1
|
Petermeier P, Domínguez de María P, Byström E, Kara S. Intensified, Kilogram-Scaled, and Environment-Friendly: Chemoenzymatic Synthesis of Bio-Based Acylated Hydroxystyrenes. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:12869-12878. [PMID: 39211381 PMCID: PMC11351705 DOI: 10.1021/acssuschemeng.4c03648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Lignin-derived styrene derivatives are versatile building blocks for the manufacture of biobased polymers. As shown previously, phenol-protected hydroxystyrenes are accessible under industrially sound conditions (>100 g L-1, >95% yield) by subjecting biogenic phenolic acids to enzymatic decarboxylation and base-catalyzed acylation in nonaqueous media (wet cyclopentyl methyl ether, CPME). Herein, we demonstrate the production of 1 kg of 4-acetoxy-3-methoxy-styrene in a 10 L reactor and present practical adjustments to the up- and downstream processing that warrant a straightforward process and high isolated yields. Additionally, an environmental assessment is conducted, starting with a thorough E factor analysis to identify the sources that contribute most to the environmental burden (solvent and downstream processing). Also, the total CO2 production of the process is studied, including contributions from energy use and the treatment of generated wastes. The energy impact is evaluated through thermodynamic analysis, and the environmental footprint contributions by wastes-organic and aqueous fractions-are assessed based on CO2 emissions from solvent incineration and wastewater treatment, respectively. Overall, the holistic assessment of the process, its optimization, scale-up, product isolation, and environmental analysis indicate the feasibility of multistep chemoenzymatic reactions to deliver high-volume, low-value chemicals from biorefineries.
Collapse
Affiliation(s)
- Philipp Petermeier
- Department
of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
- SpinChem
AB, Tvistevägen
48C, 90736 Umeå, Sweden
| | - Pablo Domínguez de María
- Sustainable
Momentum SL, Av. Ansite
3, 4-6, 35011 Las
Palmas de Gran Canaria, Canary Islands, Spain
| | - Emil Byström
- SpinChem
AB, Tvistevägen
48C, 90736 Umeå, Sweden
| | - Selin Kara
- Department
of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
- Institute
of Technical Chemistry, Leibniz University
Hannover, 30167 Hannover, Germany
| |
Collapse
|
2
|
Satta M, Passarini F, Cespi D, Ciacci L. Advantages and drawbacks of life cycle assessment application to the pharmaceuticals: a short critical literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33964-w. [PMID: 38898347 DOI: 10.1007/s11356-024-33964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Pharmaceuticals are among the most challenging products to assess by life cycle assessment (LCA). The main drawback highlighted by LCA practitioners is the lack of inventory data, both regarding the synthesis of active pharmaceutical ingredient (API) precursors (upstream) and the details concerning the downstream phases (use and end of life). A short critical review of pharma-LCAs found in the literature is here proposed, with discussion of several tools and models used to predict the environmental impacts derived from the life cycle of pharmaceuticals, emphasizing current strengths and weaknesses, and exploring the possibilities for improvements. The case of antibiotics is selected as a representative class of pharmaceuticals, due to their massive use worldwide and the growing related issue of antimicrobial resistance enrichment, which is generally not included in most of LCAs. Also, we comment on drafting product category rules (PCRs) in the relevant field to develop standard methodologies and enhance the comparability of the studies, ultimately advocating collaboration with companies and improving inventory data quality and availability for the whole value chain of products.
Collapse
Affiliation(s)
- Marco Satta
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40136, Bologna, Italy
| | - Fabrizio Passarini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40136, Bologna, Italy
- Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, Via Angherà 22, 47922, Rimini, Italy
| | - Daniele Cespi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40136, Bologna, Italy.
- Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, Via Angherà 22, 47922, Rimini, Italy.
| | - Luca Ciacci
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40136, Bologna, Italy
- Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, Via Angherà 22, 47922, Rimini, Italy
| |
Collapse
|
3
|
Michailidou F. The Scent of Change: Sustainable Fragrances Through Industrial Biotechnology. Chembiochem 2023; 24:e202300309. [PMID: 37668275 DOI: 10.1002/cbic.202300309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Indexed: 09/06/2023]
Abstract
Current environmental and safety considerations urge innovation to address the need for sustainable high-value chemicals that are embraced by consumers. This review discusses the concept of sustainable fragrances, as high-value, everyday and everywhere chemicals. Current and emerging technologies represent an opportunity to produce fragrances in an environmentally and socially responsible way. Biotechnology, including fermentation, biocatalysis, and genetic engineering, has the potential to reduce the environmental footprint of fragrance production while maintaining quality and consistency. Computational and in silico methods, including machine learning (ML), are also likely to augment the capabilities of sustainable fragrance production. Continued innovation and collaboration will be crucial to the future of sustainable fragrances, with a focus on developing novel sustainable ingredients, as well as ethical sourcing practices.
