1
|
Gu S, Li L, Hu L, Guo S, Feng Y, Zhang H, Yu G, Tang J. Building a Co-Salen-Immobilized Porous Organic Polymer Catalyst for CO 2 Cycloaddition. Macromol Rapid Commun 2024:e2400836. [PMID: 39726390 DOI: 10.1002/marc.202400836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Indexed: 12/28/2024]
Abstract
The CO2-epoxide addition to cyclic carbonate is of great significance but usually requires high temperatures and CO2 pressures. Herein, a spirobifluorene-based porous organic polymer catalyst is designed with a Co-salen complex immobilized on the backbone (ST-CoSalen-POP) to enable CO2 fixation under mild conditions. ST-CoSalen-POP possesses a high Co-loading content (9.35 wt%), a large pore volume, and high CO2 adsorption capacity. This catalyst achieves a 96% yield in the cycloaddition of CO2 with epoxides at 25 °C and 0.1 MPa CO2 pressures. Moreover, ST-CoSalen-POP also offers the advantages of wide adaptability over epoxide substrates and high structural stability for three consecutive cycles. This study presents a novel catalytic approach for promoting CO2 fixation, offering a significant advancement in the efficient synthesis of fine chemicals.
Collapse
Affiliation(s)
- Shuai Gu
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lei Li
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lingling Hu
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Shuyu Guo
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yi Feng
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Huicong Zhang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guipeng Yu
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Juntao Tang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
2
|
Sahoo A, Jaiswal S, Das S, Patra A. Imidazolium and Pyridinium-Based Ionic Porous Organic Polymers: Advances in Transformative Solutions for Oxoanion Sequestration and Non-Redox CO 2 Fixation. Chempluschem 2024; 89:e202400189. [PMID: 38963082 DOI: 10.1002/cplu.202400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/05/2024]
Abstract
The rapid pace of industrialization has led to a multitude of detrimental environmental consequences, including water pollution and global warming. Consequently, there is an urgent need to devise appropriate materials to address these challenges. Ionic porous organic polymers (iPOPs) have emerged as promising materials for oxoanion sequestration and non-redox CO2 fixation. Notably, iPOPs offer hydrothermal stability, structural tunability, a charged framework, and readily available nucleophilic counteranions. This review explores the significance of pores and charged functionalities alongside design strategies outlined in existing literature, mainly focusing on the incorporation of pyridinium and imidazolium units into nitrogen-rich iPOPs for oxoanion sequestration and non-redox CO2 fixation. The present review also addresses the current challenges and future prospects, delineating the design and development of innovative iPOPs for water treatment and heterogeneous catalysis.
Collapse
Affiliation(s)
- Aniket Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| | - Shilpi Jaiswal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| |
Collapse
|
3
|
Anvarian-Asl G, Joudian S, Todisco S, Mastrorilli P, Khorasani M. Controllable synthesis of hollow mesoporous organosilica nanoparticles with pyridine-2,6-bis-imidazolium frameworks for CO 2 conversion. NANOSCALE 2024; 16:16977-16989. [PMID: 39037223 DOI: 10.1039/d4nr02144d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
A series of hard-template-derived hollow mesoporous organosilica nanoparticles (HMONs) with pyridine-2,6-bis-imidazolium frameworks have been described for the first time. As a part of the investigation, to evaluate the effects of the hard template nature, the Si/CTAB and organosilica/TEOS molar ratios, and the stepwise addition of precursors, four reaction conditions denoted as methods A-D were designed. In the presence of polystyrene latex as a hard template, the HMONs that we wished to synthesize were not yielded with a Si/CTAB molar ratio of 3 (method A), but we could synthesize the desired HMONs with a Si/CTAB molar ratio of 9 and an organosilica : TEOS ratio of 1 : 99 (method B). The ratio of organosilica to TEOS could be improved up to 2.5 : 97.5 if the precursor additions are made in a stepwise manner rather than by simultaneous additions (method C). Using sSiO2 as a hard template, a yolk-shell morphology was observed by adopting a Si/CTAB molar ratio of 3 (method D). The HMONs were modified by iodide ions and their activity was explored toward the coupling of CO2 with epoxides. Among the catalysts, I-HMON-L-C-2.5 exhibited excellent results under mild reaction conditions. Well-oriented pore sizes and short channel length facilitated easy mass transfer from one side and the integration of the interior hollow regions of the catalyst particles from the other side improved the CO2 retention time around pores where the imidazolium organocatalysts were located, which made I-HMON-L-C-2.5 an effective catalyst for title CO2 utilization. The catalyst was reused at least six times without exhibiting any changes in its activity. HMONs can also be used as solid CNC ligands for the preparation of copper catalysts for the click reaction between phenyl acetylene and benzyl azide.
Collapse
Affiliation(s)
- Ghazale Anvarian-Asl
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), No. 444, Prof. Yousef Sobouti Boulevard, Zanjan 45137-66731, Iran.
| | - Sadegh Joudian
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), No. 444, Prof. Yousef Sobouti Boulevard, Zanjan 45137-66731, Iran.
| | - Stefano Todisco
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Aldo Moro, Via Edoardo Orabona 4, Bari I-70125, Italy
| | - Pietro Mastrorilli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Aldo Moro, Via Edoardo Orabona 4, Bari I-70125, Italy
| | - Mojtaba Khorasani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), No. 444, Prof. Yousef Sobouti Boulevard, Zanjan 45137-66731, Iran.
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences, IASBS, Zanjan 45137-66731, Iran
| |
Collapse
|
4
|
Cai Z, Zhao B, Hao L, Wang Q, Wang Z, Wu Q, Wang C. Fabrication of imidazoline-linked cationic covalent triazine framework for enrichment of environmental estrogens. Talanta 2024; 272:125750. [PMID: 38364559 DOI: 10.1016/j.talanta.2024.125750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Imidazoline-linked cationic covalent triazine framework (IM-iCTF) was facilely prepared through the Debus-Radziszewski reaction, involving 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline, formaldehyde and methylglyoxal. The IM-iCTF was applied as a sorbent for cartridge solid-phase extraction (SPE). It provided good adsorption performance for estrogen and estrogen mimics including bisphenol F, bisphenol A, 7β-estradiol, bisphenol B and estrone. The adsorption isotherm, adsorption kinetic model, thermodynamic calculations and adsorption mechanism were investigated to reveal the adsorption behavior. The IM-iCTF was employed for the extraction of the estrogens and estrogen mimics from water, fish and shrimp (fish and shrimp samples were extracted with acetonitrile before the SPE). The analytes were then determined by high-performance liquid chromatography with diode array detection. The limits of detection were 0.008-0.05 ng mL-1 for water, 0.015-0.11 μg g-1 for fish, and 0.012-0.10 μg g-1 for shrimp samples. This research not only offers a new approach to construct cationic covalent triazine framework, but also provides a reliable strategy for the adsorption/enrichment trace level of organic pollutants.
