1
|
Hu J, Pradhan S, Waiba S, Das S. Photocatalytic regioselective C-H bond functionalizations in arenes. Chem Sci 2024:d4sc07491b. [PMID: 39691465 PMCID: PMC11647916 DOI: 10.1039/d4sc07491b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024] Open
Abstract
The direct functionalization of C-H bonds has revolutionized the field of synthetic organic chemistry by enabling efficient and atom-economical modification of arenes by avoiding prefunctionalization. However, the inherent challenges of inertness and regioselectivity in different C-H bonds, particularly for distal positions, necessitate innovative approaches. In this aspect, photoredox catalysis by utilizing both transition metal and organic photocatalysts has emerged as a powerful tool for addressing these challenges under mild reaction conditions. This review provides a comprehensive overview of recent progress in regioselective C-H functionalization in arenes via photocatalysis. Emphasizing the strategies for achieving ortho-, meta-, and para-selectivity, we explore the mechanistic insights, catalyst designs, and the novel methodologies that have expanded the scope of C-H bond functionalization. This discussion aims to offer valuable perspectives for advancing the field and developing more efficient and sustainable synthetic methodologies.
Collapse
Affiliation(s)
- Jun Hu
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Suman Pradhan
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Satyadeep Waiba
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Shoubhik Das
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| |
Collapse
|
2
|
Xie Y, Li Z, Xu X, Jiang H, Chen K, Ou J, Liu K, Zhou Y, Luo K. Bis(2-butoxyethyl) Ether-Promoted O 2-Mediated Oxidation of Alkyl Aromatics to Ketones under Clean Conditions. Molecules 2024; 29:4909. [PMID: 39459277 PMCID: PMC11510689 DOI: 10.3390/molecules29204909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Conventional oxidation processes for alkyl aromatics to ketones employ oxidants that tend to generate harmful byproducts and cause severe equipment corrosion, ultimately creating critical environmental problems. Thus, in this study, a practical, efficient, and green method was developed for the synthesis of aromatic ketones by applying a bis(2-butoxyethyl) ether/O2 system under external catalyst-, additive-, and base-free conditions. This O2-mediated oxidation system can tolerate various functional groups and is suitable for large-scale synthesis. Diverse target ketones were prepared under clean conditions in moderate-to-high yields. The late-stage functionalization of drug derivatives with the corresponding ketones and one-pot sequential chemical conversions to ketone downstream products further broaden the application prospects of this approach.
Collapse
Affiliation(s)
- Yangyang Xie
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Zeping Li
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Xudong Xu
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Han Jiang
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Keyi Chen
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Jinhua Ou
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Kaijian Liu
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Yihui Zhou
- Collaborative Innovation Center, Hunan Automotive Engineering Vocational College, Zhuzhou 412001, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Kejun Luo
- Changsha Research Institute of Mining and Metallurgy Co., Ltd., Changsha 410012, China
| |
Collapse
|
3
|
Xiong J, Li X, Chen M, Shi Q, Jiang Y, Feng Y, Zhang B. Influence of Configurational Isomerism of Pyridine π Bridge in Donor-π Bridge-Acceptor Type Covalent Triazine Frameworks on The Photocatalytic Performance. Chem Asian J 2024; 19:e202400556. [PMID: 38937267 DOI: 10.1002/asia.202400556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/09/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Covalent triazine frameworks (CTFs) involving a donor-π bridge-acceptor (D-π-A) structure are considered one of the most promising photocatalytic materials, in which the π bridge is known to play an important role in influencing the photocatalytic performance. So far, much effort has been directed at the designing of the different π bridge structure to facilitate the photo-induced charge separation. However, the orientation of the π bridge units (configurational isomerism) has not been considered. In this paper, a pair of pyridine-bridged D-π-A type CTFs, named TFA-P1-CTF and TFA-P2-CTF, were designed to investigate how the orientation of the π bridge would influence their performance in the photocatalytic oxidation of olefins into carbonyl compounds. Interestingly, due to the superior charge separation capability, TFA-P2-CTF was found to be able to catalyze the reaction more efficiently than TFA-P1-CTF. Our study eventually provided a guide for the design of D-π-A type CTFs as high-performance photocatalytic materials via tuning the configurational isomerism of the π bridge unit for use in chemical transformations.
Collapse
Affiliation(s)
- Ji Xiong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong Province, 522000, P. R. China
| | - Xiangyu Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong Province, 522000, P. R. China
| | - Minghui Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong Province, 522000, P. R. China
| | - Quan Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong Province, 522000, P. R. China
| | - Yu Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong Province, 522000, P. R. China
| | - Yaqing Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong Province, 522000, P. R. China
| | - Bao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong Province, 522000, P. R. China
- Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, PR China
| |
Collapse
|
4
|
Meng F, Cui Y, Xu W, Yang WC. Visible-Light-Induced Domino Perfluoroalkylation/Cyclization to Access Perfluoroalkylated Quinazolinones by an EDA Complex. Org Lett 2024; 26:6884-6888. [PMID: 39087724 DOI: 10.1021/acs.orglett.4c02465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The electron donor-acceptor (EDA) complexes have been extensively studied, which formed an electronically excited state, obviating the need for an exogenous photocatalyst. Herein, we report a mild and efficient strategy for photoinduced radical domino perfluoroalkylation/cyclization using N,N,N',N'-tetramethylethane-1,2-diamine (TMEDA) as an electron donor. This protocol could be well expanded to access various polycyclic quinazolinones containing perfluoroalkyl groups, exhibiting photocatalyst-free, good functional group tolerance, and environmentally friendly features.