Collapse
Affiliation(s)
- Freideriki Michailidou
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| |
Collapse
|
4
|
Wowra K, Hegel E, Scharf A, Grünberger A, Rosenthal K. Estimating environmental impacts of early-stage bioprocesses. Trends Biotechnol 2023; 41:1199-1212. [PMID: 37188575 DOI: 10.1016/j.tibtech.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 05/17/2023]
Abstract
The use of bioprocesses in industrial production promises resource- and energy-efficient processes starting from renewable, nonfossil feedstocks. Thus, the environmental benefits must be demonstrated, ideally in the early development phase with standardized methods such as life cycle assessment (LCA). Herein we discuss selected LCA studies of early-stage bioprocesses, highlighting their potential and contribution to estimating environmental impacts and decision support in bioprocess development. However, LCAs are rarely performed among bioprocess engineers due to challenges such as data availability and process uncertainties. To address this issue, recommendations are provided for conducting LCAs of early-stage bioprocesses. Opportunities are identified to facilitate future applicability, for example, by establishing dedicated bioprocess databases that could enable the use of LCAs as standard tools for bioprocess engineers.
Collapse
Affiliation(s)
- Karoline Wowra
- Subdivision Biotechnology, Dechema e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Esther Hegel
- Subdivision Biotechnology, Dechema e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Andreas Scharf
- Subdivision Biotechnology, Dechema e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Alexander Grünberger
- Microsystems in Bioprocess Engineering, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Katrin Rosenthal
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
5
|
Becker M, Ziemińska-Stolarska A, Markowska D, Lütz S, Rosenthal K. Comparative Life Cycle Assessment of Chemical and Biocatalytic 2'3'-Cyclic GMP-AMP Synthesis. CHEMSUSCHEM 2023; 16:e202201629. [PMID: 36416867 DOI: 10.1002/cssc.202201629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Life cycle assessments (LCAs) can provide insights into the environmental impact of production processes. In this study, a comparative LCA was performed for the synthesis of 2'3'-cyclic GMP-AMP (2'3'-cGAMP) in an early development stage. The cyclic dinucleotide (CDN) is of interest for pharmaceutical applications such as cancer immunotherapy. CDNs can be synthesized either by enzymes or chemical catalysis. It is not known which of the routes is more sustainable as both routes have their advantages and disadvantages, such as a poor yield for the chemical synthesis and low titers for the biocatalytic synthesis. The synthesis routes were compared for the production of 200 g 2'3'-cGAMP based on laboratory data to assess the environmental impacts. The biocatalytic synthesis turned out to be superior to the chemical synthesis in all considered categories by at least one magnitude, for example, a global warming potential of 3055.6 kg CO2 equiv. for the enzymatic route and 56454.0 kg CO2 equiv. for the chemical synthesis, which is 18 times higher. This study demonstrates the value of assessment at an early development stage, when the choice between different routes is still possible.
Collapse
Affiliation(s)
- Martin Becker
- Department of Biochemical and Chemical Engineering, Chair for Bioprocess Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | | | - Dorota Markowska
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924, Lodz, Poland
| | - Stephan Lütz
- Department of Biochemical and Chemical Engineering, Chair for Bioprocess Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Katrin Rosenthal
- Department of Biochemical and Chemical Engineering, Chair for Bioprocess Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| |
Collapse
|
6
|
Technical–Economic Assessment—The Missing Piece for Increasing the Attractiveness of Applied Biocatalysis in Ester Syntheses? Catalysts 2023. [DOI: 10.3390/catal13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although the current literature describes significant advances in biocatalytic ester syntheses, few industrial plants worldwide are currently producing esters using biocatalysts. Green and sustainable esters can be obtained via a biocatalytic route, including some operational advantages over conventional syntheses. An analysis of the literature revealed that most articles neglect or describe the economic issues generically, without quantitative information. Scaling-up studies are also scarce in this field. The main disadvantage of biocatalysis using immobilized lipases—their cost—has not been studied at the same level of depth as other technical aspects. This gap in the literature is less intense in enzymatic biodiesel production studies and, despite the lack of a strict correlation, enzymatic biodiesel commercial plants are relatively more common. Preliminary techno-economic assessments are crucial to identify and circumvent the economic drawbacks of biocatalytic ester syntheses, opening the way to broader application of this technology in a large-scale context.