Collapse
Affiliation(s)
- Zixuan Cai
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Bin Zhao
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Lin Hao
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Qianqian Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China; Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Qiuhua Wu
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China; Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China; Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
5
|
Karak S, Koner K, Karmakar A, Mohata S, Nishiyama Y, Duong NT, Thomas N, Ajithkumar TG, Hossain MS, Bandyopadhyay S, Kundu S, Banerjee R. Morphology Tuning via Linker Modulation: Metal-Free Covalent Organic Nanostructures with Exceptional Chemical Stability for Electrocatalytic Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209919. [PMID: 36635878 DOI: 10.1002/adma.202209919] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The development of synthetic routes for the formation of robust porous organic polymers (POPs) with well-defined nanoscale morphology is fundamentally significant for their practical applications. The thermodynamic characteristics that arise from reversible covalent bonding impart intrinsic chemical instability in the polymers, thereby impeding their overall potential. Herein, a unique strategy is reported to overcome the stability issue by designing robust imidazole-linked POPs via tandem reversible/irreversible bond formation. Incorporating inherent rigidity into the secondary building units leads to robust microporous polymeric nanostructures with hollow-spherical morphologies. An in-depth analysis by extensive solid-state NMR (1D and 2D) study on 1H, 13C, and 14N nuclei elucidates the bonding and reveals the high purity of the newly designed imidazole-based POPs. The nitrogen-rich polymeric nanostructures are further used as metal-free electrocatalysts for water splitting. In particular, the rigid POPs show excellent catalytic activity toward the oxygen evolution reaction (OER) with long-term durability. Among them, the most efficient OER electrocatalyst (TAT-TFBE) requires 314 mV of overpotential to drive 10 mA cm-2 current density, demonstrating its superiority over state-of-the-art catalysts (RuO2 and IrO2).
Collapse
Affiliation(s)
- Shayan Karak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Kalipada Koner
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Shibani Mohata
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa, 230-0045, Japan
- JEOL Ltd., Musashino, Akishima, Tokyo, 196-8558, Japan
| | - Nghia Tuan Duong
- RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa, 230-0045, Japan
- JEOL Ltd., Musashino, Akishima, Tokyo, 196-8558, Japan
| | - Neethu Thomas
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. HomiBhabha Road, Pune, 411008, India
| | | | - Munshi Sahid Hossain
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| |
Collapse
|
6
|
Xiao L, Lai Y, Zhao R, Song Q, Cai J, Yin X, Zhao Y, Hou L. Ionic Conjugated Polymers as Heterogeneous Catalysts for the Cycloaddition of Carbon Dioxide to Epoxides to Form Carbonates under Solvent- and Cocatalyst-Free Conditions. Chempluschem 2022; 87:e202200324. [PMID: 36420867 DOI: 10.1002/cplu.202200324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Indexed: 01/31/2023]
Abstract
The generation of cyclic carbonates by the cycloaddition of CO2 with epoxides is attractive in the industry, by which CO2 is efficiently used as C1 source. Herein, a series of catalysts were developed to efficient mediate the cycloaddition of CO2 with epoxides to generate carbonates. The catalysts were easily synthesized via the amine-formaldehyde condensation of ethidium bromide with a variety of linkers. The newly prepared heterogeneous catalysts have high thermal stability and degradation temperatures. The surface of the catalysts is smooth and spherical in shape. The effect of temperature, pressure, reaction time and catalyst dosage on the cycloaddition of CO2 with epoxide were investigated. The results show that the catalyst with 1,3,5-tris(4-formylphenyl)benzene as the linker can achieve 97.4 % conversion efficiency at the conditions of 100 °C, reaction time of 12 h, and the reaction pressure of 1.2 MPa in a solvent-free environment. Notably, the polymers serve as homogeneous catalysts during the reaction (reaction temperature above Tg ) and can be separated and recovered easily as homogeneous catalysts at room temperature. In addition, the catalyst is not only suitable for a wide range of epoxide substrates, but also can be recycled many times. Furthermore, DFT calculations show that the coordination between the electrophilic center of the catalyst and the epoxide reduces the energy barrier, and the reaction mechanism is proposed based on the reaction kinetic studies and DFT calculations.
Collapse
Affiliation(s)
- Longqiang Xiao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.,Qingyuan Innovation Laboratory, Quanzhou, 362801(P. R., China
| | - Yiming Lai
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Rui Zhao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.,Qingyuan Innovation Laboratory, Quanzhou, 362801(P. R., China
| | - Qianyu Song
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jingyu Cai
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.,Qingyuan Innovation Laboratory, Quanzhou, 362801(P. R., China
| | - Xiangyu Yin
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yulai Zhao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.,Qingyuan Innovation Laboratory, Quanzhou, 362801(P. R., China.,Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
7
|
Zhang Y, Liang H, Li X, Li Q, Wang J. Melem based mesoporous metal-free catalyst for cycloaddition of CO2 to cyclic carbonate. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Wu J, Ma S, Cui J, Yang Z, Zhang J. Nitrogen-Rich Porous Organic Polymers with Supported Ag Nanoparticles for Efficient CO 2 Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3088. [PMID: 36144877 PMCID: PMC9501012 DOI: 10.3390/nano12183088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
As CO2 emissions increase and the global climate deteriorates, converting CO2 into valuable chemicals has become a topic of wide concern. The development of multifunctional catalysts for efficient CO2 conversion remains a major challenge. Herein, two porous organic polymers (NPOPs) functionalized with covalent triazine and triazole N-heterocycles are synthesized through the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The NPOPs have an abundant microporous content and high specific surface area, which confer them excellent CO2 affinities with a CO2 adsorption capacity of 84.0 mg g-1 and 63.7 mg g-1, respectively, at 273 K and 0.1 MPa. After wet impregnation and in situ reductions, Ag nanoparticles were supported in the NPOPs to obtain Ag@NPOPs with high dispersion and small particle size. The Ag@NPOPs were applied to high-value conversion reactions of CO2 with propargylic amines and terminal alkynes under mild reaction conditions. The carboxylative cyclization transformation of propargylic amine into 2-oxazolidinone and the carboxylation transformation of terminal alkynes into phenylpropiolic acid had the highest TOF values of 1125.1 and 90.9 h-1, respectively. The Ag@NPOP-1 was recycled and used five times without any significant decrease in catalytic activity, showing excellent catalytic stability and durability.
Collapse
Affiliation(s)
- Jinyi Wu
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shasha Ma
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiawei Cui
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zujin Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianyong Zhang
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
Fan SC, Chen SQ, Wang JW, Li YP, Zhang P, Wang Y, Yuan W, Zhai QG. Precise Introduction of Single Vanadium Site into Indium-Organic Framework for CO 2 Capture and Photocatalytic Fixation. Inorg Chem 2022; 61:14131-14139. [PMID: 35998379 DOI: 10.1021/acs.inorgchem.2c02250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The capture and fixation of CO2 under mild conditions is a cost-effective route to reduce greenhouse gases, but it is challenging because of the low conversion and selectivity issues. Metal-organic frameworks (MOFs) are promising in the fields of adsorption and catalysis because of their structural tunability and variability. However, the precise structural design of MOFs is always pursued and elusive. In this work, a metal-mixed MOF (SNNU-97-InV) was designed by precisely introducing single vanadium site into the isostructural In-MOF (SNNU-97-In). The single V sites clearly change the interactions between the MOF framework and CO2 molecules, leading to a 71.3% improvement in the CO2 adsorption capacity. At the same time, the enhanced light absorption enables SNNU-97-InV to efficiently convert CO2 into cyclic carbonates (CCs) with epoxides under illumination. Controlled experiments showed that the promoted performance of SNNU-97-InV may be that the V═O site can more easily combine with CO2 and convert them into an intermediate state under illumination, and the possible mechanism was thus speculated.