Collapse
Affiliation(s)
- Fei Meng
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yangyang Cui
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wen Xu
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wen-Chao Yang
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Rani S, Aslam S, Lal K, Noreen S, Alsader KAM, Hussain R, Shirinfar B, Ahmed N. Electrochemical C-H/C-C Bond Oxygenation: A Potential Technology for Plastic Depolymerization. CHEM REC 2024; 24:e202300331. [PMID: 38063812 DOI: 10.1002/tcr.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Indexed: 03/10/2024]
Abstract
Herein, we provide eco-friendly and safely operated electrocatalytic methods for the selective oxidation directly or with water, air, light, metal catalyst or other mediators serving as the only oxygen supply. Heavy metals, stoichiometric chemical oxidants, or harsh conditions were drawbacks of earlier oxidative cleavage techniques. It has recently come to light that a crucial stage in the deconstruction of plastic waste and the utilization of biomass is the selective activation of inert C(sp3 )-C/H(sp3 ) bonds, which continues to be a significant obstacle in the chemical upcycling of resistant polyolefin waste. An appealing alternative to chemical oxidations using oxygen and catalysts is direct or indirect electrochemical conversion. An essential transition in the chemical and pharmaceutical industries is the electrochemical oxidation of C-H/C-C bonds. In this review, we discuss cutting-edge approaches to chemically recycle commercial plastics and feasible C-C/C-H bonds oxygenation routes for industrial scale-up.
Collapse
Affiliation(s)
- Sadia Rani
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Kiran Lal
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Riaz Hussain
- Department of Chemistry, University of Education Lahore, D.G. Khan Campus, 32200, Pakistan
| | - Bahareh Shirinfar
- West Herts College - University of Hertfordshire, Watford, WD17 3EZ, London, United Kingdom
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
6
|
Kushwaha AK, Kamal A, Singh HK, Maury SK, Mondal T, Singh S. Photoinduced, Metal-Free Hydroacylation of Aromatic Alkynes for Synthesis of α,β-Unsaturated Ketones via C(sp 3)-H Functionalization. Org Lett 2024; 26:1416-1420. [PMID: 38329826 DOI: 10.1021/acs.orglett.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Despite the notable advancements made over the past decade in achieving carbon-carbon bonds by transition-metal-catalyzed cross-coupling processes, metal-free cross-coupling reactions for hydroacylation of aromatic alkynes via C(sp3)-H functionalization are still rare and highly desired. Here we report a metal-free reliable approach for the synthesis of α,β-unsaturated ketones (chalcones) via C(sp3)-H functionalization using MeCN:H2O as green solvent, Eosin Y as organic photocatalyst, and ambient air as oxidant. More significantly, this strategy can effectively transform a variety of methyl arenes and aromatic alkynes into the desired product. With high atom efficiency, use of green solvents, metal-free nature, environmental friendliness, and visible light as a renewable energy source, this method is compatible with biologically active molecules.
Collapse
Affiliation(s)
- Ambuj Kumar Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221 005, U.P., India
| | - Arsala Kamal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221 005, U.P., India
| | - Himanshu Kumar Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221 005, U.P., India
| | - Suresh Kumar Maury
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221 005, U.P., India
| | - Tusar Mondal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221 005, U.P., India
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221 005, U.P., India
| |
Collapse
|
7
|
Tan Z, Chen T, Zhu J, Luo W, Yu D, Guo W. Visible Light Mediated Chemoselective Hydroxylation of Benzylic Methylenes. J Org Chem 2024; 89:2656-2664. [PMID: 38324782 DOI: 10.1021/acs.joc.3c02683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We have developed a metal-free photocatalytic selective hydroxylation of benzylic methylenes to secondary alcohols. This approach utilizes low-cost eosin Y as photocatalyst, O2 as green oxidant, and inexpensive triethylamine as inhibitor for overoxidation. The mild reaction conditions enable the production of secondary alcohols with 56-95% yields, making it a promising and environmental-friendly method for the synthesis of secondary alcohols from benzylic methylenes.
Collapse
Affiliation(s)
- Zhiyong Tan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Tingting Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Jinbin Zhu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wenjun Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Daohong Yu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
8
|
Guan M, Hou M, Tang S, Cheng G, Zhu X, Zhao YH, Tang X, Zhou H, Qiu G. Iron-catalyzed β-hydroxymethylative carbonylation of styrene under photo-irradiation. Chem Commun (Camb) 2023; 59:13309-13312. [PMID: 37859505 DOI: 10.1039/d3cc03919f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
This study describes an iron-catalyzed divergent oxidation of styrene into β-hydroxylmethylketone and ketone under photo-irradiation. This divergence is ascribed to the use of styrene with various substituents. More importantly, methanol is oxidized into formaldehyde in the reaction and serves as a C1 synthon. Mechanism investigations show that the reaction is initiated by oxidative SET to transfer styrene into the cation radical. The reaction pathway undergoes HAT and β-hydride elimination as well as a concerted cyclization. Particularly, several drug-like molecules, such as melperone analogue, lenperone analogue, and haloperidol analogue, are synthesized. In addition, this method is also applicable to the synthesis of natural product (R)-atomoxetine.
Collapse
Affiliation(s)
- Meng Guan
- College of Chemistry and Chemical Engineering, Hunan University of Sciences and Technology, Xiangtan 4111201, Hunan, China.
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Ming Hou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Shuwang Tang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Guang Cheng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Xinyu Zhu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Yun-Hui Zhao
- College of Chemistry and Chemical Engineering, Hunan University of Sciences and Technology, Xiangtan 4111201, Hunan, China.
| | - Ximei Tang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Hongwei Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| |
Collapse
|
9
|
Peagno GSG, Salles AG. Oxidative transformations of olefins employing persulfate/visible light irradiation in water. Org Biomol Chem 2023; 21:4210-4215. [PMID: 37144677 DOI: 10.1039/d3ob00538k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present a green and economical approach for the photooxidation of diverse olefins through the use of ammonium persulfate and blue light irradiation, resulting in the formation of vicinal diols from styrenes and aliphatic alkenes, and vinyl esters and diacids from α,β-unsaturated ketones. The involvement of sulfate radicals in the reaction medium was established as the primary species responsible for the selective generation of the products. A significant advantage of the method lies in its broad substrate scope and economic feasibility, making it a promising alternative to conventional transition metal photocatalysis.
