1
|
Tangyen N, Natongchai W, D’Elia V. Catalytic Strategies for the Cycloaddition of CO 2 to Epoxides in Aqueous Media to Enhance the Activity and Recyclability of Molecular Organocatalysts. Molecules 2024; 29:2307. [PMID: 38792168 PMCID: PMC11124216 DOI: 10.3390/molecules29102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
The cycloaddition of CO2 to epoxides to afford versatile and useful cyclic carbonate compounds is a highly investigated method for the nonreductive upcycling of CO2. One of the main focuses of the current research in this area is the discovery of readily available, sustainable, and inexpensive catalysts, and of catalytic methodologies that allow their seamless solvent-free recycling. Water, often regarded as an undesirable pollutant in the cycloaddition process, is progressively emerging as a helpful reaction component. On the one hand, it serves as an inexpensive hydrogen bond donor (HBD) to enhance the performance of ionic compounds; on the other hand, aqueous media allow the development of diverse catalytic protocols that can boost catalytic performance or ease the recycling of molecular catalysts. An overview of the advances in the use of aqueous and biphasic aqueous systems for the cycloaddition of CO2 to epoxides is provided in this work along with recommendations for possible future developments.
Collapse
Affiliation(s)
| | | | - Valerio D’Elia
- VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Wangchan, Thailand; (N.T.); (W.N.)
| |
Collapse
|
2
|
Mikšovsky P, Rauchenwald K, Naghdi S, Rabl H, Eder D, Konegger T, Bica-Schröder K. Silicon Oxycarbide (SiOC)-Supported Ionic Liquids: Heterogeneous Catalysts for Cyclic Carbonate Formation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:1455-1467. [PMID: 38303909 PMCID: PMC10829049 DOI: 10.1021/acssuschemeng.3c05569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/23/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
Silicon oxycarbides (SiOCs) impregnated with tetrabutylammonium halides (TBAX) were investigated as an alternative to silica-based supported ionic liquid phases for the production of bio-based cyclic carbonates derived from limonene and linseed oil. The support materials and the supported ionic liquid phases (SILPs) were characterized via Fourier transform infrared spectroscopy, thermogravimetric analysis, nitrogen adsorption, X-ray photoelectron spectroscopy, microscopy, and solvent adsorption. The silicon oxycarbide supports were pyrolyzed at 300-900 °C prior to being coated with different tetrabutylammonium halides and further used as heterogeneous catalysts for the formation of cyclic carbonates in batch mode. Excellent selectivities of 97-100% and yields of 53-62% were obtained with tetrabutylammonium chloride supported on the silicon oxycarbides. For comparison, the catalytic performance of commonly employed silica-supported ionic liquids was investigated under the same conditions. The silica-supported species triggered the formation of a diol as a byproduct, leading to a lower selectivity of 87% and a lower yield of 48%. Ultimately, macroporous monolithic SiOC-SILPs with suitable permeability characteristics (k1 = 10-11 m2) were produced via photopolymerization-assisted solidification templating and applied for the selective and continuous production of limonene carbonate with supercritical carbon dioxide as the reagent and sole solvent. Constant product output over 48 h without concurrent catalyst leaching was achieved.
Collapse
Affiliation(s)
- Philipp Mikšovsky
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Katharina Rauchenwald
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Shaghayegh Naghdi
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Hannah Rabl
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Dominik Eder
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Thomas Konegger
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | | |
Collapse
|
3
|
Castro-Ruiz A, Grefe L, Mejía E, Suman SG. Cobalt complexes with α-amino acid ligands catalyze the incorporation of CO 2 into cyclic carbonates. Dalton Trans 2023; 52:4186-4199. [PMID: 36892234 DOI: 10.1039/d2dt03595b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Arguably one of the largest research areas involving carbon dioxide (CO2) fixation is the coupling of CO2 to epoxides to form cyclic carbonates and polycarbonates. In this sense, there is an ever-increasing demand for the development of higher-performing catalytic systems that could counterbalance sustainability and energy efficiency in the production of cyclic carbonates. The use of abundant first-row transition metals combined with naturally occurring amino acids may be an ideal catalytic platform to fulfill this demand. Nevertheless, detailed information on the interactions between metal centers and natural products as catalysts in this transformation is lacking. Here a series of Co(III) amino acid catalysts operating in a binary system showed outstanding performance for the coupling reaction of epoxides and CO2. Nine new complexes of the type trans(N)-[Co(aa)2(bipy)]Cl (aa: ala, asp, lys, met, phe, pro, ser, tyr, and val) were used to explore the structure-activity relationship influenced by the complex outer coordination sphere, and its effect on the catalytic activity in the coupling reaction of CO2 and epoxides.