Collapse
Affiliation(s)
- Shu-Cong Fan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Shuang-Qiu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Jia-Wen Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Yong-Peng Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Peng Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Ying Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Wenyu Yuan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| |
Collapse
|
10
|
Chen W, Wu Z, Wang Z, Chen C, Zhang Z. Preparation of a reusable and pore size controllable porous polymer monolith and its catalysis of biodiesel synthesis. RSC Adv 2022; 12:12363-12370. [PMID: 35480381 PMCID: PMC9036607 DOI: 10.1039/d2ra01610a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
A sulfonated porous polymer monolith (PPM-SO3H) has been prepared via the polymerisation of styrene (St) and divinyl benzene (DVB) with organic microspheres as pore-forming agents, followed by sulfonation with concentrated sulfuric acid. It was characterized by acid-base titration in order to determine its acid density, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, mercury intrusion porosimetry (MIP) and thermogravimetric analysis (TG). The PPM-SO3H showed an acid density of 1.89 mmol g-1 and pore cavities with an average diameter of 870 nm. The catalytic activity of PPM-SO3H in practical biodiesel synthesis from waste fatty acids was investigated and the main reaction parameters were optimized through orthogonal experiment. The best reaction conditions obtained for the optimization of methanol to oil ratio, catalyst concentration, reaction temperature and reaction time were 1 : 1, 20%, 80 °C and 8 h, respectively. PPM-SO3H showed excellent catalytic activity. In biodiesel synthesis, the esterification rate of PPM-SO3H is 96.9%, which is much higher than that of commercial poly(sodium-p-styrenesulfonate) (esterification rate 29.0%). The PPM-SO3H can be reused several times without significant loss of catalytic activity; the esterification rate was still 90.8% after 6 cycles. The pore size of this porous polymer monolith can be controlled. The dimension and shape of this porous polymer monolith were also adjustable by choosing a suitable polymerisation container.
Collapse
Affiliation(s)
- Weiqing Chen
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066600 China
| | - Zhaoji Wu
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066600 China
| | - Zhengge Wang
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066600 China
| | - Changjiu Chen
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066600 China
| | - Zhigang Zhang
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066600 China
| |
Collapse
|
11
|
Chen Y, Li Z, Ding R, Liu T, Zhao H, Zhang X. Construction of porphyrin and viologen-linked cationic porous organic polymer for efficient and selective gold recovery. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128073. [PMID: 34922132 DOI: 10.1016/j.jhazmat.2021.128073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Recycling precious metals from electronic waste not only benefits environmental protection, but is also favorable for alleviating resource shortages. Ionic porous organic polymers, as one type of burgeoning material, are regarded as excellent adsorbents due to their high ion density, but their application in precious metal recovery is still very limited. Here, V-PPOP-Br, a highly stable and easy-to-build cationic porous organic polymer, was successfully prepared for the first time. By linking porphyrins with viologens, V-PPOP-Br obtained the characteristics of a hierarchical porous structure, a high ion density skeleton, and a rich nitrogen content, which gave it an ultrahigh adsorption capacity (Qmax = 792.22 mg g-1) and rapid adsorption rate for Au(III). V-PPOP-Br also had an effective Au(III) recovery capability from SIM cards. Mechanism investigation confirmed that this remarkable adsorption performance was attributed to the interplay of ion exchange, redox reactions and coordination. Moreover, V-PPOP-Br had excellent recyclability and could maintain an ultrahigh adsorption efficiency of 81% after eight consecutive adsorption-desorption experiments. These excellent performances as well as the roughly calculated gold recycling economics ($37.37/g V-PPOP-Br) confirmed that it possesses promising potential as an ionic porous material for gold recovery.
Collapse
Affiliation(s)
- Yanli Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China; Dongfang Middle School, Yanzhou District, Jining, Shandong 272100, China
| | - Zhiwen Li
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271016, China
| | - Rui Ding
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Tingting Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Huijuan Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
12
|
Ding R, Chen Y, Li Y, Zhu Y, Song C, Zhang X. Highly Efficient and Selective Gold Recovery Based on Hypercross-Linking and Polyamine-Functionalized Porous Organic Polymers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11803-11812. [PMID: 35201753 DOI: 10.1021/acsami.1c22514] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the continuous increase of electronic products, there is an urgent need to effectively recover gold from e-waste and other secondary resources other than the original mine. Here, hypercross-linking and polyamine-functionalized porous organic polymers (Pc-POSS-POP) were designed and facially synthesized based on multiple azo-coupling polymerizations between 2,9,16,23-tetraaminophthalocyanine (H2Pc(NH2)4) and octa(aminophenyl)-t8-silsesquioxane (OAPS) for the first time. The reaction requires no metal as a catalyst, thereby benefiting the purification of the product and the industrial scalability. Pc-POSS-POPs possess a hypercross-linking structure, highly conjugated frameworks, nitrogen-rich active sites, and extensively visible and near-infrared light absorption, which was utilized as an absorbent to retrieve Au (III). The results demonstrated that Pc-POSS-POPs have a high adsorption capacity (862.07 mg g-1) and a rapid adsorption rate toward gold recycling. The maximum adsorption capacity could reach up to 1026.87 mg g-1 as in the case of light irradiation. Due to the strong N coordination sites and the electronic interaction between the -NH4+ groups of Pc-POSS-POPs and AuCl4-, Pc-POSS-POPs also exhibited excellent selectivity toward gold over several coordinated metals [Cr (VI), Co (II), Cd (II), Ni (II), and Hg (II)]. These properties together with the good regenerative ability and superior recyclability demonstrated that Pc-POSS-POPs possess promising potential as hypercross-linking polymers for capturing and recycling of Au (III).
Collapse
Affiliation(s)
- Rui Ding
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yanli Chen
- Dongfang Middle School, Yanzhou District, Jining, Shandong 272100, China
| | - Yanhong Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yancheng Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Cheng Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
13
|
Immobilization poly(ionic liquid)s into hierarchical porous covalent organic frameworks as heterogeneous catalyst for cycloaddition of CO2 with epoxides. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Hao Y, Yan X, Liu X, Qin S, Zhu Z, Panchal B, Chang T. Urea-based covalent organic crown polymers and KI electrostatic synergy in CO2 fixation reaction: A combined experimental and theoretical study. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Tsai CY, Chen YH, Lee S, Lin CH, Chang CH, Dai WT, Liu WL. Uniform Core-Shell Microspheres of SiO 2@MOF for CO 2 Cycloaddition Reactions. Inorg Chem 2022; 61:2724-2732. [PMID: 35089029 DOI: 10.1021/acs.inorgchem.1c01570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A SiO2@MOF core-shell microsphere for environmentally friendly applications was introduced in this study. Several types of metal-organic framework core-shell microspheres were successfully synthesized. To achieve high stability and favorable catalytic performance, modification and coating methods were necessary for optimization. The improved SiO2@MOF core-shell microspheres were used in the cycloaddition reaction of carbon dioxide and propylene oxide. Dispersion ability was enhanced by the addition of core-shell microspheres, which also produced high catalytic activity. Accompanied with tetrabutylammonium bromide as a co-catalyst, SiO2@ZIF-67 had a maximum conversion of 97%, and the results revealed that SiO2@ZIF-67 could be used for 5 reaction cycles while maintaining high catalytic performance. This recycling catalyst was also reacted with a series of terminal epoxides to form corresponding cyclic carbonates with high conversion rates, indicating that SiO2@MOF core-shell microspheres exhibit promise in the field of catalysis.
