1
|
Akeeb O, Wang L, Xie W, Davis R, Alkasrawi M, Toan S. Post-combustion CO 2 capture via a variety of temperature ranges and material adsorption process: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:115026. [PMID: 35405546 DOI: 10.1016/j.jenvman.2022.115026] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/05/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Carbon dioxide (CO2) emissions from fossil fuel combustion have been linked to increased average global temperatures, a global challenge for many decades. Mitigating CO2 concentration in the atmosphere is a priority for the protection of the environment. This is a comparison of the three main technological categories available for CO2 capture and storage. They include: oxy-fuel combustion, pre-combustion, and post-combustion. Each capture technology has inherent benefits and disadvantages in cost, implementation, and flexibility, but post-combustion CO2 capture has demonstrated the most promising results in typical power plant configurations. This paper presents a review of different post-combustion CO2 capture materials; solvents, membranes, and adsorbents, focusing on economical and environmentally safe low to high temperature solid adsorbents. Furthermore, the authors summarize the advantages and limitations of the materials investigated to provide insight into the challenges and opportunities currently facing the development of post-combustion CO2 capture technologies. The solid sorbents currently available for CO2 capture are also reviewed in detail, including physical and chemical properties, reactions, and current research efforts on improvement.
Collapse
Affiliation(s)
- Olajumobi Akeeb
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Lei Wang
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Weiguo Xie
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Richard Davis
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Malek Alkasrawi
- Department of Chemistry, University of Wisconsin Parkside, Kenosha, WI 53141, USA
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA.
| |
Collapse
|
2
|
Zhang Z, Zheng Y, Qian L, Luo D, Dou H, Wen G, Yu A, Chen Z. Emerging Trends in Sustainable CO 2 -Management Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201547. [PMID: 35307897 DOI: 10.1002/adma.202201547] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/07/2022] [Indexed: 06/14/2023]
Abstract
With the rising level of atmospheric CO2 worsening climate change, a promising global movement toward carbon neutrality is forming. Sustainable CO2 management based on carbon capture and utilization (CCU) has garnered considerable interest due to its critical role in resolving emission-control and energy-supply challenges. Here, a comprehensive review is presented that summarizes the state-of-the-art progress in developing promising materials for sustainable CO2 management in terms of not only capture, catalytic conversion (thermochemistry, electrochemistry, photochemistry, and possible combinations), and direct utilization, but also emerging integrated capture and in situ conversion as well as artificial-intelligence-driven smart material study. In particular, insights that span multiple scopes of material research are offered, ranging from mechanistic comprehension of reactions, rational design and precise manipulation of key materials (e.g., carbon nanomaterials, metal-organic frameworks, covalent organic frameworks, zeolites, ionic liquids), to industrial implementation. This review concludes with a summary and new perspectives, especially from multiple aspects of society, which summarizes major difficulties and future potential for implementing advanced materials and technologies in sustainable CO2 management. This work may serve as a guideline and road map for developing CCU material systems, benefiting both scientists and engineers working in this growing and potentially game-changing area.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yun Zheng
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lanting Qian
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Dan Luo
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Haozhen Dou
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Guobin Wen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aiping Yu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Zhongwei Chen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
3
|
Mendoza-Nieto JA, Martínez-Hernández H, Pfeiffer H, Gómez-García JF. A new kinetic model for CO2 capture on sodium zirconate (Na2ZrO3): An analysis under different flow rates. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Affiliation(s)
- Cameron Halliday
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - T. Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Wan Y, Plascencia F, Bernabé-Pablo E, Yu F, Pfeiffer H. New Catalytic and Sorption Bifunctional Li 6CoO 4 Material for Carbon Monoxide Oxidation and Subsequent Chemisorption. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yinji Wan
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Cd. Universitaria, Del. Coyoacán CP 04510, Ciudad de México, Mexico
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Fernando Plascencia
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Cd. Universitaria, Del. Coyoacán CP 04510, Ciudad de México, Mexico
| | - Erandi Bernabé-Pablo
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Cd. Universitaria, Del. Coyoacán CP 04510, Ciudad de México, Mexico
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Heriberto Pfeiffer
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Cd. Universitaria, Del. Coyoacán CP 04510, Ciudad de México, Mexico
| |
Collapse
|
6
|
Yañez-Aulestia A, Ovalle-Encinia O, Pfeiffer H. Evaluation of Fe-containing Li 2CuO 2 on CO 2 capture performed at different physicochemical conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29532-29543. [PMID: 29872979 DOI: 10.1007/s11356-018-2444-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Li2CuO2 and different iron-containing Li2CuO2 samples were synthesized by solid state reaction. On iron-containing samples, atomic sites of copper are substituted by iron ions in the lattice (XRD and Rietveld analyses). Iron addition induces copper release from Li2CuO2, which produce cationic vacancies and CuO, due to copper (Cu2+) and iron (Fe3+) valence differences. Two different physicochemical conditions were used for analyzing CO2 capture on these samples; (i) high temperature and (ii) low temperature in presence of water vapor. At high temperatures, iron addition increased CO2 chemisorption, due to structural and chemical variations on Li2CuO2. Kinetic analysis performed by first order reaction and Eyring models evidenced that iron addition on Li2CuO2 induced a faster CO2 chemisorption but a higher thermal dependence. Conversely, CO2 chemisorption at low temperature in water vapor presence practically did not vary by iron addition, although hydration and hydroxylation processes were enhanced. Moreover, under these physicochemical conditions the whole sorption process became slower on iron-containing samples, due to metal oxides presence.
