1
|
Quaranta E. Chemical upcycling of poly(bisphenol A carbonate) via sequential diamino-/methanolysis: A phosgeneless one-pot route to dimethyl dicarbamate esters. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136700. [PMID: 39637778 DOI: 10.1016/j.jhazmat.2024.136700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Waste poly(bisphenol A carbonate) (PC) is a potential source of harmful bisphenol A (BPA). In this study a new approach aiming to chemically valorize hazardous PC wastes is described. A one-pot process has been developed that allows to recover BPA from PC used as "phosgene equivalent" for the synthesis of dimethyl dicarbamates MeO2CNH-R-NHCO2Me. Dicarbamate esters are industrially relevant precursors of non-isocyanate polyurethanes and polyureas. The devised process is conducted stepwisely. PC is first depolymerized by reaction with basic diamines H2NRNH2 (1,6-diaminohexane (3a); 4,7,10-trioxa-1,13-tridecanediamine (4a); meta-xylylenediamine (5a); para-xylylenediamine (6a)) into BPA and oligourethanes H[-OArO(O)CNHRNHC(O)-]nOArOH (Ar = 4,4'-C6H4C(Me)2C6H4-) that, in a subsequent step, are one-pot converted into MeO2CNH-R-NHCO2Me and more BPA by transurethanization with methanol. Both the steps proceed under mild conditions and do not require any auxiliary catalyst. The process allows to recover BPA in high yield and, as an additional outstanding advantage, offers a new solution to the synthesis of MeO2CNH-R-NHCO2Me dicarbamates without using poisonous phosgene, traditionally used to this purpose. Aromatic diamines are much less reactive than aliphatic ones. Under conditions comparable with those used for 3a-6a, 4,4'-diaminodiphenylmethane reacted with PC under the assistance of a base catalyst (DBU; NaOH) to give polyurea [-NHRNHCO-]n as major product.
Collapse
Affiliation(s)
- Eugenio Quaranta
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; Centro Interdipartimentale di Ricerca su Metodologie e Tecnologie Ambientali (METEA), via Celso Ulpiani 27, 70126 Bari, Italy.
| |
Collapse
|
2
|
Arriaza-Echanes C, Velázquez-Tundidor MV, Angel-López A, Norambuena Á, Palay FE, Terraza CA, Tundidor-Camba A, Ortiz PA, Coll D. Ionenes as Potential Phase Change Materials with Self-Healing Behavior. Polymers (Basel) 2023; 15:4460. [PMID: 38006184 PMCID: PMC10674965 DOI: 10.3390/polym15224460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Ionenes are poly(ionic liquids) (PILs) comprising a polymer backbone with ionic groups along the structure. Ionenes as solid-solid phase change materials are a recent research field, and some studies have demonstrated their potential in thermal dissipation into electronic devices. Eight ionenes obtained through Menshutkin reactions were synthesized and characterized. The analysis of the thermal tests allowed understanding of how the thermal properties of the polymers depend on the aliphatic nature of the dihalogenated monomer and the carbon chain length. The TGA studies concluded that the ionenes were thermally stable with T10% above 420 °C. The DSC tests showed that the prepared ionenes presented solid-solid transitions, and no melting temperature was appreciated, which rules out the possibility of solid-liquid transitions. All ionenes were soluble in common polar aprotic solvents. The hydrophilicity of the synthesized ionenes was studied by the contact angle method, and their total surface energy was calculated. Self-healing behavior was preliminarily explored using a selected sample. Our studies show that the prepared ionenes exhibit properties that make them potential candidates for applications as solid-solid phase change materials.
Collapse
Affiliation(s)
- Carolina Arriaza-Echanes
- Vicerrectoría de Investigación, Universidad Mayor, Camino la Pirámide 5750, Santiago 8580745, Chile (Á.N.); (F.E.P.)
| | - María V. Velázquez-Tundidor
- Research Laboratory for Organic Polymers (RLOP), Department of Organic Chemistry, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Alejandro Angel-López
- Vicerrectoría de Investigación, Universidad Mayor, Camino la Pirámide 5750, Santiago 8580745, Chile (Á.N.); (F.E.P.)
| | - Ángel Norambuena
- Vicerrectoría de Investigación, Universidad Mayor, Camino la Pirámide 5750, Santiago 8580745, Chile (Á.N.); (F.E.P.)