Collapse
Affiliation(s)
- Chen-Yen Tsai
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
| | - Yi-Hsuan Chen
- Department of Chemistry, Chung Yuan Christian University, Chung Li, Taoyuan 32023, Taiwan
| | - Szetsen Lee
- Department of Chemistry, Chung Yuan Christian University, Chung Li, Taoyuan 32023, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 24449, Taiwan
| | - Chu-Han Chang
- Department of Chemistry, National Taiwan Normal University, Taipei 24449, Taiwan
| | - Wan-Ting Dai
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
| | - Wan-Ling Liu
- Department of Chemistry, Chung Yuan Christian University, Chung Li, Taoyuan 32023, Taiwan
| |
Collapse
|
16
|
Xu X, Sui Y, Huang W, Chen W, Li X, Li Y, Wang G, Ye H, Zhong H. Upgraded Heterogenization of Homogeneous Catalytic Systems by Hollow Porous Organic Frameworks with Hierarchical Porous Shell for Efficient Carbon Dioxide Conversion. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiahong Xu
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Yan Sui
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Wei Huang
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Wentong Chen
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Xiaodan Li
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Yuntong Li
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Guanhui Wang
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Huixian Ye
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Hong Zhong
- Key Laboratory of Coordination Chemistry of Jiangxi Province School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| |
Collapse
|
17
|
Zou Y, Ge Y, Zhang Q, Liu W, Li X, Cheng G, Ke H. Polyamine-functionalized imidazolyl poly(ionic liquid)s for the efficient conversion of CO2 into cyclic carbonates. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01765a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The synergistic effect of polyamine groups and nucleophile (Br−) significantly improved the catalytic performance of N4-PIL-2, which can convert epoxides into cyclic carbonates with excellent yields and selectivity under ambient pressure.
Collapse
Affiliation(s)
- Yizhen Zou
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Yuansheng Ge
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Qiang Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Wei Liu
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Xiaoguang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Guoe Cheng
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Hanzhong Ke
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| |
Collapse
|
18
|
Wang Y, Chang JP, Xu R, Bai S, Wang D, Yang GP, Sun LY, Li P, Han YF. N-Heterocyclic carbenes and their precursors in functionalised porous materials. Chem Soc Rev 2021; 50:13559-13586. [PMID: 34783804 DOI: 10.1039/d1cs00296a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Though N-heterocyclic carbenes (NHCs) have emerged as diverse and powerful discrete functional molecules in pharmaceutics, nanotechnology, and catalysis over decades, the heterogenization of NHCs and their precursors for broader applications in porous materials, like metal-organic frameworks (MOFs), porous coordination polymers (PCPs), covalent-organic frameworks (COFs), porous organic polymers (POPs), and porous organometallic cages (POMCs) was not extensively studied until the last ten years. By de novo or post-synthetic modification (PSM) methods, myriads of NHCs and their precursors containing building blocks were designed and integrated into MOFs, PCPs, COFs, POPs and POMCs to form various structures and porosities. Functionalisation with NHCs and their precursors significantly expands the scope of the potential applications of porous materials by tuning the pore surface chemical/physical properties, providing active sites for binding guest molecules and substrates and realizing recyclability. In this review, we summarise and discuss the recent progress on the synthetic methods, structural features, and promising applications of NHCs and their precursors in functionalised porous materials. At the end, a brief perspective on the encouraging future prospects and challenges in this contemporary field is presented. This review will serve as a guide for researchers to design and synthesize more novel porous materials functionalised with NHCs and their precursors.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Jin-Ping Chang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Rui Xu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Dong Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Guo-Ping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Li-Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Peng Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| |
Collapse
|
19
|
Catalytic conversion of CO2: Electrochemically to ethanol and thermochemically to cyclic carbonates using nanoporous polytriazine. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Covalent Organic Frameworks for Simultaneous CO2 Capture and Selective Catalytic Transformation. Catalysts 2021. [DOI: 10.3390/catal11091133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Combination of capture and simultaneous conversion of CO2 into valuable chemicals is a fascinating strategy for reducing CO2 emissions. Therefore, searching for heterogeneous catalysts for efficient catalytic conversion of CO2 is of great importance for carbon capture and utilization. Herein, we report a metalloporphyrin-based covalent organic framework (Co(II)@TA-TF COF) that can capture CO2 and simultaneously convert it into cyclic carbonates under mild conditions. The COF was designed to possess micropores for the adsorption of CO2 and integrated with cobalt(II) porphyrin (Co(II)@TAPP) units as catalytic sites into the vertices of the layered tetragonal networks. The structure of the Co(II)@TA-TF COF is unique where Co(II)@TAPP units are alternately stacked along the z direction with a slipped distance of 1.7 Å, which gives an accessible space to accommodate small molecules, making it possible to expose catalytic sites to substrates within the adjacent stacked layers. As a result, this COF is found to be highly effective for the addition of CO2 and epoxides. Importantly, the Co(II)@TA-TF COF exhibited a dramatic size selectivity for substrates. In conjunction with its reusability, our results highlight the development of a new function of COFs for targeting simultaneous CO2 absorption and utilization upon complementary exploration of the structural features of skeletons and pores. Such promising catalytic performance of the COF makes it possible for its potential practical application.
Collapse
|
21
|
Cai K, Liu P, Chen P, Yang C, Liu F, Xie T, Zhao T. Imidazolium- and triazine-based ionic polymers as recyclable catalysts for efficient fixation of CO2 into cyclic carbonates. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Zhang Y, Liu K, Wu L, Huang H, Xu Z, Long Z, Tong M, Gu Y, Qin Z, Chen G. POSS and imidazolium-constructed ionic porous hypercrosslinked polymers with multiple active sites for synergistic catalytic CO 2 transformation. Dalton Trans 2021; 50:11878-11888. [PMID: 34370805 DOI: 10.1039/d1dt02067f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we reported a facile one-pot approach to construct polyhedral oligomeric silsesquioxane (POSS) and imidazolium-based ionic porous hypercrosslinked polymers (denoted as iPHCPs) with multiple active sites towards efficient catalytic conversion of carbon dioxide (CO2) to high value-added cyclic carbonates. The targeted iPHCPs were synthesized from a rigid molecular building block octavinylsilsesquioxane (VPOSS) and a newly-designed phenyl-based imidazolium ionic crosslinker through the AlCl3-catalyzed Friedel-Crafts reaction. The desired multiple active sites come from the mixed anions including free Cl- and Br- anions, and in situ formed Lewis acidic metal-halogen complex anions [AlCl3Br]- within imidazolium moieties and POSS-derived Si-OH groups during the synthetic process. The typical polymer iPHCP-12 possesses a hierarchical micro-/mesoporous structure with a high surface area up to 537 m2 g-1 and shows a fluffy nano-morphology. By virtue of the co-existence of free nucleophilic Cl- and Br- anions, the metal complex anion [AlCl3Br]- with both electrophilic and nucleophilic characters and electrophilic hydrogen bond donor (HBD) Si-OH groups, iPHCP-12 is regarded as an efficient recyclable heterogeneous catalyst for synergistic catalytic conversion of CO2 with various epoxides into cyclic carbonates under mild conditions. The present work provides a succinct one-pot strategy to construct task-specific ionic porous hypercrosslinked polymers from easily available modules for the targeted catalytic applications.