Collapse
|
7
|
Godoy CA, Pardo-Tamayo JS, Barbosa O. Microbial Lipases and Their Potential in the Production of Pharmaceutical Building Blocks. Int J Mol Sci 2022; 23:9933. [PMID: 36077332 PMCID: PMC9456414 DOI: 10.3390/ijms23179933] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Processes involving lipases in obtaining active pharmaceutical ingredients (APIs) are crucial to increase the sustainability of the industry. Despite their lower production cost, microbial lipases are striking for their versatile catalyzing reactions beyond their physiological role. In the context of taking advantage of microbial lipases in reactions for the synthesis of API building blocks, this review focuses on: (i) the structural origins of the catalytic properties of microbial lipases, including the results of techniques such as single particle monitoring (SPT) and the description of its selectivity beyond the Kazlauskas rule as the "Mirror-Image Packing" or the "Key Region(s) rule influencing enantioselectivity" (KRIE); (ii) immobilization methods given the conferred operative advantages in industrial applications and their modulating capacity of lipase properties; and (iii) a comprehensive description of microbial lipases use as a conventional or promiscuous catalyst in key reactions in the organic synthesis (Knoevenagel condensation, Morita-Baylis-Hillman (MBH) reactions, Markovnikov additions, Baeyer-Villiger oxidation, racemization, among others). Finally, this review will also focus on a research perspective necessary to increase microbial lipases application development towards a greener industry.
Collapse
Affiliation(s)
- César A. Godoy
- Laboratorio de Investigación en Biocatálisis y Biotransformaciones (LIBB), Grupo de Investigación en Ingeniería de los Procesos Agroalimentarios y Biotecnológicos (GIPAB), Departamento de Química, Universidad del Valle, Cali 76001, Colombia
| | - Juan S. Pardo-Tamayo
- Laboratorio de Investigación en Biocatálisis y Biotransformaciones (LIBB), Grupo de Investigación en Ingeniería de los Procesos Agroalimentarios y Biotecnológicos (GIPAB), Departamento de Química, Universidad del Valle, Cali 76001, Colombia
| | - Oveimar Barbosa
- Grupo de Investigación de Materiales Porosos (GIMPOAT), Departamento de Química, Universidad del Tolima, Ibague 730001, Colombia
| |
Collapse
|
8
|
Wowra K, Hegel E, Scharf A, Grünberger A, Rosenthal K. Life Cycle Assessment for Early‐Stage Bioprocess Development: Current State and Future Perspective. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202255332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- K. Wowra
- DECHEMA e. V Biotechnology Theodor-Heuss-Allee 25 60486 Frankfurt Germany
| | - E. Hegel
- DECHEMA e. V Biotechnology Theodor-Heuss-Allee 25 60486 Frankfurt Germany
| | - A. Scharf
- DECHEMA e. V Biotechnology Theodor-Heuss-Allee 25 60486 Frankfurt Germany
| | - A. Grünberger
- Bielefeld University Multiscale Bioengineering, Faculty of Technology Universitätsstr. 25 33615 Bielefeld Germany
| | - K. Rosenthal
- TU Dortmund University Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering Emil-Figge-Str. 66 44227 Dortmund Germany
| |
Collapse
|
9
|
Alcántara AR, Domínguez de María P, Littlechild JA, Schürmann M, Sheldon RA, Wohlgemuth R. Biocatalysis as Key to Sustainable Industrial Chemistry. CHEMSUSCHEM 2022; 15:e202102709. [PMID: 35238475 DOI: 10.1002/cssc.202102709] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
The role and power of biocatalysis in sustainable chemistry has been continuously brought forward step by step to its present outstanding position. The problem-solving capabilities of biocatalysis have been realized by numerous substantial achievements in biology, chemistry and engineering. Advances and breakthroughs in the life sciences and interdisciplinary cooperation with chemistry have clearly accelerated the implementation of biocatalytic synthesis in modern chemistry. Resource-efficient biocatalytic manufacturing processes have already provided numerous benefits to sustainable chemistry as well as customer-centric value creation in the pharmaceutical, food, flavor, fragrance, vitamin, agrochemical, polymer, specialty, and fine chemical industries. Biocatalysis can make significant contributions not only to manufacturing processes, but also to the design of completely new value-creation chains. Biocatalysis can now be considered as a key enabling technology to implement sustainable chemistry.