Collapse
Affiliation(s)
- Gabriel S G Peagno
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, SP 13084-862, Brazil.
| | - Airton G Salles
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, SP 13084-862, Brazil.
| |
Collapse
|
10
|
Nguyen K, Nguyen V, Tran H, Pham P. Organo-photocatalytic C-H bond oxidation: an operationally simple and scalable method to prepare ketones with ambient air. RSC Adv 2023; 13:7168-7178. [PMID: 36891491 PMCID: PMC9986805 DOI: 10.1039/d3ra00332a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Oxidative C-H functionalization with O2 is a sustainable strategy to convert feedstock-like chemicals into valuable products. Nevertheless, eco-friendly O2-utilizing chemical processes, which are scalable yet operationally simple, are challenging to develop. Here, we report our efforts, via organo-photocatalysis, in devising such protocols for catalytic C-H bond oxidation of alcohols and alkylbenzenes to ketones using ambient air as the oxidant. The protocols employed tetrabutylammonium anthraquinone-2-sulfonate as the organic photocatalyst which is readily available from a scalable ion exchange of inexpensive salts and is easy to separate from neutral organic products. Cobalt(ii) acetylacetonate was found to be greatly instrumental to oxidation of alcohols and therefore was included as an additive in evaluating the alcohol scope. The protocols employed a nontoxic solvent, could accommodate a variety of functional groups, and were readily scaled to 500 mmol scale in a simple batch setting using round-bottom flasks and ambient air. A preliminary mechanistic study of C-H bond oxidation of alcohols supported the validity of one possible mechanistic pathway, nested in a more complex network of potential pathways, in which the anthraquinone form - the oxidized form - of the photocatalyst activates alcohols and the anthrahydroquinone form - the relevant reduced form of the photocatalyst - activates O2. A detailed mechanism, which reflected such a pathway and was consistent with previously accepted mechanisms, was proposed to account for formation of ketones from aerobic C-H bond oxidation of both alcohols and alkylbenzenes.
Collapse
Affiliation(s)
- Ky Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| | - Van Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| | - Hieu Tran
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| | - Phong Pham
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| |
Collapse
|
11
|
Stuhr R, Bayer P, von Wangelin AJ. The Diverse Modes of Oxygen Reactivity in Life & Chemistry. CHEMSUSCHEM 2022; 15:e202201323. [PMID: 36214486 PMCID: PMC10100308 DOI: 10.1002/cssc.202201323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Oxygen is a molecule of utmost importance in our lives. Beside its vital role for the respiration and sustaining of organisms, oxygen is involved in numerous chemical and physical processes. Upon combination of the different forms of molecular oxygen species with various activation modes, substrates, and reaction conditions an extremely wide chemical space can be covered that enables rich applications of diverse oxygenation processes. This Review provides an instructive overview of the individual properties and reactivities of oxygen species and illustrates their importance in nature, everyday life, and in the context of chemical synthesis.
Collapse
Affiliation(s)
- Robin Stuhr
- Department of ChemistryUniversity of HamburgMartin-Luther-King Platz 620146HamburgGermany
| | - Patrick Bayer
- Pantheon AustriaThermo Fisher ScientificSt. Peter Str. 254020LinzAustria
| | | |
Collapse
|
12
|
Lopat’eva ER, Krylov IB, Lapshin DA, Terent’ev AO. Redox-active molecules as organocatalysts for selective oxidative transformations - an unperceived organocatalysis field. Beilstein J Org Chem 2022; 18:1672-1695. [PMID: 36570566 PMCID: PMC9749543 DOI: 10.3762/bjoc.18.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Organocatalysis is widely recognized as a key synthetic methodology in organic chemistry. It allows chemists to avoid the use of precious and (or) toxic metals by taking advantage of the catalytic activity of small and synthetically available molecules. Today, the term organocatalysis is mainly associated with redox-neutral asymmetric catalysis of C-C bond-forming processes, such as aldol reactions, Michael reactions, cycloaddition reactions, etc. Organophotoredox catalysis has emerged recently as another important catalysis type which has gained much attention and has been quite well-reviewed. At the same time, there are a significant number of other processes, especially oxidative, catalyzed by redox-active organic molecules in the ground state (without light excitation). Unfortunately, many of such processes are not associated in the literature with the organocatalysis field and thus many achievements are not fully consolidated and systematized. The present article is aimed at overviewing the current state-of-art and perspectives of oxidative organocatalysis by redox-active molecules with the emphasis on challenging chemo-, regio- and stereoselective CH-functionalization processes. The catalytic systems based on N-oxyl radicals, amines, thiols, oxaziridines, ketone/peroxide, quinones, and iodine(I/III) compounds are the most developed catalyst types which are covered here.
Collapse
Affiliation(s)
- Elena R Lopat’eva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Dmitry A Lapshin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
13
|
Sau S, Mal P. Visible-Light Promoted Regioselective Oxygenation of Quinoxalin-2(1 H)-ones Using O 2 as an Oxidant. J Org Chem 2022; 87:14565-14579. [PMID: 36214497 DOI: 10.1021/acs.joc.2c01960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible-light-mediated sustainable approach for metal-free oxygenation of quinoxalin-2(1H)-one by employing Mes-Acr-MeClO4 as a photocatalyst without using any additive or cocatalyst is reported here. O2 served as the eco-friendly and green oxidant source for this conversion. In addition, the protocol exhibited high regioselectivity and tolerance toward a broad spectrum of functional groups to furnish quinoxaline-2,3-diones in good to excellent yields.