Collapse
Affiliation(s)
- Yadong Zhang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tang J, Wei F, Ding S, Wang X, Xie G, Fan H. Azo-Functionalized Zirconium-Based Metal-Organic Polyhedron as an Efficient Catalyst for CO 2 Fixation with Epoxides. Chemistry 2021; 27:12890-12899. [PMID: 34288181 DOI: 10.1002/chem.202102089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Indexed: 11/11/2022]
Abstract
Chemical fixation of CO2 as C1 source at ambient temperature and low pressure is an energy-saving way to make use of the green-house gas, but it still remains a challenge since efficient catalyst with high catalytic active sites is required. Here, a novel monoclinic azo-functionalized Zr-based metal-organic polyhedron (Zr-AZDA) has been prepared and applied in CO2 fixation with epoxides. The inherent azo groups not only endow Zr-AZDA with good solubilization, but also act as basic sites to enrich CO2 showing efficient synergistic catalysis as confirmed by TPD-CO2 analysis. XPS results demonstrate that the Zr active sites in Zr-AZDA possess suitable Lewis acidity, which satisfies both substrates activation and products desorption. DFT calculation indicates the energy barrier of the rate-determining step in CO2 cycloaddition could be reduced remarkably (by ca. 60.9 %) in the presence of Zr-AZDA, which may rationalize the mild and efficient reaction condition employed (80 °C and 1 atm of CO2 ). The work provides an effective multi-functional cooperative method for improvement of CO2 cycloaddition.
Collapse
Affiliation(s)
- Jia Tang
- Department School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Fen Wei
- Department School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Shujiang Ding
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoxia Wang
- Department School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Guanqun Xie
- Department School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Hongbo Fan
- Department School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| |
Collapse
|
24
|
Zhang X, Ding J, Qiu B, Li D, Bian Y, Zhu D, Wang S, Mai W, Ming S, Chen J, Li T. Ultralow Co Loading Phenanthroline‐based Porous Organic Polymer as a High‐efficient Heterogeneous Catalyst for the Fixation of CO
2
to Cyclic Carbonates at Ambient Conditions. ChemCatChem 2021. [DOI: 10.1002/cctc.202100230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaofeng Zhang
- School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Junhao Ding
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Bo Qiu
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Dajian Li
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Yunpeng Bian
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Dandan Zhu
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Shimin Wang
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Wenpeng Mai
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Shujun Ming
- School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Jian Chen
- Hubei Key Laboratory of Processing and Application of Catalytic Materials College of Chemical Engineering Huanggang Normal University Huanggang City 438000 Hubei Province P. R. China
| | - Tao Li
- School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
25
|
Chen Y, Fang Y, Yu J, Gao W, Zhao H, Zhang X. A silsesquioxane-porphyrin-based porous organic polymer as a highly efficient and recyclable absorbent for wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124769. [PMID: 33316666 DOI: 10.1016/j.jhazmat.2020.124769] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/10/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Effective capture of pollutants from wastewater is crucial for protecting the environment and human health. An azo-based porous organic polymer (AzoPPOP) containing porphyrin and inorganics cage polyhedral oligomeric silsesquioxane units was synthesized via a catalyst-free coupling reaction. Results showed that AzoPPOP possess a high surface area, a hierarchically porous structure, good thermal stability, abundant adsorption sites, and an electronegative nature. Based on these properties, AzoPPOP had an extremely high adsorption capacity (1357.58 mg g-1) for RhB, a fast adsorption rate, and good selectivity. Study of the mechanism revealed that in addition to electrostatic interactions, the high specific surface area, existence of -NH2, and the strong π-π interaction between AzoPPOP and RhB also play important roles for the adsorption of RhB. AzoPPOP also displayed excellent adsorption properties for heavy metal ions (230.45, 192.24 and 162.11 mg g-1 for Ag+, Hg2+, and Pb2+, respectively). More importantly, simulation of the purification experiment of waste water and the recycling regeneration experiment revealed that AzoPPOP has good high-level recyclability and could remove multi-pollutants in one pass through a simple adsorption column.
Collapse
Affiliation(s)
- Yanli Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yishan Fang
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Jingkun Yu
- Jinan Shanda Experimental High School, Jinan, Shandong 250353, China
| | - Wenqiang Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Huijuan Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
26
|
A Bifunctional Cationic Covalent Organic Polymer for Cooperative Conversion of CO2 to Cyclic Carbonate without Co-catalyst. Catal Letters 2021. [DOI: 10.1007/s10562-021-03534-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Immobilization of N and Si as center species toward microporous organic polymers for CO2 adsorption via dipole-quadrupole interaction. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Metalloporphyrin-based porous organic polymer as an efficient catalyst for cycloaddition of epoxides and CO2. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121770] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Zhong H, Gao J, Sa R, Yang S, Wu Z, Wang R. Carbon Dioxide Conversion Upgraded by Host-guest Cooperation between Nitrogen-Rich Covalent Organic Framework and Imidazolium-Based Ionic Polymer. CHEMSUSCHEM 2020; 13:6323-6329. [PMID: 32710471 DOI: 10.1002/cssc.202001658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/23/2020] [Indexed: 06/11/2023]
Abstract
The chemical conversion of CO2 into value-added chemicals is one promising approach for CO2 utilization. It is crucial to explore highly efficient catalysts containing task-specific components for CO2 fixation. Here, a host-guest catalytic system was developed by integrating nitrogen-rich covalent organic framework (TT-COF) and imidazolium-based ionic polymer (ImIP), which serve as hydrogen-bonding donor and nucleophilic agent, respectively, for cooperatively facilitating the activation of the epoxides and subsequent CO2 cycloaddition. The catalytic activity of the host-guest system was remarkably superior to those of ImIP, TT-COF, and their physical mixture. Furthermore, selective adsorption for CO2 over N2 rendered this catalytic system effective for the cycloaddition reaction of the simulated flue gas. The protocols for the unification of two catalytically active components provide new opportunities for the development of composite systems in multiple applications.
Collapse
Affiliation(s)
- Hong Zhong
- Institute of Oceanography, Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou, Fujian, 350108, P.R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
| | - Jinwei Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
| | - Rongjian Sa
- Institute of Oceanography, Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou, Fujian, 350108, P.R. China
| | - Shuailong Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
| | - Zhicheng Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
| | - Ruihu Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
| |
Collapse
|
30
|
Yue C, Wang W, Li F. Building N-Heterocyclic Carbene into Triazine-Linked Polymer for Multiple CO 2 Utilization. CHEMSUSCHEM 2020; 13:5996-6004. [PMID: 32960512 DOI: 10.1002/cssc.202002154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The development of new CO2 detection technologies and CO2 "capture-conversion" materials is of great significance due to the growing environmental crisis. Here, multifunctional triazine-linked polymers with built-in N-heterocyclic carbene (NHC) sites (designated as NHC-triazine@polymer) are presented for simultaneous CO2 detection, capture, activation, and catalytic conversion. NHC-triazine@polymer were readily obtained through polymerization of cyanophenyl-substituted NHC. The obtained film-like polymers exhibited interesting CO2 -triggered fluorescence "turn-on" response and CO2 -sensitive reversible color change. Both NHC and triazine sites could act as efficient binding sites for CO2 , and the CO2 uptake of NHC and triazine reached 1.52 and 1.36 mmol g-1 , respectively. Notably, after being captured by NHC, CO2 was activated into a zwitterionic adduct NHC-CO2 that could be easily transformed into cyclic carbonate in the presence of epoxides. Moreover, NHC-triazine@polymer were stable and active catalysts for the conversion of low-concentration CO2 in a gas mixture (7 vol %) into cyclic carbonates as well as for hydrosilylation of CO2 to formamides.