Collapse
Affiliation(s)
- Andrés R Alcántara
- Department of Chemistry in Pharmaceutical Sciences (QUICIFARM), Complutense University of Madrid (UCM), 28040-, Madrid, Spain
| | - Pablo Domínguez de María
- Sustainable Momentum, SL, Av. Ansite 3, 4-6, 35011, Las Palmas de Gran Canaria, Canary Is., Spain
| | - Jennifer A Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | | | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Braamfontein, Johannesburg, South Africa
| | - Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 90-537, Lodz, Poland
- Swiss Coordination Committee for Biotechnology, 8021, Zurich, Switzerland
| |
Collapse
|
10
|
Vanpoucke DE, Delgove MA, Stouten J, Noordijk J, De Vos N, Matthysen K, Deroover GG, Mehrkanoon S, Bernaerts KV. A machine learning approach for the design of hyperbranched polymeric dispersing agents based on aliphatic polyesters for radiation curable inks. POLYM INT 2022. [DOI: 10.1002/pi.6378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Danny E.P. Vanpoucke
- Maastricht University, Aachen‐Maastricht Institute for Biobased Materials (AMIBM), Brightlands Chemelot campus, Urmonderbaan 22, 6167 RD Geleen the Netherlands
| | - Marie A.F. Delgove
- Maastricht University, Aachen‐Maastricht Institute for Biobased Materials (AMIBM), Brightlands Chemelot campus, Urmonderbaan 22, 6167 RD Geleen the Netherlands
| | - Jules Stouten
- Maastricht University, Aachen‐Maastricht Institute for Biobased Materials (AMIBM), Brightlands Chemelot campus, Urmonderbaan 22, 6167 RD Geleen the Netherlands
| | - Jurrie Noordijk
- Maastricht University, Aachen‐Maastricht Institute for Biobased Materials (AMIBM), Brightlands Chemelot campus, Urmonderbaan 22, 6167 RD Geleen the Netherlands
| | - Nils De Vos
- ChemStream, Drie Eikenstraat 661, B‐2650 Edegem Belgium
| | | | | | - Siamak Mehrkanoon
- Maastricht University, Department of Data Science and Knowledge Engineering, Paul‐Henri Spaaklaan 1, 6229 EN Maastricht the Netherlands
| | - Katrien V. Bernaerts
- Maastricht University, Aachen‐Maastricht Institute for Biobased Materials (AMIBM), Brightlands Chemelot campus, Urmonderbaan 22, 6167 RD Geleen the Netherlands
| |
Collapse
|
11
|
Hobisch M, Holtmann D, Gomez de Santos P, Alcalde M, Hollmann F, Kara S. Recent developments in the use of peroxygenases - Exploring their high potential in selective oxyfunctionalisations. Biotechnol Adv 2021; 51:107615. [PMID: 32827669 PMCID: PMC8444091 DOI: 10.1016/j.biotechadv.2020.107615] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Peroxygenases are an emerging new class of enzymes allowing selective oxyfunctionalisation reactions in a cofactor-independent way different from well-known P450 monooxygenases. Herein, we focused on recent developments from organic synthesis, molecular biotechnology and reaction engineering viewpoints that are devoted to bring these enzymes in industrial applications. This covers natural diversity from different sources, protein engineering strategies for expression, substrate scope, activity and selectivity, stabilisation of enzymes via immobilisation, and the use of peroxygenases in low water media. We believe that peroxygenases have much to offer for selective oxyfunctionalisations and we have much to study to explore the full potential of these versatile biocatalysts in organic synthesis.
Collapse
Affiliation(s)
- Markus Hobisch
- Department of Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, Aarhus C 8000, Denmark
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr. 14, Gießen 35390, Germany
| | | | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/Marie Curie 2, Madrid 28049, Spain; EvoEnzyme S.L, C/ Marie Curie 2, Madrid 28049, Spain
| | - Frank Hollmann
- Department of Biotechnology, Biocatalysis Group, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Selin Kara
- Department of Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, Aarhus C 8000, Denmark.
| |
Collapse
|
12
|
van Slagmaat CMR, Verzijl GKM, Quaedflieg PJLM, Alsters PL, De Wildeman SMA. Hydrogenation of Cyclic 1,3-Diones to Their 1,3-Diols Using Heterogeneous Catalysts: Toward a Facile, Robust, Scalable, and Potentially Bio-Based Route. ACS OMEGA 2021; 6:4313-4328. [PMID: 33623842 PMCID: PMC7893635 DOI: 10.1021/acsomega.0c05563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Cyclopentane-1,3-diol (4b) has gained renewed attention as a potential building block for polymers and fuels because its synthesis from hemicellulose-derived 4-hydroxycyclopent-2-enone (3) was recently disclosed. However, cyclopentane-1,3-dione (4), which is a constitutional isomer of 3, possesses a higher chemical stability and can therefore afford higher carbon mass balances and higher yields of 4b in the hydrogenation reaction under more concentrated conditions. In this work, the hydrogenation of 4 into 4b over a commercial Ru/C catalyst was systematically investigated on a bench scale through kinetic studies and variation of reaction conditions. Herein, the temperature, H2-pressure, and the solvent choice were found to have significant effects on the reaction rate and suppression of undesired dehydration of 4. The cis-trans ratio of 4b is naturally generated as 7:3 in these reactions. However, at elevated reaction temperatures, 4b epimerizes, yielding more trans products. This effect was also studied and rationalized from a thermodynamic perspective using DFT. The combined optimized reaction conditions provided 78% yield for 4b, and successful applications to 8-fold scaled up reactions (40 g) and a substrate scope of several 1,3-diones demonstrate the general applicability of this catalytic approach.
