1
|
Sun Z, Wu C. Pickering Emulsions Biocatalysis: Recent Developments and Emerging Trends. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402208. [PMID: 38716793 DOI: 10.1002/smll.202402208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Indexed: 10/01/2024]
Abstract
Biocatalysis within biphasic systems is gaining significant attention in the field of synthetic chemistry, primarily for its ability to solve the problem of incompatible solubilities between biocatalysts and organic compounds. By forming an emulsion from these two-phase systems, a larger surface area is created, which greatly improves the mass transfer of substrates to the biocatalysts. Among the various types of emulsions, Pickering emulsions stand out due to their excellent stability, compatibility with biological substances, and the ease with which they can be formed and separated. This makes them ideal for reusing both the emulsifiers and the biocatalysts. This review explores the latest developments in biocatalysis using Pickering emulsions. It covers the structural features, methods of creation, innovations in flow biocatalysis, and the role of interfaces in these processes. Additionally, the challenges and future directions are discussed in combining chemical and biological catalysts within Pickering emulsion frameworks to advance synthetic methodologies.
Collapse
Affiliation(s)
- Zhiyong Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Chaowang road 18, Hangzhou, 310014, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| |
Collapse
|
2
|
Hasnain Sayed M, Sadgar AL, Bhanage BM, Jayaram RV. Particle shape anisotropy in pickering interfacial catalysis for Knoevenagel condensation. J Colloid Interface Sci 2024; 659:413-421. [PMID: 38183807 DOI: 10.1016/j.jcis.2023.12.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024]
Abstract
Dispersions of two immiscible liquids stabilized by solid particles are termed as Pickering emulsions. Stability of such emulsions is affected by various parameters such as amount of solid particle, method of emulsification, size, and shape of particles, etc. In this study, MgO samples prepared by different methods and characterized by XRD, FESEM, HRTEM, DLS, and CO2-TPD techniques were utilized for stabilizing o/w Pickering emulsions. The effect of particle shape on Pickering Interfacial Catalysis (PIC) for Knoevenagel condensation was investigated. It was found that in the case of rod and plate shaped particles, emulsion stability and catalytic activity were higher as compared to those obtained with other MgO samples prepared. The applicability of the MgO-PIC system is also successfully demonstrated for gram scale synthesis (85 % yield in 30 min). The MgO-PIC system was found to be reusable for at least five cycles without substantial loss in activity.
Collapse
Affiliation(s)
- Mohd Hasnain Sayed
- Physical Chemistry Lab, Department of Chemistry Institute of Chemical Technology, Mumbai-400019, India
| | - Amid L Sadgar
- Physical Chemistry Lab, Department of Chemistry Institute of Chemical Technology, Mumbai-400019, India
| | - Bhalchandra M Bhanage
- Physical Chemistry Lab, Department of Chemistry Institute of Chemical Technology, Mumbai-400019, India
| | - Radha V Jayaram
- Physical Chemistry Lab, Department of Chemistry Institute of Chemical Technology, Mumbai-400019, India.
| |
Collapse
|
3
|
Zhao G, Li Y, Zhen W, Gao J, Gu Y, Hong B, Han X, Zhao S, Pera-Titus M. Enhanced Biphasic Reactions in Amphiphilic Silica Mesopores. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:1644-1653. [PMID: 38322775 PMCID: PMC10839897 DOI: 10.1021/acs.jpcc.3c07477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
In this study, we investigated the effect of the pore volume and mesopore size of surface-active catalytic organosilicas on the genesis of particle-stabilized (Pickering) emulsions for the dodecanal/ethylene glycol system and their reactivity for the acid-catalyzed biphasic acetalization reaction. To this aim, we functionalized a series of fumed silica superparticles (size 100-300 nm) displaying an average mesopore size in the range of 11-14 nm and variable mesopore volume, with a similar surface density of octyl and propylsulfonic acid groups. The modified silica superparticles were characterized in detail using different techniques, including acid-base titration, thermogravimetric analysis, TEM, and dynamic light scattering. The pore volume of the particles impacts their self-assembly and coverage at the dodecanal/ethylene glycol (DA/EG) interface. This affects the stability and the average droplet size of emulsions and conditions of the available interfacial surface area for reaction. The maximum DA-EG productivity is observed for A200 super-SiNPs with a pore volume of 0.39 cm3·g-1 with an interfacial coverage by particles lower than 1 (i.e., submonolayer). Using dissipative particle dynamics and all-atom grand canonical Monte Carlo simulations, we unveil a stabilizing role of the pore volume of porous silica superparticles for generating emulsions and local micromixing of immiscible dodecanal and ethylene glycol, allowing fast and efficient solvent-free acetalization in the presence of Pickering emulsions. The micromixing level is interrelated to the adsorption energy of self-assembled particles at the DA/EG interface.