Collapse
Affiliation(s)
- Andrés Castro-Ruiz
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland.
| | - Lea Grefe
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Esteban Mejía
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Sigridur G Suman
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland.
| |
Collapse
|
4
|
Exploring the Potential of Nanosized Oxides of Zinc and Tin as Recyclable Catalytic Components for the Synthesis of Cyclic Organic Carbonates under Atmospheric CO2 Pressure. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
5
|
Kessaratikoon T, Theerathanagorn T, Crespy D, D'Elia V. Organocatalytic Polymers from Affordable and Readily Available Building Blocks for the Cycloaddition of CO 2 to Epoxides. J Org Chem 2023; 88:4894-4924. [PMID: 36692489 DOI: 10.1021/acs.joc.2c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The catalytic cycloaddition of CO2 to epoxides to afford cyclic carbonates as useful monomers, intermediates, solvents, and additives is a continuously growing field of investigation as a way to carry out the atom-economic conversion of CO2 to value-added products. Metal-free organocatalytic compounds are attractive systems among various catalysts for such transformations because they are inexpensive, nontoxic, and readily available. Herein, we highlight and discuss key advances in the development of polymer-based organocatalytic materials that match these requirements of affordability and availability by considering their synthetic routes, the monomers, and the supports employed. The discussion is organized according to the number (monofunctional versus bifunctional materials) and type of catalytically active moieties, including both halide-based and halide-free systems. Two general synthetic approaches are identified based on the postsynthetic functionalization of polymeric supports or the copolymerization of monomers bearing catalytically active moieties. After a review of the material syntheses and catalytic activities, the chemical and structural features affecting catalytic performance are discussed. Based on such analysis, some strategies for the future design of affordable and readily available polymer-based organocatalysts with enhanced catalytic activity under mild conditions are considered.
Collapse
Affiliation(s)
- Tanika Kessaratikoon
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Tharinee Theerathanagorn
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Daniel Crespy
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Valerio D'Elia
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| |
Collapse
|
6
|
Du H, Ye Y, Xu P, Sun J. Experimental and theoretical study on dicationic imidazolium derived poly(ionic liquid)s for catalytic cycloaddition of CO2-epoxide. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Balas M, Villanneau R, Launay F. Bibliographic survey of the strategies implemented for the one-pot synthesis of cyclic carbonates from styrene and other alkenes using CO2 and green oxidants. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Jaroonwatana W, D'Elia V, Crespy D. Hydrophobically-enhanced "on water" cycloaddition of CO 2 to long-chain terminal epoxides. Chem Commun (Camb) 2022; 58:11535-11538. [PMID: 36155600 DOI: 10.1039/d2cc04526e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Long-chain cyclic carbonates (LC-CC) are attractive building blocks and non-ionic surfactants. We demonstrate a convenient methodology to prepare LC-CC in miniemulsions of epoxide droplets in water. The pre-organization and confinement of the reagents from H-bond and hydrophobic interactions allow the target process to proceed at mild temperatures under atmospheric CO2.
Collapse
Affiliation(s)
- Wimalin Jaroonwatana
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand.
| | - Valerio D'Elia
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand.
| | - Daniel Crespy
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand.
