina Gimbert‐Suriñach
- Institute of Chemical Research of Catalonia (ICIQ) Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Antonio Picón
- Grupo de Investigacion en Aplicaciones del Laser y Fotonica Universidad de Salamanca 37008 Salamanca Spain
- Departamento de Química, Modulo 13 Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Cunming Liu
- X-ray Science Division Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA
| | - Xiaoyi Zhang
- X-ray Science Division Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA
| | - Michael Karnahl
- University of Stuttgart Institute of Organic Chemistry Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ) Avinguda Països Catalans 16 43007 Tarragona Spain
- Departament de Química Universitat Autonoma de Barcelona 08193 Cerdanyola del Valles Barcelona Spain
| |
Collapse
|
23
|
Reim I, Wriedt B, Tastan Ü, Ziegenbalg D, Karnahl M. Impact of the Type of Reactor and the Catalytic Conditions on the Photocatalytic Production of Hydrogen Using a Fully Noble-Metal-Free System. ChemistrySelect 2018. [DOI: 10.1002/slct.201800289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Immanuel Reim
- Institute of Organic Chemistry; University of Stuttgart; Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Benjamin Wriedt
- Institute of Chemical Technology; University of Stuttgart; Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Ümit Tastan
- Institute of Chemical Technology; University of Stuttgart; Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Dirk Ziegenbalg
- Institute of Chemical Technology; University of Stuttgart; Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Michael Karnahl
- Institute of Organic Chemistry; University of Stuttgart; Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
24
|
McCullough BJ, Neyhouse BJ, Schrage BR, Reed DT, Osinski AJ, Ziegler CJ, White TA. Visible-Light-Driven Photosystems Using Heteroleptic Cu(I) Photosensitizers and Rh(III) Catalysts To Produce H 2. Inorg Chem 2018; 57:2865-2875. [PMID: 29446925 DOI: 10.1021/acs.inorgchem.7b03273] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis of two new heteroleptic Cu(I) photosensitizers (PS), [Cu(Xantphos)(NN)]PF6 (NN = biq = 2,2'-biquinoline, dmebiq = 2,2'-biquinoline-4,4'-dimethyl ester; Xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene), along with the associated structural, photophysical, and electrochemical properties, are described. The biquinoline diimine ligand extends the PS light absorbing properties into the visible with a maximum absorption at 455 and 505 nm for NN = biq and dmebiq, respectively, in CH2Cl2 solvent. Following photoexcitation, both Cu(I) PS are emissive at low energy, albeit displaying stark differences in their excited state lifetimes (τMLCT = 410 ± 5 (biq) and 44 ± 4 ns (dmebiq)). Cyclic voltammetry indicates a Cu-based HOMO and NN-based LUMO for both complexes, whereby the methyl ester substituents stabilize the LUMO within [Cu(Xantphos)(dmebiq)]+ by ∼0.37 V compared to the unsubstituted analogue. When combined with H2O, N,N-dimethylaniline (DMA) electron donor, and cis-[Rh(NN)2Cl2]PF6 (NN = Me2bpy = 4,4'-dimethyl-2,2'-bipyridine, bpy = 2,2'-bipyridine, dmebpy = 2,2'-bipyridine-4,4'-dimethyl ester) water reduction catalysts (WRC), photocatalytic H2 evolution is only observed using the [Cu(Xantphos)(biq)]+ PS. Furthermore, the choice of cis-[Rh(NN)2Cl2]+ WRC strongly affects the catalytic activity with turnover numbers (TONRh = mol H2 per mol Rh catalyst) of 25 ± 3, 22 ± 1, and 43 ± 3 for NN = Me2bpy, bpy, and dmebpy, respectively. This work illustrates how ligand modification to carefully tune the PS light absorbing, excited state, and redox-active properties, along with the WRC redox potentials, can have a profound impact on the photoinduced intermolecular electron transfer between components and the subsequent catalytic activity.
Collapse
Affiliation(s)
- Bradley J McCullough
- Department of Chemistry and Biochemistry, Clippinger Laboratories , Ohio University , Athens , Ohio 45701 , United States
| | - Bertrand J Neyhouse
- Department of Chemistry and Biochemistry, Clippinger Laboratories , Ohio University , Athens , Ohio 45701 , United States
| | - Briana R Schrage
- Department of Chemistry, Knight Chemical Laboratory , University of Akron , Akron , Ohio 44325 , United States
| | - Demi T Reed
- Department of Chemistry and Biochemistry, Clippinger Laboratories , Ohio University , Athens , Ohio 45701 , United States
| | - Allen J Osinski
- Department of Chemistry, Knight Chemical Laboratory , University of Akron , Akron , Ohio 44325 , United States
| | - Christopher J Ziegler
- Department of Chemistry, Knight Chemical Laboratory , University of Akron , Akron , Ohio 44325 , United States
| | - Travis A White
- Department of Chemistry and Biochemistry, Clippinger Laboratories , Ohio University , Athens , Ohio 45701 , United States
| |
Collapse
|
25
|
Zhang Y, Traber P, Zedler L, Kupfer S, Gräfe S, Schulz M, Frey W, Karnahl M, Dietzek B. Cu(i) vs. Ru(ii) photosensitizers: elucidation of electron transfer processes within a series of structurally related complexes containing an extended π-system. Phys Chem Chem Phys 2018; 20:24843-24857. [DOI: 10.1039/c8cp04595j] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The charge transfer behavior of heteroleptic Cu(i) photosensitizers was investigated by spectroelectrochemistry and compared to their structurally related Ru(ii) complexes.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Department Functional Interfaces
| | - Philipp Traber
- Institute of Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Linda Zedler
- Department Functional Interfaces
- Leibniz Institute of Photonic Technology Jena (IPHT)
- 07745 Jena
- Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Stefanie Gräfe
- Institute of Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Martin Schulz
- Institute of Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Michael Karnahl
- Institute of Organic Chemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Department Functional Interfaces