Collapse
Affiliation(s)
- Chengtao Yue
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
| | - Wenlong Wang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
31
|
Luo R, Liu X, Chen M, Liu B, Fang Y. Recent Advances on Imidazolium-Functionalized Organic Cationic Polymers for CO 2 Adsorption and Simultaneous Conversion into Cyclic Carbonates. CHEMSUSCHEM 2020; 13:3945-3966. [PMID: 32478431 DOI: 10.1002/cssc.202001079] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/28/2020] [Indexed: 06/11/2023]
Abstract
The cycloaddition reaction of CO2 with various epoxides to generate cyclic carbonates is one of the most promising and efficient approaches for CO2 fixation. Typical imidazolium-based ionic liquids possessing electrophilic cations and nucleophilic halogen anions have been identified as excellent and environmentally friendly candidates for synergistically activating epoxides to convert CO2 . Therefore, the feasible construction of a series of imidazolium-functionalized organic cationic polymers can bridge the gap between homogeneous and heterogeneous catalysis, thereby obtaining highly selective CO2 adsorption and simultaneous conversion ability. This Review describes the recent advancements made with regard to the design and synthesis of this type of polymeric networks having imidazolium functionality. They are considered as an outstanding heterogeneous catalyst for the cycloaddition of CO2 to epoxides. Based on the perspective from the design of building blocks to the synthesis of cationic polymers, the focus mainly lies on how to introduce imidazole units into the material backbone via a covalent linking approach and how to incorporate other active sites capable of activating CO2 and/or epoxides into such polymeric materials.
Collapse
Affiliation(s)
- Rongchang Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Xiangying Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Min Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Baoyu Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Yanxiong Fang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| |
Collapse
|
32
|
L-Serine@ZnO as an efficient and reusable catalyst for synthesis of cyclic carbonates and formamides in presence of CO2 atmosphere. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Mao M, Zhang M, Meng D, Chen J, He C, Huang Y, Cao R. Imidazolium‐Functionalized Cationic Covalent Triazine Frameworks Stabilized Copper Nanoparticles for Enhanced CO
2
Electroreduction. ChemCatChem 2020. [DOI: 10.1002/cctc.202000387] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Min‐Jie Mao
- College of Chemistry and Materials ScienceFujian Normal University Fuzhou Fujian P. R. China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian P. R. China
- Fujian CollegeUniversity of Chinese Academy of Sciences Fuzhou Fujian P. R. China
| | - Meng‐Di Zhang
- College of Chemistry and Materials ScienceFujian Normal University Fuzhou Fujian P. R. China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian P. R. China
- Fujian CollegeUniversity of Chinese Academy of Sciences Fuzhou Fujian P. R. China
| | - Dong‐Li Meng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian P. R. China
- University of Chinese Academy of Sciences Beijing China
| | - Jian‐Xin Chen
- College of Chemistry and Materials ScienceFujian Normal University Fuzhou Fujian P. R. China
| | - Chang He
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian P. R. China
- University of Chinese Academy of Sciences Beijing China
| | - Yuan‐Biao Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian P. R. China
- Fujian CollegeUniversity of Chinese Academy of Sciences Fuzhou Fujian P. R. China
- University of Chinese Academy of Sciences Beijing China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian P. R. China
- Fujian CollegeUniversity of Chinese Academy of Sciences Fuzhou Fujian P. R. China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
34
|
Cui C, Sa R, Hong Z, Zhong H, Wang R. Ionic-Liquid-Modified Click-Based Porous Organic Polymers for Controlling Capture and Catalytic Conversion of CO 2. CHEMSUSCHEM 2020; 13:180-187. [PMID: 31710182 DOI: 10.1002/cssc.201902715] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Capture and catalytic conversion of CO2 into value-added chemicals is a promising and sustainable approach to relieve global warming and the energy crisis. Nitrogen-rich porous organic polymers (POPs) are promising materials for CO2 capture and separation, but their application in the additive-free catalytic conversion of CO2 into cyclic carbonates is still a challenge. Herein, a nitrogen-rich click-based POP (CPP) was developed for the cycloaddition reaction of CO2 with epoxides in the absence of metal, solvents, and additives. The introduction of imidazolium-based ionic liquids on the CPP host backbone could modulate the porosity, CO2 adsorption/desorption, CO2 selectivity over N2 , and catalytic activity in the chemical transformation. A tentative catalytic pathway was proposed to account for the superior catalytic activity of the catalytic systems, in which the incorporated ionic liquid and porous properties of CPP synergistically contributed to the catalytic reaction. This study provides a platform to understand the cooperative effects of porous properties and nucleophilic anions on the cycloaddition reaction of CO2 with epoxides.
Collapse
Affiliation(s)
- Caiyan Cui
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P.R. China
| | - Rongjian Sa
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P.R. China
- Institute of Oceanography, Ocean College, Minjiang University, Fuzhou, Fujian, 350108, P.R. China
| | - Zixiao Hong
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian, 361021, P.R. China
| | - Hong Zhong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P.R. China
| | - Ruihu Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P.R. China
| |
Collapse
|
35
|
Zhang Y, Luo N, Xu J, Liu K, Zhang S, Xu Q, Huang R, Long Z, Tong M, Chen G. Metalated-bipyridine-based porous hybrid polymers with POSS-derived Si–OH groups for synergistic catalytic CO2 fixation. Dalton Trans 2020; 49:11300-11309. [DOI: 10.1039/d0dt01667e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZnBr2 metalated-bipyridine porous hybrid polymers with POSS-derived Si–OH as “all-in-one” heterogeneous catalysts for synergistic catalytic CO2 fixation.