| |
Collapse
|
9
|
Hernández E, Santiago R, Belinchón A, Maria Vaquerizo G, Moya C, Navarro P, Palomar J. Universal and low energy-demanding platform to produce propylene carbonate from CO2 using hydrophilic ionic liquids. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Mujmule RB, Kim H. Efficient imidazolium ionic liquid as a tri-functional robust catalyst for chemical fixation of CO 2 into cyclic carbonates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115045. [PMID: 35436708 DOI: 10.1016/j.jenvman.2022.115045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/10/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The recent increase in CO2 levels has had an extensive impact on the environment; hence an effective catalyst for chemical CO2 fixation into value-added products is demanded. This work demonstrates a simple approach towards the chemical fixation of CO2 to cyclic carbonates without solvent, metal and additives using one-pot synthesized tri-functional-imidazolium bromide ionic liquid. Herein, synthesized tri-functional-imidazolium-based ionic liquids, namely 3-(2-hydroxyethyl)-1-vinyl-1H-imidazole-3-ium bromide ([VIMEtOH][Br] (24 and 72 h)), 3-(2-hydroxyethyl)-1-vinyl-1H-imidazole-3-ium hydroxyl ([VIMEtOH][OH]) and poly 3-(2-hydroxyethyl)-1-vinyl-1H-imidazole-3-ium bromide (poly [VIMEtOH][Br]), were used for the comprehensive investigation of chemical fixation of CO2 into cyclic carbonates and their physiochemical properties. In case of [VIMEtOH][Br] ionic liquid, it displayed time-dependent synthesis dissolution in the reaction system. This study found that [VIMEtOH][Br]-72 ionic liquid is not dissolved in the reaction system. The effect on the catalytic efficiency of the presence of functional groups in ionic liquids such as N-vinyl (-CC-N), acidic proton of imidazolium (-C (2)-H) and hydroxyl (-OH) along with bromide anion and the reaction conditions are systematically investigated. For CO2 fixation, 99.6% conversion of propylene oxide with an excellent selectivity of propylene carbonate (≥99%) over [VIMEtOH][Br]-72 catalyst (at 120 °C, 2 MPa, 2 h) was observed without co-catalyst, metal and solvent. Also, it demonstrated an excellent wide substrates scope of epoxide and all reactions were performed on gram-scalable, which are potential prospects for industrial use.
Collapse
Affiliation(s)
- Rajendra B Mujmule
- Environmental Waste Recycle Institute, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Hern Kim
- Environmental Waste Recycle Institute, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| |
Collapse
|
11
|
Razaghi M, Khorasani M. Boosting the quaternary ammonium halides catalyzed CO2 coupling with epoxides on the hollow mesoporous silica sphere. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Natongchai W, Posada-Pérez S, Phungpanya C, Luque-Urrutia JA, Solà M, D’Elia V, Poater A. Enhancing the Catalytic Performance of Group I, II Metal Halides in the Cycloaddition of CO2 to Epoxides under Atmospheric Conditions by Cooperation with Homogeneous and Heterogeneous Highly Nucleophilic Aminopyridines: Experimental and Theoretical Study. J Org Chem 2022; 87:2873-2886. [DOI: 10.1021/acs.joc.1c02770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wuttichai Natongchai
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, WangChan, Rayong 21210, Thailand
| | - Sergio Posada-Pérez
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain
| | - Chalida Phungpanya
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, WangChan, Rayong 21210, Thailand
| | - Jesús Antonio Luque-Urrutia
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain
| | - Valerio D’Elia
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, WangChan, Rayong 21210, Thailand
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain
| |
Collapse
|
13
|
One-Pot Tandem Catalytic Epoxidation—CO2 Insertion of Monounsaturated Methyl Oleate to the Corresponding Cyclic Organic Carbonate. Catalysts 2021. [DOI: 10.3390/catal11121477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Conversion of unsaturated fatty acids, FAMEs or triglycerides into the corresponding cyclic organic carbonates involves two reaction steps—double-bond epoxidation and CO2 insertion into the epoxide—that are generally conducted separately. We describe an assisted-tandem catalytic protocol able to carry out carbonation of unsaturated methyl oleate in one-pot without isolating the epoxide intermediate. Methyl oleate carbonate was obtained in 99% yield and high retention of cis-configuration starting from methyl oleate using hydrogen peroxide and CO2 as green reagents, in a biphasic system and in the presence of an ammonium tungstate ionic liquid catalyst with KBr as co-catalyst.