Collapse
Affiliation(s)
- Sudip Sau
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhaba National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhaba National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
14
|
Zhang Y, Sahoo PK, Ren P, Qin Y, Cauwenbergh R, Nimmegeers P, SivaRaman G, Van Passel S, Guidetti A, Das S. Transition metal-free approach for late-stage benzylic C(sp 3)-H etherifications and esterifications. Chem Commun (Camb) 2022; 58:11454-11457. [PMID: 36148867 DOI: 10.1039/d2cc02661a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a transition metal-free approach for the regioselective functionalization of benzylic C(sp3)-H bonds using alcohols and carboxylic acids as the nucleophiles. This straightforward and general route has provided various benzylic ethers and esters, including twelve pharmaceutically relevant compounds.
Collapse
Affiliation(s)
- Yu Zhang
- ORSY Division, Department of Chemistry, Universiteit Antwerpen, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Prakash Kumar Sahoo
- ORSY Division, Department of Chemistry, Universiteit Antwerpen, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Peng Ren
- ORSY Division, Department of Chemistry, Universiteit Antwerpen, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Yuman Qin
- ORSY Division, Department of Chemistry, Universiteit Antwerpen, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Robin Cauwenbergh
- ORSY Division, Department of Chemistry, Universiteit Antwerpen, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Philippe Nimmegeers
- Department of Engineering Management, Universiteit Antwerpen, Prinsstraat 13, 2000, Antwerpen, Belgium.,Intelligence in Processes, Advanced Catalysts and Solvents (iPRACS), Faculty of Applied Engineering, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Gandhi SivaRaman
- Department of Chemistry, Gandhigram Rural Institute, Gandhigram, 624032, Tamilnadu, India
| | - Steven Van Passel
- Department of Engineering Management, Universiteit Antwerpen, Prinsstraat 13, 2000, Antwerpen, Belgium.,Nanolab Centre of Excellence, Prinsstraat 13, 2000, Antwerpen, Belgium
| | - Andrea Guidetti
- Biophysics and Biomedical Physics (BIMEF), Department of Chemistry, University of Antwerp, B2610 Antwerp, Belgium
| | - Shoubhik Das
- ORSY Division, Department of Chemistry, Universiteit Antwerpen, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| |
Collapse
|
15
|
Tambe SD, Cho EJ. Organophotocatalytic oxidation of alcohols to carboxylic acids. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shrikant D. Tambe
- Department of Chemistry Chung‐Ang University Dongjak‐Gu, Seoul Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry Chung‐Ang University Dongjak‐Gu, Seoul Republic of Korea
| |
Collapse
|
16
|
Qi H, Xu D, Lin J, Sun W. Copper-catalyzed direct hydroxylation of arenes to phenols with hydrogen peroxide. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Li MN, Wan B, Yang S, Tang Y, Zhang H, Zhang SQ, Liu HY, Ye Y. Aerobic Baeyer−Villiger oxidation catalyzed by metal corroles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Meng-Ni Li
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Bei Wan
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Shuang Yang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Yan Tang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Hao Zhang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Si-Quan Zhang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Hai-Yang Liu
- South China University of Technology Department of Chemistry 381# Wushan Road 510641 Guangzhou CHINA
| | - Yong Ye
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
18
|
Zhang T, Wang Y, Wang B, Jin W, Xia Y, Liu C, Zhang Y. Visible‐Light‐Induced Oxidation of Diazenyl‐Protected Tetrahydroisoquinolines and Isoindolines for the Synthesis of Functionalized Lactams. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tao Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yanhong Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
- College of Future Technology Xinjiang University Urumqi 830046 P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| |
Collapse
|
19
|
Neerathilingam N, Anandhan R. Metal-free photoredox-catalyzed direct α-oxygenation of N, N-dibenzylanilines to imides under visible light. RSC Adv 2022; 12:8368-8373. [PMID: 35424823 PMCID: PMC8984950 DOI: 10.1039/d2ra00585a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022] Open
Abstract
An efficient synthesis of imides using metal-free photoredox-catalyzed direct α-oxygenation of N,N'-disubstituted anilines in the presence of 9-mesityl-10-methylacridinium [Acr+-Mes]BF4 as a photoredox catalyst and molecular oxygen as a green oxidant under visible light was developed. This photochemical approach offered operational simplicity, high atom economy with a low E-factor, and functional group tolerance under mild reaction conditions. Control and quenching experiments confirmed the occurrence of a radical pathway and superoxide radical anion α-oxygenation reactions, and also provided strong evidence for the reductive quenching of [Acr+-Mes]BF4 based on a Stern-Volmer plot, which led to the proposed mechanism of this reaction.
Collapse
Affiliation(s)
| | - Ramasamy Anandhan
- Department of Organic Chemistry, University of Madras Chennai 600025 India
| |
Collapse
|
20
|
Ju ZY, Song LN, Chong MB, Cheng DG, Hou Y, Zhang XM, Zhang QH, Ren LH. Selective Aerobic Oxidation of C sp3-H Bonds Catalyzed by Yeast-Derived Nitrogen, Phosphorus, and Oxygen Codoped Carbon Materials. J Org Chem 2022; 87:3978-3988. [PMID: 35254832 DOI: 10.1021/acs.joc.1c02641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nitrogen, phosphorus, and oxygen codoped carbon catalysts were successfully synthesized using dried yeast powder as a pyrolysis precursor. The yeast-derived heteroatom-doped carbon (yeast@C) catalysts exhibited outstanding performance in the oxidation of Csp3-H bonds to ketones and esters, giving excellent product yields (of up to 98% yield) without organic solvents at low O2 pressure (0.1 MPa). The catalytic oxidation protocol exhibited a broad range of substrates (38 examples) with good functional group tolerance, excellent regioselectivity, and synthetic utility. The yeast-derived heteroatom-doped carbon catalysts showed good reusability and stability after recycling six times without any significant loss of activity. Experimental results and DFT calculations proved the important role of N-oxide (N+-O-) on the surface of yeast@C and a reasonable carbon radical mechanism.