Collapse
Affiliation(s)
- Guolin Zhao
- Eco-Efficient
Products and Processes Laboratory (E2P2L), UMI 3464 CNRS − Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, Shanghai 201108, China
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yao Li
- Eco-Efficient
Products and Processes Laboratory (E2P2L), UMI 3464 CNRS − Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, Shanghai 201108, China
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wen Zhen
- School
of Chemistry and Chemical Engineering, Guangxi
University, Nanning 530004, China
| | - Jie Gao
- Eco-Efficient
Products and Processes Laboratory (E2P2L), UMI 3464 CNRS − Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, Shanghai 201108, China
| | - Yunjiao Gu
- Eco-Efficient
Products and Processes Laboratory (E2P2L), UMI 3464 CNRS − Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, Shanghai 201108, China
| | - Bing Hong
- Eco-Efficient
Products and Processes Laboratory (E2P2L), UMI 3464 CNRS − Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, Shanghai 201108, China
| | - Xia Han
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuangliang Zhao
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- School
of Chemistry and Chemical Engineering, Guangxi
University, Nanning 530004, China
| | - Marc Pera-Titus
- Eco-Efficient
Products and Processes Laboratory (E2P2L), UMI 3464 CNRS − Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, Shanghai 201108, China
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| |
Collapse
|
4
|
Lv H, Wang Z, An J, Li Z, Shi L, Shan Y. Preparation and Emulsifying Properties of Carbon-Based Pickering Emulsifier. Processes (Basel) 2023. [DOI: 10.3390/pr11041070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Water is increasingly being used as a solvent in place of organic solvent in order to meet the demand for green chemical synthesis. Nevertheless, many of the reaction substrates are organic matter, which have low water solubility, resulting in a low reaction interface and limiting the development of organic-water biphasic systems. A surfactant is typically added to the two-phase system to form an emulsion to increase the contact area between the organic phase and the water. Compared to ordinary emulsion stabilized with the surfactant, Pickering emulsion offers better adhesion resistance, biocompatibility, and environmental friendliness. It possesses unrivaled benefits as an emulsifier and catalyst in a two-phase interfacial catalysis system (PIC). In this study, the amine group (NNDB) was employed to alter the surface of graphene oxide (GO). A stable Pickering emulsion was created by adsorbing GO-NNDB on the toluene–water interface. It was determined that the emulsion system had good stability by analyzing digital photographs and microscope images of droplets at various temperatures, and fluorescence microscopy images of emulsion droplets created by both newly added and recovered emulsifiers. This work provided the groundwork for future applications of Pickering emulsion in interfacial catalysis.
Collapse
Affiliation(s)
- Huihui Lv
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- College of Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zebo Wang
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jialong An
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhanfeng Li
- College of Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lei Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanyuan Shan
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
5
|
Ni L, Yu C, Wei Q, Liu D, Qiu J. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angew Chem Int Ed Engl 2022; 61:e202115885. [PMID: 35524649 DOI: 10.1002/anie.202115885] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 12/17/2022]
Abstract
Pickering emulsions are particle-stabilized surfactant-free dispersions composed of two immiscible liquid phases, and emerge as attractive catalysis platform to surpass traditional technique barrier in some cases. In this review, we have comprehensively summarized the development and the catalysis applications of Pickering emulsions since the pioneering work in 2010. The explicit mechanism for Pickering emulsions will be initially discussed and clarified. Then, summarization is given to the design strategy of amphiphilic emulsion catalysts in two categories of intrinsic and extrinsic amphiphilicity. The progress of the unconventional catalytic reactions in Pickering emulsion is further described, especially for the polarity/solubility difference-driven phase segregation, "smart" emulsion reaction system, continuous flow catalysis, and Pickering interfacial biocatalysis. Challenges and future trends for the development of Pickering emulsion catalysis are finally outlined.