Collapse
|
14
|
Alassmy YA, Sebakhy KO, Picchioni F, Pescarmona PP. Novel non-ionic surfactants synthesised through the reaction of CO2 with long alkyl chain epoxides. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Highly efficient CO2 fixation into cyclic carbonate by hydroxyl-functionalized protic ionic liquids at atmospheric pressure. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Yang HQ, Chen ZX. Theoretical investigation on conversion of CO2 with epoxides to cyclic carbonates by bifunctional metal-salen complexes bearing ionic liquid substsituents. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Tan H, Kong P, Zhang R, Gao M, Liu M, Gu X, Liu W, Zheng Z. Controllable Generation of Reactive Oxygen Species on Cyano-Group-Modified Carbon Nitride for Selective Epoxidation of Styrene. Innovation (N Y) 2021; 2:100089. [PMID: 34557743 PMCID: PMC8454578 DOI: 10.1016/j.xinn.2021.100089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/30/2021] [Indexed: 11/20/2022] Open
Abstract
The controlled generation of reactive oxygen species (ROS) to selectively epoxidize styrene is a grand challenge. Herein, cyano-group-modified carbon nitrides (CNCY x and CN-T y ) are prepared, and the catalysts show better performance in regulating ROS and producing styrene oxide than the cyano-free sample. The in situ diffuse reflectance infrared and density functional theory calculation results reveal that the cyano group acts as the adsorption and activation site of oxygen. X-ray photoelectron spectroscopy and NMR spectrum results confirm that the cyano group bonds with the intact heptazine ring. This unique structure could inhibit H2O2 and ⋅OH formation, resulting in high selectivity of styrene oxide. Furthermore, high catalytic activity is still achieved when the system scales up to 2.7 L with 100 g styrene under solar light irradiation. The strategy of cyano group modification gives a new insight into regulating spatial configuration for tuning the utilization of oxygen-active species and shows potential applications in industry.
Collapse
Affiliation(s)
- Hao Tan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Kong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Institute of Coal Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Riguang Zhang
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Institute of Coal Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Mengting Gao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meixian Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianmo Gu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Weifeng Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhanfeng Zheng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Alassmy YA, Paalman PJ, Pescarmona PP. One‐pot Fixation of CO
2
into Glycerol Carbonate using Ion‐Exchanged Amberlite Resin Beads as Efficient Metal‐free Heterogeneous Catalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202001632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yasser A. Alassmy
- Chemical Engineering Group Engineering and Technology Institute Groningen (ENTEG) University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- King Abdulaziz City for Science and Technology (KACST) King Abdullah Rd Riyadh 11442 Saudi-Arabia
| | - Patrick J. Paalman
- Chemical Engineering Group Engineering and Technology Institute Groningen (ENTEG) University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Paolo P. Pescarmona
- Chemical Engineering Group Engineering and Technology Institute Groningen (ENTEG) University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
19
|
Emelyanov MA, Stoletova NV, Lisov AA, Medvedev MG, Smol'yakov AF, Maleev VI, Larionov VA. An octahedral cobalt(iii) complex based on cheap 1,2-phenylenediamine as a bifunctional metal-templated hydrogen bond donor catalyst for fixation of CO2 with epoxides under ambient conditions. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00464f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An octahedral cobalt(iii) complex based on cheap 1,2-phenylenediamine operates as an efficient bifunctional hydrogen bond donor catalyst in cycloaddition of epoxides with CO2 under ambient conditions and solvent- and co-catalyst-free conditions.
Collapse
Affiliation(s)
- Mikhail A. Emelyanov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
| | - Nadezhda V. Stoletova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
| | - Alexey A. Lisov
- Department of Chemistry
- Lomonosov Moscow State University
- 119991 Moscow
- Russian Federation
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences
| | - Michael G. Medvedev
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Alexander F. Smol'yakov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
| | - Victor I. Maleev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
| | - Vladimir A. Larionov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
- Peoples’ Friendship University of Russia (RUDN University)
- 117198 Moscow
| |
Collapse
|
20
|
Natongchai W, Luque-Urrutia JA, Phungpanya C, Solà M, D'Elia V, Poater A, Zipse H. Cycloaddition of CO2 to epoxides by highly nucleophilic 4-aminopyridines: establishing a relationship between carbon basicity and catalytic performance by experimental and DFT investigations. Org Chem Front 2021. [DOI: 10.1039/d0qo01327g] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New highly nucleophilic homogeneous and heterogeneous catalysts based on the 3,4-diaminopyridine scaffold are reported for the halogen-free cycloaddition of CO2 to epoxides.