- Instituto de Investigaciones y Control del Ejército de Chile (IDIC), Santiago 8370899, Chile
| | - Francisco E. Palay
- Vicerrectoría de Investigación, Universidad Mayor, Camino la Pirámide 5750, Santiago 8580745, Chile (Á.N.); (F.E.P.)
| | - Claudio A. Terraza
- Research Laboratory for Organic Polymers (RLOP), Department of Organic Chemistry, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- UC Energy Research Center, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Alain Tundidor-Camba
- Research Laboratory for Organic Polymers (RLOP), Department of Organic Chemistry, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- UC Energy Research Center, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Pablo A. Ortiz
- Vicerrectoría de Investigación, Universidad Mayor, Camino la Pirámide 5750, Santiago 8580745, Chile (Á.N.); (F.E.P.)
- Escuela de Ingeniería en Medio Ambiente y Sustentabilidad, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Santiago 8580745, Chile
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Santiago 8580745, Chile
| | - Deysma Coll
- Vicerrectoría de Investigación, Universidad Mayor, Camino la Pirámide 5750, Santiago 8580745, Chile (Á.N.); (F.E.P.)
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Santiago 8580745, Chile
- Núcleo de Química y Bioquímica, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Santiago 8580745, Chile
| |
Collapse
|
3
|
Li A, Cui H, Sheng Y, Qiao J, Li X, Huang H. Global plastic upcycling during and after the COVID-19 pandemic: The status and perspective. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:110092. [PMID: 37200549 PMCID: PMC10167783 DOI: 10.1016/j.jece.2023.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Plastic pollution has become one of the most pressing environmental issues worldwide since the vast majority of post-consumer plastics are hard to degrade in the environment. The coronavirus disease (COVID-19) pandemic had disrupted the previous effort of plastic pollution mitigation to a great extent due to the overflow of plastic-based medical waste. In the post-pandemic era, the remaining challenge is how to motivate global action towards a plastic circular economy. The need for one package of sustainable and systematic plastic upcycling approaches has never been greater to address such a challenge. In this review, we summarized the threat of plastic pollution during COVID-19 to public health and ecosystem. In order to solve the aforementioned challenges, we present a shifting concept, regeneration value from plastic waste, that provides four promising pathways to achieve a sustainable circular economy: 1) Increasing reusability and biodegradability of plastics; 2) Transforming plastic waste into high-value products by chemical approaches; 3) The closed-loop recycling can be promoted by biodegradation; 4) Involving renewable energy into plastic upcycling. Additionally, the joint efforts from different social perspectives are also encouraged to create the necessary economic and environmental impetus for a circular economy.
Collapse
Affiliation(s)
- Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Haiyang Cui
- RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Yijie Sheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Jie Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
4
|
Saito K, Eisenreich F, Türel T, Tomović Ž. Closed-Loop Recycling of Poly(Imine-Carbonate) Derived from Plastic Waste and Bio-based Resources. Angew Chem Int Ed Engl 2022; 61:e202211806. [PMID: 36074694 PMCID: PMC9828757 DOI: 10.1002/anie.202211806] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 01/12/2023]
Abstract
Closed-loop recycling of polymers represents the key technology to convert plastic waste in a sustainable fashion. Efficient chemical recycling and upcycling strategies are thus highly sought-after to establish a circular plastic economy. Here, we present the selective chemical depolymerization of polycarbonate by employing a vanillin derivative as bio-based feedstock. The resulting di-vanillin carbonate monomer was used in combination with various amines to construct a library of reprocessable poly(imine-carbonate)s, which show tailor-made thermal and mechanical properties. These novel poly(imine-carbonate)s exhibit excellent recyclability under acidic and energy-efficient conditions. This allows the recovery of monomers in high yields and purity for immediate reuse, even when mixed with various commodity plastics. This work provides exciting new insights in the design of bio-based circular polymers produced by upcycling of plastic waste with minimal environmental impact.