Collapse
Affiliation(s)
- Lin Ni
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Chang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Qianbing Wei
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Dongming Liu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.,State Key Lab of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Peng G, Humblot A, Wischert R, Vigier KDO, Pera-Titus M, Jérôme F. Heterogeneously-catalyzed competitive hydroarylation/hydromination of norbornene with aniline in the presence of Aquivion® ionomer. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Ni L, Yu C, Wei Q, Liu D, Qiu J. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lin Ni
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Chang Yu
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Qianbing Wei
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Dongming Liu
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Jieshan Qiu
- Dalian University of Technology School of Chemical Engineering High Technology Zone, No. 2 Ling Gong Road 116024 Dalian CHINA
| |
Collapse
|
8
|
Dedovets D, Li Q, Leclercq L, Nardello‐Rataj V, Leng J, Zhao S, Pera‐Titus M. Multiphase Microreactors Based on Liquid-Liquid and Gas-Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angew Chem Int Ed Engl 2022; 61:e202107537. [PMID: 34528366 PMCID: PMC9293096 DOI: 10.1002/anie.202107537] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 01/08/2023]
Abstract
Pickering emulsions, foams, bubbles, and marbles are dispersions of two immiscible liquids or of a liquid and a gas stabilized by surface-active colloidal particles. These systems can be used for engineering liquid-liquid-solid and gas-liquid-solid microreactors for multiphase reactions. They constitute original platforms for reengineering multiphase reactors towards a higher degree of sustainability. This Review provides a systematic overview on the recent progress of liquid-liquid and gas-liquid dispersions stabilized by solid particles as microreactors for engineering eco-efficient reactions, with emphasis on biobased reagents. Physicochemical driving parameters, challenges, and strategies to (de)stabilize dispersions for product recovery/catalyst recycling are discussed. Advanced concepts such as cascade and continuous flow reactions, compartmentalization of incompatible reagents, and multiscale computational methods for accelerating particle discovery are also addressed.
Collapse
Affiliation(s)
- Dmytro Dedovets
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
- Laboratoire du Futur (LOF)UMR 5258, CNRS-Solvay-Universite Bordeaux 1178 Av Dr Albert Schweitzer33608Pessac CedexFrance
| | - Qingyuan Li
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
| | - Loïc Leclercq
- Univ LilleCNRSCentrale LilleUniv ArtoisUMR 8181 UCCSF-59000LilleFrance
| | | | - Jacques Leng
- Laboratoire du Futur (LOF)UMR 5258, CNRS-Solvay-Universite Bordeaux 1178 Av Dr Albert Schweitzer33608Pessac CedexFrance
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologySchool of Chemistry and Chemical EngineeringGuangxi University530004NanningChina
| | - Marc Pera‐Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
9
|
Dedovets D, Li Q, Leclercq L, Nardello‐Rataj V, Leng J, Zhao S, Pera‐Titus M. Multiphase Microreactors Based on Liquid–Liquid and Gas–Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dmytro Dedovets
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
- Laboratoire du Futur (LOF) UMR 5258, CNRS-Solvay-Universite Bordeaux 1 178 Av Dr Albert Schweitzer 33608 Pessac Cedex France
| | - Qingyuan Li
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
| | - Loïc Leclercq
- Univ Lille CNRS Centrale Lille Univ Artois UMR 8181 UCCS F-59000 Lille France
| | | | - Jacques Leng
- Laboratoire du Futur (LOF) UMR 5258, CNRS-Solvay-Universite Bordeaux 1 178 Av Dr Albert Schweitzer 33608 Pessac Cedex France
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology School of Chemistry and Chemical Engineering Guangxi University 530004 Nanning China
| | - Marc Pera‐Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
10
|
Li H, Wu H, Yu Z, Zhang H, Yang S. CO 2 -Enabled Biomass Fractionation/Depolymerization: A Highly Versatile Pre-Step for Downstream Processing. CHEMSUSCHEM 2020; 13:3565-3582. [PMID: 32285649 DOI: 10.1002/cssc.202000575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Lignocellulosic biomass is inevitably subject to fractionation and depolymerization processes for enhanced selectivity toward specific products, in most cases prior to catalytic upgrading of the three main fractions-cellulose, hemicellulose, and lignin. Among the developed pretreatment techniques, CO2 -assisted biomass processing exhibits some unique advantages such as the lowest critical temperature (31.0 °C) with moderate critical pressure, low cost, nontoxicity, nonflammability, ready availability, and the addition of acidity, alongside easy recovery by pressure release. This Review showcases progress in the study of sub- or supercritical CO2 -mediated thermal processing of lignocellulosic biomass-the key pre-step for downstream conversion processes. The auxo-action of CO2 in biomass pretreatment and fractionation, along with the involved variables, direct degradation of untreated biomass in CO2 by gasification, pyrolysis, and liquefaction with relevant conversion mechanisms, and CO2 -enabled depolymerization of lignocellulosic fractions with representative reaction pathways are summarized. Moreover, future prospects for the practical application of CO2 -assisted up- and downstream biomass-to-bioproduct conversion are also briefly discussed.