Collapse
Affiliation(s)
- Wuttichai Natongchai
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Jesús Antonio Luque-Urrutia
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Chalida Phungpanya
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Valerio D'Elia
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Hendrik Zipse
- Department Chemie
- Ludwig-Maximilians-Universität München
- 81377 München
- Germany
| |
Collapse
|
21
|
Wang Y, Shen Y, Wang Z. Rapid conversion of CO 2 and propylene oxide into propylene carbonate over acetic acid/KI under relatively mild conditions. NEW J CHEM 2021. [DOI: 10.1039/d1nj04387k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic system of acetic acid/KI was studied to demonstrate high activity for completely converting propylene oxide into propylene carbonate within a quite short time of 15 min under the relatively mild conditions of 0.9 MPa CO2 and 90 °C.
Collapse
Affiliation(s)
- Yajun Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi’an, Shaanxi, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi’an, Shaanxi, China
| | - Zheng Wang
- College of Food Science and Engineering, Northwest University, 710069 Xi’an, Shaanxi, China
| |
Collapse
|
22
|
Wang Z, Wang Y, Xie Q, Fan Z, Shen Y. Aliphatic carboxylic acid as a hydrogen-bond donor for converting CO 2 and epoxide into cyclic carbonate under mild conditions. NEW J CHEM 2021. [DOI: 10.1039/d1nj01285a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The catalytic systems of aliphatic carboxylic acids/quaternary ammonium halides could efficiently convert the coupling of CO2 and epoxide into cyclic carbonates under mild conditions (80 °C and 4 bar CO2).
Collapse
Affiliation(s)
- Zheng Wang
- College of Food Science and Engineering
- Northwest University
- 710069 Xi’an
- China
| | - Yajun Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- 710127 Xi’an
- China
| | - Qianjie Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- 710127 Xi’an
- China
| | - Zhiying Fan
- Chair of Inorganic and Metal–Organic Chemistry
- Department Chemistry & Catalysis Research Center
- Technical University of Munich (TUM)
- 85748 Garching
- Germany
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- 710127 Xi’an
- China
| |
Collapse
|
23
|
Vagnoni M, Samorì C, Galletti P. Choline-based eutectic mixtures as catalysts for effective synthesis of cyclic carbonates from epoxides and CO2. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Hao Y, Yuan D, Yao Y. Metal‐Free Cycloaddition of Epoxides and Carbon Dioxide Catalyzed by Triazole‐Bridged Bisphenol. ChemCatChem 2020. [DOI: 10.1002/cctc.202000508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yanhong Hao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
25
|
|
26
|
Zhang Y, Zhang K, Wu L, Liu K, Huang R, Long Z, Tong M, Chen G. Facile synthesis of crystalline viologen-based porous ionic polymers with hydrogen-bonded water for efficient catalytic CO2 fixation under ambient conditions. RSC Adv 2020; 10:3606-3614. [PMID: 35497739 PMCID: PMC9048747 DOI: 10.1039/c9ra09088f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/14/2020] [Indexed: 11/21/2022] Open
Abstract
In this work, we report a series of crystalline viologen-based porous ionic polymers (denoted VIP-X, X = Cl or Br), that have in situ formed dicationic viologens paired with halogen anions and intrinsic hydrogen-bonded water molecules, towards metal-free heterogeneous catalytic conversion of carbon dioxide (CO2) under mild conditions. The targeted VIP-X materials were facilely constructed via the Menshutkin reaction of 4,4′-bipyridine with 4,4′-bis(bromomethyl)biphenyl (BCBMP) or 4,4′-bis(chloromethyl)biphenyl (BBMBP) monomers. Their crystalline and porous structures, morphological features and chemical structures and compositions were fully characterized by various advanced techniques. The optimal catalyst VIP-Br afforded a high yield of 99% in the synthesis of cyclic carbonate by CO2 cycloaddition with epichlorohydrin under atmospheric pressure (1 bar) and a low temperature (40 °C), while other various epoxides could be also converted into cyclic carbonates under mild conditions. Moreover, the catalyst VIP-Br could be separated easily and reused with good stability. The remarkable catalytic performance could be attributed to the synergistic effect of the enriched Br− anions and available hydrogen bond donors –OH groups coming from H-bonded water molecules. Viologen-based porous ionic polymers with halogen anions and hydrogen-bonded water were constructed for efficient catalytic CO2 fixation under mild conditions.![]()
Collapse
Affiliation(s)
- Yadong Zhang
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Ke Zhang
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Lei Wu
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Ke Liu
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Rui Huang
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Zhouyang Long
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Minman Tong
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Guojian Chen
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- China
| |
Collapse
|