Collapse
Affiliation(s)
- Zhao-Yang Ju
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Li-Na Song
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Ming-Ben Chong
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhuabei Road, Quzhou 324000, P. R. China
| | - Dang-Guo Cheng
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Xi-Ming Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Qing-Hua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Lan-Hui Ren
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhuabei Road, Quzhou 324000, P. R. China
| |
Collapse
|
21
|
Shibata T, Akino M, Sekine A, Ito M. Metal-Free Aerobic C–H Oxidation of Methylarenes to Aromatic Aldehydes by Sulfur-Containing Tetracyclic Compounds as Visible-Light Photocatalysts. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Mika Akino
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Ayato Sekine
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Mamoru Ito
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
22
|
Visible-light-promoted aerobic oxidation of sulfides and sulfoxides in ketone solvents. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Torregrosa-Chinillach A, Chinchilla R. Visible Light-Induced Aerobic Oxidative Dehydrogenation of C-N/C-O to C=N/C=O Bonds Using Metal-Free Photocatalysts: Recent Developments. Molecules 2022; 27:497. [PMID: 35056812 PMCID: PMC8780101 DOI: 10.3390/molecules27020497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Performing synthetic transformation using visible light as energy source, in the presence of a photocatalyst as a promoter, is currently of high interest, and oxidation reactions carried out under these conditions using oxygen as the final oxidant are particularly convenient from an environmental point of view. This review summarizes the recent developments achieved in the oxidative dehydrogenation of C-N and C-O bonds, leading to C=N and C=O bonds, respectively, using air or pure oxygen as oxidant and metal-free homogeneous or recyclable heterogeneous photocatalysts under visible light irradiation.
Collapse
Affiliation(s)
| | - Rafael Chinchilla
- Department of Organic Chemistry, Faculty of Sciences, Institute of Organic Synthesis (ISO), University of Alicante, Apdo. 99, 03080 Alicante, Spain;
| |
Collapse
|
24
|
Han Y, Jiang W, Zhang J, Peng J, Chen C. Visible-Light-Promoted Palladium-Catalyzed C—H Amination for the Synthesis of Carbazolequinones. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202104037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Li S, Tian D, Zhao X, Yin Y, Lee R, Jiang Z. Visible light-driven copper( ii) catalyzed aerobic oxidative cleavage of carbon–carbon bonds: a combined experimental and theoretical study. Org Chem Front 2022. [DOI: 10.1039/d2qo01264b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By switching on visible blue light, aerobic oxidation of various substrates, such as α-substituted, β-substituted and α-halo styrenes, was first realized with a copper(ii) catalyst.
Collapse
Affiliation(s)
- Sanliang Li
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Dong Tian
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Xiaowei Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Yanli Yin
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Richmond Lee
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Zhiyong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
26
|
Hirscher NA, Ohri N, Yang Q, Zhou J, Anna JM, Schelter EJ, Goldberg KI. A Metal-Free, Photocatalytic Method for Aerobic Alkane Iodination. J Am Chem Soc 2021; 143:19262-19267. [PMID: 34779622 DOI: 10.1021/jacs.1c08499] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Halogenation is an important alkane functionalization strategy, but O2 is widely considered the most desirable terminal oxidant. Here, the aerobic iodination of alkanes, including methane, was performed using catalytic [nBu4N]Cl and light irradiation (390 nm). Up to 10 turnovers of CH3I were obtained from CH4 and air, using a stop-flow microtubing system. Mechanistic studies using cyclohexane as the substrate revealed important details about the iodination reaction. Iodine (I2) serves multiple roles in the catalysis: (1) as the alkyl radical trap, (2) as a precursor for the light absorber, and (3) as a mediator of aerobic oxidation. The alkane activation is attributed to Cl• derived from photofragmentation of the electron donor-acceptor complex of I2 and Cl-. The kinetic profile of cyclohexane iodination showed that aerobic oxidation of I3- to produce I2 in CH3CN is turnover-limiting.
Collapse
Affiliation(s)
- Nathanael A Hirscher
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Nidhi Ohri
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Qiaomu Yang
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Jiawang Zhou
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Jessica M Anna
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Eric J Schelter
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Karen I Goldberg
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
27
|
Neerathilingam N, Bhargava Reddy M, Anandhan R. Regioselective Synthesis of 2° Amides Using Visible-Light-Induced Photoredox-Catalyzed Nonaqueous Oxidative C-N Cleavage of N, N-Dibenzylanilines. J Org Chem 2021; 86:15117-15127. [PMID: 34619960 DOI: 10.1021/acs.joc.1c01792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A visible-light-driven photoredox-catalyzed nonaqueous oxidative C-N cleavage of N,N-dibenzylanilines to 2° amides is reported. Further, we have applied this protocol on 2-(dibenzylamino)benzamide to afford quinazolinones with (NH4)2S2O8 as an additive. Mechanistic studies imply that the reaction might undergo in situ generation of α-amino radical to imine by C-N bond cleavage followed by the addition of superoxide ion to form amides.
Collapse
Affiliation(s)
| | | | - Ramasamy Anandhan
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
| |
Collapse
|
28
|
Visible light-promoted enantioselective aerobic oxidation of pyrazolones by phase transfer catalysis. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Nagae H, Sakamoto K, Fujiwara S, Schindler T, Kon Y, Sato K, Okuda J, Mashima K. Aerobic oxygenation of α-methylene ketones under visible-light catalysed by a CeNi 3 complex with a macrocyclic tris(salen)-ligand. Chem Commun (Camb) 2021; 57:11169-11172. [PMID: 34617527 DOI: 10.1039/d1cc04540g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A hetero-tetranuclear CeNi3 complex with a macrocyclic ligand catalysed the aerobic oxygenation of a methylene group adjacent to a carbonyl group under visible-light radiation to produce the corresponding α-diketones. The visible-light induced homolysis of the Ce-O bond of a bis(enolate) intermediate is proposed prior to aerobic oxygenation.