Collapse
Affiliation(s)
- Christian
A. M. R. van Slagmaat
- Chemelot
InSciTe, Gaetano Martinolaan
63-65, 6229 GS, Maastricht, The Netherlands
- Aachen-Maastricht
Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering
(FSE), Maastricht University, Brightlands Chemelot Campus, 6167 RD, Geleen, The Netherlands
| | | | - Peter J. L. M Quaedflieg
- Chemelot
InSciTe, Gaetano Martinolaan
63-65, 6229 GS, Maastricht, The Netherlands
- InnoSyn
B.V., Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| | - Paul L. Alsters
- Chemelot
InSciTe, Gaetano Martinolaan
63-65, 6229 GS, Maastricht, The Netherlands
- InnoSyn
B.V., Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| | - Stefaan M. A. De Wildeman
- Chemelot
InSciTe, Gaetano Martinolaan
63-65, 6229 GS, Maastricht, The Netherlands
- Aachen-Maastricht
Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering
(FSE), Maastricht University, Brightlands Chemelot Campus, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
13
|
Kleinekorte J, Fleitmann L, Bachmann M, Kätelhön A, Barbosa-Póvoa A, von der Assen N, Bardow A. Life Cycle Assessment for the Design of Chemical Processes, Products, and Supply Chains. Annu Rev Chem Biomol Eng 2020; 11:203-233. [PMID: 32216728 DOI: 10.1146/annurev-chembioeng-011520-075844] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Design in the chemical industry increasingly aims not only at economic but also at environmental targets. Environmental targets are usually best quantified using the standardized, holistic method of life cycle assessment (LCA). The resulting life cycle perspective poses a major challenge to chemical engineering design because the design scope is expanded to include process, product, and supply chain. Here, we first provide a brief tutorial highlighting key elements of LCA. Methods to fill data gaps in LCA are discussed, as capturing the full life cycle is data intensive. On this basis, we review recent methods for integrating LCA into the design of chemical processes, products, and supply chains. Whereas adding LCA as a posteriori tool for decision support can be regarded as established, the integration of LCA into the design process is an active field of research. We present recent advances and derive future challenges for LCA-based design.
Collapse
Affiliation(s)
- Johanna Kleinekorte
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany;
| | - Lorenz Fleitmann
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany;
| | - Marvin Bachmann
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany;
| | - Arne Kätelhön
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany;
| | - Ana Barbosa-Póvoa
- Centre for Management Studies, Instituto Superior Técnico, University of Lisbon, 1649-004, Lisbon, Portugal
| | - Niklas von der Assen
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany;
| | - André Bardow
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany; .,Institute of Energy and Climate Research, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
14
|
Sheldon RA, Brady D, Bode ML. The Hitchhiker's guide to biocatalysis: recent advances in the use of enzymes in organic synthesis. Chem Sci 2020; 11:2587-2605. [PMID: 32206264 PMCID: PMC7069372 DOI: 10.1039/c9sc05746c] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enzymes are excellent catalysts that are increasingly being used in industry and academia. This perspective is primarily aimed at synthetic organic chemists with limited experience using enzymes and provides a general and practical guide to enzymes and their synthetic potential, with particular focus on recent applications.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
- Department of Biotechnology , Delft University of Technology , Delft , The Netherlands
| | - Dean Brady
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
| | - Moira L Bode
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
| |
Collapse
|
15
|
Schmidt S, Bornscheuer UT. Baeyer-Villiger monooxygenases: From protein engineering to biocatalytic applications. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:231-281. [DOI: 10.1016/bs.enz.2020.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Fürst MJLJ, Gran-Scheuch A, Aalbers FS, Fraaije MW. Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03396] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maximilian J. L. J. Fürst
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Alejandro Gran-Scheuch
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Friso S. Aalbers
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| |
Collapse
|