Collapse
|
36
|
Chakraborty D, Shekhar P, Singh HD, Kushwaha R, Vinod CP, Vaidhyanathan R. Ag Nanoparticles Supported on a Resorcinol‐Phenylenediamine‐Based Covalent Organic Framework for Chemical Fixation of CO
2. Chem Asian J 2019; 14:4767-4773. [DOI: 10.1002/asia.201901157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/18/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Debanjan Chakraborty
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
- Centre for Energy SceinceIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - Pragalbh Shekhar
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - Himan Dev Singh
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - Rinku Kushwaha
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - C. P. Vinod
- CSIR-NCL Catalysis and Inorganic Chemistry Division Pune Maharashtra- 411008 India
| | - Ramanathan Vaidhyanathan
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
- Centre for Energy SceinceIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| |
Collapse
|
37
|
Zhong H, Hong Z, Yang C, Li L, Xu Y, Wang X, Wang R. A Covalent Triazine-Based Framework Consisting of Donor-Acceptor Dyads for Visible-Light-Driven Photocatalytic CO 2 Reduction. CHEMSUSCHEM 2019; 12:4493-4499. [PMID: 31379104 DOI: 10.1002/cssc.201901997] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Photocatalytic conversion of CO2 into value-added chemical fuels is a promising approach to address the depletion of fossil energy and environment-related concerns. Tailor-making the electronic properties and band structures of photocatalysts is pivotal to improve their efficiency and selectivity in photocatalytic CO2 reduction. Herein, a covalent triazine-based framework was developed containing electron-donor triphenylamine and electron-acceptor triazine components (DA-CTF). The engineered π-conjugated electron donor-acceptor dyads in DA-CTF not only optimized the optical bandgap but also contributed to visible-light harvesting and migration of photoexcited charge carriers. The activity of photocatalytic CO2 reduction under visible light was significantly improved compared with that of traditional g-C3 N4 and reported covalent triazine-based frameworks. This study provides molecular-level insights into the mechanism of photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Hong Zhong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
| | - Zixiao Hong
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian, 361021, P.R. China
| | - Can Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Liuyi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Yangsen Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Ruihu Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
| |
Collapse
|
38
|
Liu QY, Shi L, Liu N. Pyridine-bridged bifunctional organocatalysts for the synthesis of cyclic carbonates from carbon dioxide. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819858710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hydroxyl- and carboxyl-functionalized imidazolium halides are used as efficient bifunctional organocatalysts for the synthesis of cyclic carbonates from CO2 and epoxides under mild reaction conditions. Control experiments suggest that the cycloaddition reaction is realized by the combination of the nucleophilic halide anions with hydroxyl and carboxyl groups as hydrogen bond donors. Moreover, the bifunctional organocatalysts can be easily recycled five times by simple filtration; however, a loss of activity was observed.
Collapse
Affiliation(s)
- Quan-Yao Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, People’s Republic of China
| | - Lei Shi
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, People’s Republic of China
| | - Ning Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, People’s Republic of China
| |
Collapse
|
39
|
Abstract
The conversion of carbon dioxide into valuable chemicals such as cyclic carbonates is an appealing topic for the scientific community due to the possibility of valorizing waste into an inexpensive, available, nontoxic, and renewable carbon feedstock. In this regard, last-generation heterogeneous catalysts are of great interest owing to their high catalytic activity, robustness, and easy recovery and recycling. In the present review, recent advances on CO2 cycloaddition to epoxide mediated by hybrid catalysts through organometallic or organo-catalytic species supported onto silica-, nanocarbon-, and metal–organic framework (MOF)-based heterogeneous materials, are highlighted and discussed.
Collapse
|
40
|
Kurisingal JF, Rachuri Y, Pillai RS, Gu Y, Choe Y, Park DW. Ionic-Liquid-Functionalized UiO-66 Framework: An Experimental and Theoretical Study on the Cycloaddition of CO 2 and Epoxides. CHEMSUSCHEM 2019; 12:1033-1042. [PMID: 30610753 DOI: 10.1002/cssc.201802838] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/28/2018] [Indexed: 06/09/2023]
Abstract
A facile approach for modifying the UiO-66-NH2 metal-organic framework by incorporating imidazolium-based ionic liquids (ILs) to form bifunctional heterogeneous catalysts for the cycloaddition of epoxides to CO2 is reported. Methylimidazolium- and methylbenzimidazolium-based IL units (ILA and ILB, respectively) were introduced into the pore walls of the UiO-66-NH2 framework through a condensation reaction to generate ILA@U6N and ILB@U6N catalysts, respectively. The resultant heterogeneous catalysts, especially ILA@U6N, exhibited excellent CO2 adsorption capability, which makes them effective for cycloaddition reactions producing cyclic carbonates under mild reaction conditions in the absence of any cocatalyst or solvent. The significantly enhanced activity of ILA@U6N is attributed to the synergism between the coordinately unsaturated Lewis acidic Zr4+ centers and Br- ions in the bifunctional heterogeneous catalysts. The size effect of the ILs on coupling between the epoxide and CO2 was also studied for ILA@U6N and ILB@U6N. A periodic DFT study was performed to provide evidence of possible intermediates, transition states, and pathways, as well as to gain deeper insight into the mechanism of the ILA@U6N-catalyzed cycloaddition reaction between epichlorohydrin and CO2 .
Collapse
Affiliation(s)
- Jintu Francis Kurisingal
- Division of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Korea
| | - Yadagiri Rachuri
- Division of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Korea
| | - Renjith S Pillai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Yunjang Gu
- Division of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Korea
| | - Youngson Choe
- Division of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Korea
| | - Dae-Won Park
- Division of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Korea
| |
Collapse
|
41
|
Gao J, Li L, Cui C, Ziaee MA, Gong Y, Sa R, Zhong H. Experimental and theoretical study for CO2 activation and chemical fixation with epoxides. RSC Adv 2019; 9:13122-13127. [PMID: 35520791 PMCID: PMC9063868 DOI: 10.1039/c8ra10475a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/24/2019] [Indexed: 11/21/2022] Open
Abstract
The synthesis of five-membered cyclic carbonates via catalytic cycloaddition reaction of CO2 with epoxides is considered to be an effective technology for alleviation of the energy crisis and global warming. Various commercial organic bases and ionic salts were used as catalysts, while the relationship of catalytic activity and compound structure has been seldom explored. Herein, a facilely obtained binary catalytic system based on triethylamine/NBu4Br was developed for CO2 activation and chemical fixation. The highly efficient catalytic system showed outstanding conversion and above 99% selectivity under metal-free mild reaction conditions (100 °C, 1 atm) in one hour. The detailed process of CO2 activation and chemical fixation was investigated at the molecular level by a series of experiments and theoretical calculation, which provided a mode for the design and synthesis of a highly efficient catalytic system for conversion of CO2 under mild conditions. NEt3/NBu4Br works as an excellent metal-free catalyst for CO2 cycloaddition with epoxides and the detailed process of CO2 activation by NEt3 is first studied by theoretical calculation.![]()
Collapse
Affiliation(s)
- Jinwei Gao
- College of Science
- North University of China
- Taiyuan
- P. R. China
- State Key Laboratory of Structural Chemistry
| | - Liuyi Li
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Caiyan Cui
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Muhammad Asad Ziaee
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yaqiong Gong
- College of Science
- North University of China
- Taiyuan
- P. R. China
| | - Rongjian Sa
- Institute of Oceanography
- Ocean College
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control
- Minjiang University
- Fuzhou
| | - Hong Zhong
- College of Science
- North University of China
- Taiyuan
- P. R. China
- State Key Laboratory of Structural Chemistry
| |
Collapse
|
42
|
Li Y, Zhang X, Xu P, Jiang Z, Sun J. The design of a novel and resistant Zn(PZDC)(ATZ) MOF catalyst for the chemical fixation of CO2 under solvent-free conditions. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01150h] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel Zn(PZDC)(ATZ) with Lewis acid–base sites exhibited strong resistance to acids/alkalis and moisture and possessed high catalytic activity for CO2 transformation.