Collapse
Affiliation(s)
- Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| | - Zhaozhuo Yu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| | - Heng Zhang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| |
Collapse
|
11
|
Sadgar AL, Deore TS, Jayaram RV. Pickering Interfacial Catalysis-Knoevenagel Condensation in Magnesium Oxide-Stabilized Pickering Emulsion. ACS OMEGA 2020; 5:12224-12235. [PMID: 32548405 PMCID: PMC7271354 DOI: 10.1021/acsomega.0c00819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/07/2020] [Indexed: 06/01/2023]
Abstract
In the present study, a novel catalytic route for the Knoevenagel condensation reaction has been developed by Pickering interfacial catalysis using magnesium oxide (MgO) as both an emulsion stabilizer and a base catalyst. MgO was prepared by the precipitation method using sodium hydroxide or ammonium hydroxide as the precipitating agent and calcined at different temperatures. The calcined samples were characterized by XRD, SEM, TEM, AFM, BET, and DLS techniques. The catalytic application of the emulsions stabilized by MgO was investigated for the Knoevenagel condensation reaction of benzaldehyde and its derivatives with malononitrile. All of the reactions were carried out at an ambient temperature (30 °C) under static conditions without stirring. Both the emulsion-stabilizing ability and the catalytic activity of MgO were found to be affected by the method of preparation, calcination temperature, and the nature of the oil phase. It was observed that the method of preparation varied the texture and morphology of MgO and thus the stability and droplet size of the emulsion formed. This was further reflected in the catalytic activity. The highest yield (87%) of the condensation product was obtained with MgO prepared by precipitation using a strong base (NaOH) and further calcined at 400 °C. The developed catalytic system offers several green chemistry advantages such as reusable solid-base catalyst and use of a single material as both emulsion stabilizer and catalyst. Room-temperature reaction under static conditions is an additional advantage of the developed catalytic system.
Collapse
|
12
|
Karam A, Franco A, Limousin M, Marinkovic S, Estrine B, Oldani C, De Oliveira Vigier K, Luque R, Jérôme F. Impact of shaping Aquivion PFSA on its catalytic performances. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00034h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The shaping of Aquivion PFSA into micropellets is a good compromise between its catalytic performances, its ease of recovery at the end of the reaction and its deactivation rate.