Collapse
Affiliation(s)
- Haruki Nagae
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Kazutaka Sakamoto
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Sakiko Fujiwara
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Tobias Schindler
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen D-52062, Germany
| | - Yoshihiro Kon
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Tsukuba, Ibaraki 305-8565, Japan
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen D-52062, Germany
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
30
|
Budnyak TM, Onwumere J, Pylypchuk IV, Jaworski A, Chen J, Rokicińska A, Lindström ME, Kuśtrowski P, Sevastyanova O, Slabon A. LignoPhot: Conversion of hydrolysis lignin into the photoactive hybrid lignin/Bi 4O 5Br 2/BiOBr composite for simultaneous dyes oxidation and Co 2+ and Ni 2+ recycling. CHEMOSPHERE 2021; 279:130538. [PMID: 33894514 DOI: 10.1016/j.chemosphere.2021.130538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Valorization of lignin is still an open question and lignin has therefore remained an underutilized biomaterial. This situation is even more pronounced for hydrolysis lignin, which is characterized by a highly condensed and excessively cross-linked structure. We demonstrate the synthesis of photoactive lignin/Bi4O5Br2/BiOBr bio-inorganic composites consisting of a lignin substrate that is coated by semiconducting nanosheets. The XPS analysis reveals that growing these nanosheets on lignin instead on cellulose prevents the formation of Bi5+ ions at the surface region, yielding thus a modified heterojunction Bi4O5Br2/BiOBr. The material contains 18.9% of Bi4O5Br2/BiOBr and is effective for the photocatalytic degradation of cationic methylene blue (MB) and zwitterionic rhodamine B (RhB) dyes under light irradiation. Lignin/Bi4O5Br2/BiOBr decreases the dye concentration from 80 mg L-1 to 12.3 mg L-1 for RhB (85%) and from 80 mg L-1 to 4.4 mg L-1 for MB (95%). Complementary to the dye degradation, the lignin as a main component of the composite, was found to be efficient and rapid biosorbent for nickel, lead, and cobalt ions. The low cost, stability and ability to simultaneously photo-oxidize organic dyes and adsorb metal ions, make the photoactive lignin/Bi4O5Br2/BiOBr composite a prospective material for textile wastewaters remediation and metal ions recycling.
Collapse
Affiliation(s)
- Tetyana M Budnyak
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91, Stockholm, Sweden
| | - Joy Onwumere
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91, Stockholm, Sweden
| | - Ievgen V Pylypchuk
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Aleksander Jaworski
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91, Stockholm, Sweden
| | - Jianhong Chen
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91, Stockholm, Sweden
| | - Anna Rokicińska
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91, Stockholm, Sweden
| | - Mikael E Lindström
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Olena Sevastyanova
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland; Wallenberg Wood Science Center (WWSC), Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Adam Slabon
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91, Stockholm, Sweden.
| |
Collapse
|
31
|
Xie P, Xue C, Du D, Shi S. Photo-induced oxidative cleavage of C-C double bonds for the synthesis of biaryl methanone via CeCl 3 catalysis. Org Biomol Chem 2021; 19:6781-6785. [PMID: 34312650 DOI: 10.1039/d1ob01002f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ce-catalyzed strategy is developed to produce biaryl methanones via photooxidative cleavage of C-C double bonds at room temperature. This reaction is performed under air and demonstrates high activity as well as functional group tolerance. A synergistic Ce/ROH catalytic mechanism is also proposed based on the experimental observations. This protocol should be the first successful Ce-catalyzed photooxidation reaction of olefins with air as the oxidant, which would provide inspiration for the development of novel Ce-catalyzed photochemical synthesis processes.
Collapse
Affiliation(s)
- Pan Xie
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | | | | | | |
Collapse
|
32
|
Xie P, Xue C, Shi S, Du D. Visible-Light-Driven Selective Air-Oxygenation of C-H Bond via CeCl 3 Catalysis in Water. CHEMSUSCHEM 2021; 14:2689-2693. [PMID: 33877736 DOI: 10.1002/cssc.202100682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Visible-light-induced C-H aerobic oxidation is an important chemical transformation that can be applied for the synthesis of aromatic ketones. High-cost catalysts and toxic solvents were generally needed in the present methodologies. Here, an efficient aqueous C-H aerobic oxidation protocol was reported. Through CeCl3 -mediated photocatalysis, a series of aromatic ketones were produced in moderate to excellent yields. With air as the oxidant, this reaction could be performed under mild conditions in water and demonstrated high activity and functional group tolerance. This method is economical, highly efficient, and environmentally friendly, and it will provide inspiration for the development of aqueous photochemical synthesis reactions.
Collapse
Affiliation(s)
- Pan Xie
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Cheng Xue
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Sanshan Shi
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Dongdong Du
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| |
Collapse
|
33
|
Upadhyay R, Kumar S, Maurya SK. V
2
O
5
@TiO
2
Catalyzed Green and Selective Oxidation of Alcohols, Alkylbenzenes and Styrenes to Carbonyls. ChemCatChem 2021. [DOI: 10.1002/cctc.202100654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rahul Upadhyay
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Shashi Kumar
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
| | - Sushil K. Maurya
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
34
|
Liu S, Tian M, Bu X, Tian H, Yang X. Covalent Organic Frameworks toward Diverse Photocatalytic Aerobic Oxidations. Chemistry 2021; 27:7738-7744. [PMID: 33788327 DOI: 10.1002/chem.202100398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Photoactive two-dimensional covalent organic frameworks (2D-COFs) have become promising heterogenous photocatalysts in visible-light-driven organic transformations. Herein, a visible-light-driven selective aerobic oxidation of various small organic molecules by using 2D-COFs as the photocatalyst was developed. In this protocol, due to the remarkable photocatalytic capability of hydrazone-based 2D-COF-1 on molecular oxygen activation, a wide range of amides, quinolones, heterocyclic compounds, and sulfoxides were obtained with high efficiency and excellent functional group tolerance under very mild reaction conditions. Furthermore, benefiting from the inherent advantage of heterogenous photocatalysis, prominent sustainability and easy photocatalyst recyclability, a drug molecule (modafinil) and an oxidized mustard gas simulant (2-chloroethyl ethyl sulfoxide) were selectively and easily obtained in scale-up reactions. Mechanistic investigations were conducted using radical quenching experiments and in situ ESR spectroscopy, all corroborating the proposed role of 2D-COF-1 in photocatalytic cycle.