Collapse
Affiliation(s)
- Yixing Li
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Xiao Zhang
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Ping Xu
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Zimin Jiang
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| |
Collapse
|
43
|
Ghosh S, Molla RA, Kayal U, Bhaumik A, Islam SM. Ag NPs decorated on a COF in the presence of DBU as an efficient catalytic system for the synthesis of tetramic acids via CO2 fixation into propargylic amines at atmospheric pressure. Dalton Trans 2019; 48:4657-4666. [DOI: 10.1039/c9dt00017h] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ag NPs are decorated at the surface of a COF material TpPa-1 and the resulting Ag@TpPa-1 catalyzes efficiently for the synthesis of tetramic acids from a variety of propargylic amines using CO2 as reagent.
Collapse
Affiliation(s)
| | | | - Utpal Kayal
- School of Materials Science
- Indian Association for the Cultivation of Science
- India
| | - Asim Bhaumik
- School of Materials Science
- Indian Association for the Cultivation of Science
- India
| | | |
Collapse
|
44
|
Sharma R, Bansal A, Ramachandran CN, Mohanty P. A multifunctional triazine-based nanoporous polymer as a versatile organocatalyst for CO2utilization and C–C bond formation. Chem Commun (Camb) 2019; 55:11607-11610. [DOI: 10.1039/c9cc04975d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conversion of CO2to cyclic carbonates, methanol and methane by using a nanoporous MNENP as a multifunctional metal-free organocatalyst.
Collapse
Affiliation(s)
- Ruchi Sharma
- Functional Materials Laboratory
- Department of Chemistry
- IIT Roorkee
- Roorkee-247667
- India
| | - Ankushi Bansal
- Functional Materials Laboratory
- Department of Chemistry
- IIT Roorkee
- Roorkee-247667
- India
| | - C. N. Ramachandran
- Theoretical and Computational Chemistry Laboratory
- Department of Chemistry
- IIT Roorkee
- India
| | - Paritosh Mohanty
- Functional Materials Laboratory
- Department of Chemistry
- IIT Roorkee
- Roorkee-247667
- India
| |
Collapse
|
45
|
Zhang W, Mei Y, Wu P, Wu HH, He MY. Highly tunable periodic imidazole-based mesoporous polymers as cooperative catalysts for efficient carbon dioxide fixation. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02595a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We designed new periodic imidazole-based mesoporous polymers for cooperative catalysis, revealing the structure–activity relationships in CO2 cycloaddition.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Yu Mei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Peng Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Hai-Hong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Ming-Yuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| |
Collapse
|
46
|
Calabrese C, Liotta LF, Giacalone F, Gruttadauria M, Aprile C. Supported Polyhedral Oligomeric Silsesquioxane‐Based (POSS) Materials as Highly Active Organocatalysts for the Conversion of CO
2. ChemCatChem 2018. [DOI: 10.1002/cctc.201801351] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Carla Calabrese
- Department of Biological Chemical and Pharmaceutical Sciences and TechnologiesUniversity of Palermo Viale delle Scienze, Ed. 17 Palermo 90128 Italy
- Laboratory of Applied Materials Chemistry (CMA)University of Namur 61 rue de Bruxelles Namur 5000 Belgium
| | - Leonarda F. Liotta
- Istituto per lo Studio dei Materiali NanostrutturatiISMN-CNR Via Ugo La Malfa 153 90146 Palermo Italy 5000 Namur Belgium
| | - Francesco Giacalone
- Department of Biological Chemical and Pharmaceutical Sciences and TechnologiesUniversity of Palermo Viale delle Scienze, Ed. 17 Palermo 90128 Italy
| | - Michelangelo Gruttadauria
- Department of Biological Chemical and Pharmaceutical Sciences and TechnologiesUniversity of Palermo Viale delle Scienze, Ed. 17 Palermo 90128 Italy
| | - Carmela Aprile
- Laboratory of Applied Materials Chemistry (CMA)University of Namur 61 rue de Bruxelles Namur 5000 Belgium
| |
Collapse
|
47
|
Liu N, Xie YF, Wang C, Li SJ, Wei D, Li M, Dai B. Cooperative Multifunctional Organocatalysts for Ambient Conversion of Carbon Dioxide into Cyclic Carbonates. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01925] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ning Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Ya-Fei Xie
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Shi-Jun Li
- College of Chemistry and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, People’s Republic of China
| | - Donghui Wei
- College of Chemistry and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, People’s Republic of China
| | - Min Li
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Bin Dai
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| |
Collapse
|
48
|
Bhanja P, Modak A, Bhaumik A. Porous Organic Polymers for CO
2
Storage and Conversion Reactions. ChemCatChem 2018. [DOI: 10.1002/cctc.201801046] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Piyali Bhanja
- School of Materials ScienceIndian Association for the Cultivation of Science Kolkata 700 032 India
| | - Arindam Modak
- School of Materials ScienceIndian Association for the Cultivation of Science Kolkata 700 032 India
- Technical Research CentreS. N. Bose Centre for Basic Sciences Kolkata 700 106 India
| | - Asim Bhaumik
- School of Materials ScienceIndian Association for the Cultivation of Science Kolkata 700 032 India
| |
Collapse
|
49
|
Dang QQ, Liu CY, Wang XM, Zhang XM. Novel Covalent Triazine Framework for High-Performance CO 2 Capture and Alkyne Carboxylation Reaction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27972-27978. [PMID: 30040377 DOI: 10.1021/acsami.8b08964] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carbon dioxide capture and conversion have attracted extreme enthusiasm from the scientific community owing to global warming and environmental problems. However, conversion of CO2 under atmospheric pressure is of great challenge because of the inertness of CO2. Herein, we present a novel covalent triazine framework (CTF-DCE) prepared via ZnCl2-catalyzed ionothermal trimerization reaction of di(4-cyanophenyl)ethyne, which displays a high Brunauer-Emmett-Teller surface area of 1355 m2 g-1 and an excellent CO2 capture capacity of 191 mg/g at 273 K/1 bar. More importantly, silver species can be successfully fixed on the CTF matrix to produce a stable CTF-DCE-Ag heterogeneous catalyst for outstanding catalysis in the terminal alkyne carboxylation reactions under atmospheric pressure. CTF-DCE-Ag exhibited over sixfold higher turnover numbers than Ag@MIL-101. The recyclability test of the CTF-DCE-Ag catalyst demonstrated a great potential application in various environmental and energy-related applications.
Collapse
Affiliation(s)
- Qin-Qin Dang
- School of Chemistry & Material Science , Shanxi Normal University , Linfen , Shanxi 041004 , China
| | - Chun-Yan Liu
- School of Chemistry & Material Science , Shanxi Normal University , Linfen , Shanxi 041004 , China
| | - Xiao-Min Wang
- School of Chemistry & Material Science , Shanxi Normal University , Linfen , Shanxi 041004 , China
- The Inspection and Quarantine Technology Center of Inner Mongolia Entry-Exit Inspection and Quarantine Bureau , Hohhot 010020 , China
| | - Xian-Ming Zhang
- School of Chemistry & Material Science , Shanxi Normal University , Linfen , Shanxi 041004 , China
| |
Collapse
|
50
|
Huang K, Zhang JY, Liu F, Dai S. Synthesis of Porous Polymeric Catalysts for the Conversion of Carbon Dioxide. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02151] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kuan Huang
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jia-Yin Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Fujian Liu
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC−CFC), School of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Sheng Dai
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|