| |
Collapse
|
26
|
Schnidrig S, Bachmann C, Müller P, Weder N, Spingler B, Joliat-Wick E, Mosberger M, Windisch J, Alberto R, Probst B. Structure-Activity and Stability Relationships for Cobalt Polypyridyl-Based Hydrogen-Evolving Catalysts in Water. CHEMSUSCHEM 2017; 10:4570-4580. [PMID: 29052339 DOI: 10.1002/cssc.201701511] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/14/2017] [Indexed: 06/07/2023]
Abstract
A series of eight new and three known cobalt polypyridyl-based hydrogen-evolving catalysts (HECs) with distinct electronic and structural differences are benchmarked in photocatalytic runs in water. Methylene-bridged bis-bipyridyl is the preferred scaffold, both in terms of stability and rate. For a cobalt complex of the tetradentate methanol-bridged bispyridyl-bipyridyl complex [CoII Br(tpy)]Br, a detailed mechanistic picture is obtained by combining electrochemistry, spectroscopy, and photocatalysis. In the acidic branch, a proton-coupled electron transfer, assigned to formation of CoIII -H, is found upon reduction of CoII , in line with a pKa (CoIII -H) of approximately 7.25. Subsequent reduction (-0.94 V vs. NHE) and protonation close the catalytic cycle. Methoxy substitution on the bipyridyl scaffold results in the expected cathodic shift of the reduction, but fails to change the pKa (CoIII -H). An analysis of the outcome of the benchmarking in view of this postulated mechanism is given along with an outlook for design criteria for new generations of catalysts.
Collapse
Affiliation(s)
- Stephan Schnidrig
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| | - Cyril Bachmann
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| | - Peter Müller
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| | - Nicola Weder
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| | - Bernhard Spingler
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| | - Evelyne Joliat-Wick
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| | - Mathias Mosberger
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| | - Johannes Windisch
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| | - Roger Alberto
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| | - Benjamin Probst
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Switzerland
| |
Collapse
|
27
|
Giereth R, Frey W, Junge H, Tschierlei S, Karnahl M. Copper Photosensitizers Containing P^N Ligands and Their Influence on Photoactivity and Stability. Chemistry 2017; 23:17432-17437. [PMID: 29024115 DOI: 10.1002/chem.201703672] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Indexed: 11/09/2022]
Abstract
Driven by the intention to improve classic heteroleptic copper photosensitizers two novel Cu(I) complexes applying a hetero-bidentate P^N ligand were prepared. A combined photophysical, electrochemical, and theoretical study gives insights into structure-activity relationships and revealed an increased absorptivity. Both complexes were tested for the light-driven production of H2 .
Collapse
Affiliation(s)
- Robin Giereth
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Henrik Junge
- Leibniz-Institute for Catalysis at the University of Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Stefanie Tschierlei
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Michael Karnahl
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
28
|
Kagalwala HN, Chirdon DN, Mills IN, Budwal N, Bernhard S. Light-Driven Hydrogen Generation from Microemulsions Using Metallosurfactant Catalysts and Oxalic Acid. Inorg Chem 2017; 56:10162-10171. [DOI: 10.1021/acs.inorgchem.7b00463] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Husain N. Kagalwala
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Danielle N. Chirdon
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Isaac N. Mills
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Nikita Budwal
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Stefan Bernhard
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
29
|
Zeng C, Wang N, Peng T, Wang S. Copper(I) Complexes Bearing 1,2-Phenyl-Bridged P∧N, P∧N∧P, and N∧P∧N Chelate Ligands: Structures and Phosphorescence. Inorg Chem 2017; 56:1616-1625. [DOI: 10.1021/acs.inorgchem.6b02721] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chao Zeng
- Beijing Key Laboratory
of Photoelectronic/Electrophotonic Conversion Materials, School of
Chemistry, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Nan Wang
- Beijing Key Laboratory
of Photoelectronic/Electrophotonic Conversion Materials, School of
Chemistry, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Tai Peng
- Beijing Key Laboratory
of Photoelectronic/Electrophotonic Conversion Materials, School of
Chemistry, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Suning Wang
- Beijing Key Laboratory
of Photoelectronic/Electrophotonic Conversion Materials, School of
Chemistry, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
- Department
of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
30
|
Zhang Y, Heberle M, Wächtler M, Karnahl M, Dietzek B. Determination of side products in the photocatalytic generation of hydrogen with copper photosensitizers by resonance Raman spectroelectrochemistry. RSC Adv 2016. [DOI: 10.1039/c6ra21469j] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A combination of UV-Vis, resonance Raman spectroscopy and electrochemistry is employed to reveal the nature of a side product when using heteroleptic Cu(i)-photosensitizers for photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Physical Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena (IPHT)
| | - Martin Heberle
- University of Stuttgart
- Institute of Organic Chemistry
- 70569 Stuttgart
- Germany
| | - Maria Wächtler
- Leibniz Institute of Photonic Technology Jena (IPHT)
- 07745 Jena
- Germany
| | - Michael Karnahl
- University of Stuttgart
- Institute of Organic Chemistry
- 70569 Stuttgart
- Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena (IPHT)
| |
Collapse
|