Collapse
Affiliation(s)
- Shuyang Liu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Miao Tian
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China.,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
35
|
Fu Y, Wu Q, Du Z. Debenzylative Sulfonylation of Tertiary Benzylamines Promoted by Visible Light. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Fu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Qing‐Kui Wu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Zhengyin Du
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| |
Collapse
|
36
|
Photocatalyst-controlled and visible light-enabled selective oxidation of pyridinium salts. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9958-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Ren C, Wang T, Zhang Y, Peng D, Liu X, Wu Q, Liu X, Luo S. Photoinduced Activation of Unactivated C(
sp
3
)‐H Bonds and Acylation Reactions. ChemistrySelect 2021. [DOI: 10.1002/slct.202100225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chen‐Chao Ren
- Zhejiang University of Technology State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Hangzhou 310014 P.R. China
| | - Tian‐Qi Wang
- Zhejiang University of Technology State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Hangzhou 310014 P.R. China
| | - Yu Zhang
- Zhejiang University of Technology State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Hangzhou 310014 P.R. China
| | - Dao Peng
- Zhejiang University of Technology State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Hangzhou 310014 P.R. China
| | - Xiao‐Qing Liu
- Zhejiang University of Technology State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Hangzhou 310014 P.R. China
| | - Qing‐An Wu
- Zhejiang University of Technology State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Hangzhou 310014 P.R. China
| | - Xue‐Fen Liu
- Hangzhou Normal University Qianjiang College Hangzhou 310006 P.R. China
| | - Shu‐Ping Luo
- Zhejiang University of Technology State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Hangzhou 310014 P.R. China
| |
Collapse
|
38
|
Sahoo PK, Zhang Y, Das S. CO 2-Promoted Reactions: An Emerging Concept for the Synthesis of Fine Chemicals and Pharmaceuticals. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05681] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Prakash Kumar Sahoo
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Yu Zhang
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
39
|
Oliva M, Coppola GA, Van der Eycken EV, Sharma UK. Photochemical and Electrochemical Strategies towards Benzylic C−H Functionalization: A Recent Update. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001581] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Monica Oliva
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Guglielmo A. Coppola
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya street RU-117198 Moscow Russia
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
40
|
Torregrosa-Chinillach A, Chinchilla R. Synthesis of Xanthones, Thioxanthones and Acridones by a Metal-Free Photocatalytic Oxidation Using Visible Light and Molecular Oxygen. Molecules 2021; 26:molecules26040974. [PMID: 33673146 PMCID: PMC7918112 DOI: 10.3390/molecules26040974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022] Open
Abstract
9H-Xanthenes, 9H-thioxanthenes and 9,10-dihydroacridines can be easily oxidized to the corresponding xanthones, thioxanthones and acridones, respectively, by a simple photo-oxidation procedure carried out using molecular oxygen as oxidant under the irradiation of visible blue light and in the presence of riboflavin tetraacetate as a metal-free photocatalyst. The obtained yields are high or quantitative.
Collapse
|
41
|
Murugesan K, Donabauer K, König B. Visible-Light-Promoted Metal-Free Synthesis of (Hetero)Aromatic Nitriles from C(sp 3 )-H Bonds*. Angew Chem Int Ed Engl 2021; 60:2439-2445. [PMID: 33053270 PMCID: PMC7898869 DOI: 10.1002/anie.202011815] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/29/2020] [Indexed: 01/18/2023]
Abstract
The metal-free activation of C(sp3 )-H bonds to value-added products is of paramount importance in organic synthesis. We report the use of the commercially available organic dye 2,4,6-triphenylpyrylium tetrafluoroborate (TPP) for the conversion of methylarenes to the corresponding aryl nitriles via a photocatalytic process. Applying this methodology, a variety of cyanobenzenes have been synthesized in good to excellent yield under metal- and cyanide-free conditions. We demonstrate the scope of the method with over 50 examples including late-stage functionalization of drug molecules (celecoxib) and complex structures such as l-menthol, amino acids, and cholesterol derivatives. Furthermore, the presented synthetic protocol is applicable for gram-scale reactions. In addition to methylarenes, selected examples for the cyanation of aldehydes, alcohols and oximes are demonstrated as well. Detailed mechanistic investigations have been carried out using time-resolved luminescence quenching studies, control experiments, and NMR spectroscopy as well as kinetic studies, all supporting the proposed catalytic cycle.
Collapse
Affiliation(s)
| | | | - Burkhard König
- Faculty of Chemistry and PharmacyUniversity of RegensburgGermany
| |
Collapse
|
42
|
Yu C, Özkaya B, Patureau FW. Electro-Oxidative Selective Esterification of Methylarenes and Benzaldehydes. Chemistry 2021; 27:3682-3687. [PMID: 33283370 PMCID: PMC7986861 DOI: 10.1002/chem.202005158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 01/31/2023]
Abstract
A mild and green electro-oxidative protocol to construct aromatic esters from methylarenes and alcohols is herein reported. Importantly, the reaction is free of metals, chemical oxidants, bases, acids, and operates at room temperature. Moreover, the design of the electrolyte was found critical for the oxidation state and structure of the coupling products, a rarely documented effect. This electro-oxidative coupling process also displays exceptional tolerance of many fragile easily oxidized functional groups such as hydroxy, aldehyde, olefin, alkyne, as well as neighboring benzylic positions. The enantiomeric enrichment of some chiral alcohols is moreover preserved during this electro-oxidative coupling reaction, making it overall a promising synthetic tool.