Collapse
Affiliation(s)
- Ayman Karam
- Institut de Chimie des Milieux et Matériaux de Poitiers
- CNRS/Université de Poitiers
- TSA 41105 86073 Poitiers cedex 9
- France
| | - Ana Franco
- Departamento de Química Orgánica
- Universidad de Córdoba, Campus de Rabanales
- Córdoba
- Spain
| | - Magali Limousin
- ARD-Agro-industrie Recherches et Développements
- Green Chemistry Department
- F-51110 Pomacle
- France
| | - Sinisa Marinkovic
- ARD-Agro-industrie Recherches et Développements
- Green Chemistry Department
- F-51110 Pomacle
- France
| | - Boris Estrine
- ARD-Agro-industrie Recherches et Développements
- Green Chemistry Department
- F-51110 Pomacle
- France
| | | | - Karine De Oliveira Vigier
- Institut de Chimie des Milieux et Matériaux de Poitiers
- CNRS/Université de Poitiers
- TSA 41105 86073 Poitiers cedex 9
- France
| | - Rafael Luque
- Departamento de Química Orgánica
- Universidad de Córdoba, Campus de Rabanales
- Córdoba
- Spain
- Peoples Friendship University of Russia (RUDN University)
| | - François Jérôme
- Institut de Chimie des Milieux et Matériaux de Poitiers
- CNRS/Université de Poitiers
- TSA 41105 86073 Poitiers cedex 9
- France
| |
Collapse
|
13
|
Zhang S, Hong B, Fan Z, Lu J, Xu Y, Pera-Titus M. Aquivion-Carbon Composites with Tunable Amphiphilicity for Pickering Interfacial Catalysis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26795-26804. [PMID: 29998732 DOI: 10.1021/acsami.8b08649] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A key demand in biomass conversion is how to achieve high reactivity with immiscible reagents with the use of neither cosolvents nor additives. Pickering interfacial catalysis encompassing the design of amphiphilic catalysts behaving concomitantly as emulsifiers offers an elegant solution. In this study, we prepared a systematic series of amphiphilic Aquivion-carbon composites by the hydrothermal carbonization of guar gum with Aquivion perfluorosulfonic superacid. By tuning the Aquivion-carbon composition, materials with tunable hydrophilic-lipophilic properties could be prepared, showing high versatility for conducting biphasic reactions without stirring. In particular, an optimal formulation based on 5:1 Aquivion-carbon could be developed, showing high activity in the transesterification reaction of glyceryl trioleate with methanol at 100 °C with good reusability due to the genesis of stable Pickering emulsions.
Collapse
Affiliation(s)
- Shi Zhang
- State Key Laboratory of Chemical Engineering and Department of Chemistry , East China University of Science and Technology , 200237 Shanghai , China
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay , 3966 Jin Du Road, Xin Zhuang Ind. Zone , 201108 Shanghai , China
| | - Bing Hong
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay , 3966 Jin Du Road, Xin Zhuang Ind. Zone , 201108 Shanghai , China
| | - Zhaoyu Fan
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay , 3966 Jin Du Road, Xin Zhuang Ind. Zone , 201108 Shanghai , China
| | - Jingya Lu
- Solvay (China), Ltd , 3966 Jin Du Road, Xin Zhuang Ind. Zone , 201108 Shanghai , China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering and Department of Chemistry , East China University of Science and Technology , 200237 Shanghai , China
| | - Marc Pera-Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay , 3966 Jin Du Road, Xin Zhuang Ind. Zone , 201108 Shanghai , China
| |
Collapse
|
14
|
Duclos MC, Herbinski A, Mora AS, Métay E, Lemaire M. Methylation of Polyols with Trimethylphosphate in the Presence of a Lewis or Brønsted Acid Catalyst. CHEMSUSCHEM 2018; 11:547-551. [PMID: 29319232 DOI: 10.1002/cssc.201701841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 06/07/2023]
Abstract
The alkylation of alcohols and polyols has been investigated with alkylphosphates in the presence of a Lewis or Brønsted acid catalyst. The permethylation of polyols was developed under solvent-free conditions at 100 °C with either iron triflate or Aquivion PW98, affording the isolated products in yields between 52 and 95 %. The methodology was also adjusted to carry out peralkylation with longer alkyl chains.
Collapse
Affiliation(s)
- Marie-Christine Duclos
- University Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246, Equipe CAtalyse, Synthèse et ENvironnement (CASYEN), 43, bd du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| | - Aurélien Herbinski
- University Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246, Equipe CAtalyse, Synthèse et ENvironnement (CASYEN), 43, bd du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| | - Anne-Sophie Mora
- University Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246, Equipe CAtalyse, Synthèse et ENvironnement (CASYEN), 43, bd du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| | - Estelle Métay
- University Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246, Equipe CAtalyse, Synthèse et ENvironnement (CASYEN), 43, bd du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| | - Marc Lemaire
- University Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246, Equipe CAtalyse, Synthèse et ENvironnement (CASYEN), 43, bd du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| |
Collapse
|