Collapse
Affiliation(s)
- Ana Yañez-Aulestia
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán C.P, 04510, Ciudad de México, Mexico
| | - Oscar Ovalle-Encinia
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán C.P, 04510, Ciudad de México, Mexico
| | - Heriberto Pfeiffer
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán C.P, 04510, Ciudad de México, Mexico.
| |
Collapse
|
7
|
Galven C, Pagnier T, Rosman N, Le Berre F, Crosnier-Lopez MP. β-Na2TeO4: Phase Transition from an Orthorhombic to a Monoclinic Form. Reversible CO2 Capture. Inorg Chem 2018; 57:7334-7345. [DOI: 10.1021/acs.inorgchem.8b00993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cyrille Galven
- Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France
| | - Thierry Pagnier
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| | - Noël Rosman
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| | - Françoise Le Berre
- Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France
| | - Marie-Pierre Crosnier-Lopez
- Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France
| |
Collapse
|
8
|
Enhanced CO2 chemisorption at high temperatures via oxygen addition using (Fe, Cu or Ni)-containing sodium cobaltates as solid sorbents. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Debecker DP, Le Bras S, Boissière C, Chaumonnot A, Sanchez C. Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts. Chem Soc Rev 2018; 47:4112-4155. [DOI: 10.1039/c7cs00697g] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aerosol processing technologies represent a major route of innovation in the mushrooming field of heterogeneous catalysts preparation.
Collapse
Affiliation(s)
- Damien P. Debecker
- Université catholique de Louvain
- Institute of Condensed Matter and Nanosciences
- 1348 Louvain-La-Neuve
- Belgium
| | - Solène Le Bras
- Université catholique de Louvain
- Institute of Condensed Matter and Nanosciences
- 1348 Louvain-La-Neuve
- Belgium
| | - Cédric Boissière
- Sorbonne Université
- Collège de France
- PSL University
- CNRS
- Laboratoire de Chimie de La Matière Condensée de Paris LCMCP
| | | | - Clément Sanchez
- Sorbonne Université
- Collège de France
- PSL University
- CNRS
- Laboratoire de Chimie de La Matière Condensée de Paris LCMCP
| |
Collapse
|
10
|
Zhao M, Fan H, Yan F, Song Y, He X, Memon MZ, Bhatia SK, Ji G. Kinetic analysis for cyclic CO2 capture using lithium orthosilicate sorbents derived from different silicon precursors. Dalton Trans 2018; 47:9038-9050. [DOI: 10.1039/c8dt01617h] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The illustration of the CO2 sorption process in Li4SiO4.
Collapse
Affiliation(s)
- Ming Zhao
- School of Environment
- Tsinghua University
- Beijing 100084
- China
- Key Laboratory for Solid Waste Management and Environmental Safety
| | - Hanlu Fan
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Feng Yan
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Yinqiang Song
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Xu He
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | | | - Suresh K. Bhatia
- School of Chemical Engineering
- the University of Queensland
- Brisbane
- Australia
| | - Guozhao Ji
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|