Collapse
Affiliation(s)
- Congjun Yu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Bünyamin Özkaya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
43
|
Affiliation(s)
- Prakash Kumar Sahoo
- Department of Chemistry Universiteit Antwerpen Groenenborgerlaan 171 2020 Antwerpen Belgium
| | - Tong Zhang
- Department of Chemistry Universiteit Antwerpen Groenenborgerlaan 171 2020 Antwerpen Belgium
| | - Shoubhik Das
- Department of Chemistry Universiteit Antwerpen Groenenborgerlaan 171 2020 Antwerpen Belgium
| |
Collapse
|
44
|
Bansode AH, Suryavanshi G. Visible‐Light‐Induced Controlled Oxidation of
N
‐Substituted 1,2,3,4‐Tetrahydroisoquinolines for the Synthesis of 3,4‐Dihydroisoquinolin‐1(2
H
)‐ones and Isoquinolin‐1(2
H
)‐ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ajay H. Bansode
- Chemical Engineering & Process Development Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Gurunath Suryavanshi
- Chemical Engineering & Process Development Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
45
|
Dai P, Xu L. Visible-Light-Induced Benzylic C—H Oxygenation Reaction Using Tetrabutylammonium Tribromide as the Catalyst. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Shee M, Singh NDP. Cooperative photoredox and palladium catalysis: recent advances in various functionalization reactions. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02071k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cooperative photoredox and palladium catalysis for various functionalization reactions.
Collapse
Affiliation(s)
- Maniklal Shee
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - N. D. Pradeep Singh
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| |
Collapse
|
47
|
Zhou M, Yu K, Liu J, Shi W, Pan Y, Tang H, Peng X, Liu Q, Wang H. Light-driven selective aerobic oxidation of (iso)quinoliniums and related heterocycles. RSC Adv 2021; 11:16246-16251. [PMID: 35479138 PMCID: PMC9031974 DOI: 10.1039/d1ra01226f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Selective C1–H/C4–H carbonylation of N-methylene iminium salts, catalyzed by visible-light photoredox and oxygen in the air, has been reported. A ruthenium complex acts as a chemical switch to conduct two different reaction pathways and to afford two different kinds of products. In the absence of the ruthenium complex, the Csp2–H bonds adjacent to the nitrogen atoms are oxidized to α-lactams by the N-methyleneiminium substrates themselves as photosensitizers. In the presence of the ruthenium complex, the oxidation reaction site of quinoliniums is switched to the C4 region, resulting in the formation of 4-quinolones. The use of two transformations directly introduces oxygen into the nitrogen heterocyclic skeletons under an air atmosphere. The selective C1–H/C4–H carbonylation of N-methyleneiminium salts catalyzed by visible-light photoredox reactions and oxygen in the air has been reported.![]()
Collapse
Affiliation(s)
- Meimei Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- People's Republic of China
| | - Keyang Yu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education
- Gannan Medical University
- Ganzhou 341000
- People's Republic of China
| | - Jianxin Liu
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Weimei Shi
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Yingming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- People's Republic of China
| | - Haitao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- People's Republic of China
| | - Xiangjun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education
- Gannan Medical University
- Ganzhou 341000
- People's Republic of China
| | - Qian Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education
- Gannan Medical University
- Ganzhou 341000
- People's Republic of China
| | - Hengshan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- People's Republic of China
| |
Collapse
|
48
|
Singh A, Narula AK. N-Heterocyclic carbene (NHC) catalyzed amidation of aldehydes with amines via the tandem N-hydroxysuccinimide ester formation. NEW J CHEM 2021. [DOI: 10.1039/d1nj00591j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A novel methodology for the construction of a wide variety of mono and di-substituted amides is developed, that utilizes readily available, non-hazardous, and cheaper starting reagents and simple imidazolium-based N-heterocyclic carbenes.
Collapse
Affiliation(s)
- Ashmita Singh
- University School Of Basic and Applied Sciences (USBAS)
- Guru Gobind Singh Indraprastha University
- Sector – 16 Dwarka
- India
| | - A. K. Narula
- University School Of Basic and Applied Sciences (USBAS)
- Guru Gobind Singh Indraprastha University
- Sector – 16 Dwarka
- India
| |
Collapse
|
49
|
Wang Y, Li P, Wang J, Liu Z, Wang Y, Lu Y, Liu Y, Duan L, Li W, Sarina S, Zhu H, Liu J. Visible-light photocatalytic selective oxidation of C(sp 3)–H bonds by anion–cation dual-metal-site nanoscale localized carbon nitride. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00328c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Anion–cation dual-metal-site nanoscale localized carbon nitride exhibits a significantly enhanced photocatalytic activity for the oxidation of alkanes and alcohols with a high activity and a wide functional group tolerance.
Collapse
|
50
|
Schilling W, Das S. Transition Metal-Free Synthesis of Carbamates Using CO 2 as the Carbon Source. CHEMSUSCHEM 2020; 13:6246-6258. [PMID: 33107690 DOI: 10.1002/cssc.202002073] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Utilization of carbon dioxide as a C1 synthon is highly attractive for the synthesis of valuable chemicals. However, activation of CO2 is highly challenging, owing to its thermodynamic stability and kinetic inertness. With this in mind, several strategies have been developed for the generation of carbon-heteroatom bonds. Among these, formation of C-N bonds is highly attractive, especially, when carbamates can be synthesized directly from CO2 . This Minireview focuses on transition metal-free approaches for the fixation of CO2 to generate carbamates for the production of fine chemicals and pharmaceuticals. Within the past decade, transition metal-free approaches have gained increasing attention, but traditional reviews have rarely focused on these approaches. Direct comparisons between such methods have been even more scarce. This Minireview seeks to address this discrepancy.
Collapse
Affiliation(s)
- Waldemar Schilling
- Institute for Biomolecular and Organic Chemistry, Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| | - Shoubhik Das
- ORSY division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|