Collapse
Affiliation(s)
- Keita Saito
- Polymer Performance Materials GroupDepartment of Chemical Engineering and ChemistryEindhoven University of Technology5600 MBEindhovenThe Netherlands
| | - Fabian Eisenreich
- Polymer Performance Materials GroupDepartment of Chemical Engineering and ChemistryEindhoven University of Technology5600 MBEindhovenThe Netherlands
| | - Tankut Türel
- Polymer Performance Materials GroupDepartment of Chemical Engineering and ChemistryEindhoven University of Technology5600 MBEindhovenThe Netherlands
| | - Željko Tomović
- Polymer Performance Materials GroupDepartment of Chemical Engineering and ChemistryEindhoven University of Technology5600 MBEindhovenThe Netherlands,Institute for Complex Molecular SystemsEindhoven University of Technology5600 MBEindhovenThe Netherlands
| |
Collapse
|
5
|
Saito K, Eisenreich F, Türel T, Tomović Ž. Closed‐loop Recycling of Poly(Imine‐Carbonate) Derived from Plastic Waste and Bio‐based Resources. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Keita Saito
- Eindhoven University of Technology: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | - Fabian Eisenreich
- Eindhoven University of Technology: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | - Tankut Türel
- Eindhoven University of Technology: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | - Željko Tomović
- Eindhoven University of Technology: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| |
Collapse
|
6
|
Jehanno C, Alty JW, Roosen M, De Meester S, Dove AP, Chen EYX, Leibfarth FA, Sardon H. Critical advances and future opportunities in upcycling commodity polymers. Nature 2022; 603:803-814. [PMID: 35354997 DOI: 10.1038/s41586-021-04350-0] [Citation(s) in RCA: 279] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
The vast majority of commodity plastics do not degrade and therefore they permanently pollute the environment. At present, less than 20% of post-consumer plastic waste in developed countries is recycled, predominately for energy recovery or repurposing as lower-value materials by mechanical recycling. Chemical recycling offers an opportunity to revert plastics back to monomers for repolymerization to virgin materials without altering the properties of the material or the economic value of the polymer. For plastic waste that is either cost prohibitive or infeasible to mechanically or chemically recycle, the nascent field of chemical upcycling promises to use chemical or engineering approaches to place plastic waste at the beginning of a new value chain. Here state-of-the-art methods are highlighted for upcycling plastic waste into value-added performance materials, fine chemicals and specialty polymers. By identifying common conceptual approaches, we critically discuss how the advantages and challenges of each approach contribute to the goal of realizing a sustainable plastics economy.
Collapse
Affiliation(s)
- Coralie Jehanno
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain.,POLYKEY, Donostia-San Sebastian, Spain
| | - Jill W Alty
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martijn Roosen
- Laboratory for Circular Process Engineering, Ghent University, Kortrijk, Belgium
| | - Steven De Meester
- Laboratory for Circular Process Engineering, Ghent University, Kortrijk, Belgium.
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Frank A Leibfarth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain.
| |
Collapse
|
7
|
Barbosa GD, Turner CH. Martini Coarse-Grained Model for Poly(alkylimidazolium) Ionenes and Applications in Aromatic Compound Extraction. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gabriel D. Barbosa
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - C. Heath Turner
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
8
|
Stadler BM, de Vries JG. Chemical upcycling ofpolymers. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200341. [PMID: 34510924 DOI: 10.1098/rsta.2020.0341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2021] [Indexed: 06/13/2023]
Abstract
As the production volume of polymers increases, so does the amount of plastic waste. Plastic recycling is one of the concepts to address in this issue. Unfortunately, only a small fraction of plastic waste is recycled. Even with the development of polymers for closed loop recycling that can be in theory reprocessed infinitely the inherent dilemma is that because of collection, cleaning and separation processes the obtained materials simply are not cost competitive with virgin materials. Chemical upcycling, the conversion of polymers to higher valuable products, either polymeric or monomeric, could mitigate this issue. In the following article, we highlight recent examples in this young but fast-growing field. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.
Collapse
Affiliation(s)
- Bernhard M Stadler
- Leibniz-Institut für Katalyse e.V. (LIKAT Rostock), Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Johannes G de Vries
- Leibniz-Institut für Katalyse e.V. (LIKAT Rostock), Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
9
|
Quaranta E, Dibenedetto A, Nocito F, Fini P. Chemical recycling of poly-(bisphenol A carbonate) by diaminolysis: A new carbon-saving synthetic entry into non-isocyanate polyureas (NIPUreas). JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123957. [PMID: 33265001 DOI: 10.1016/j.jhazmat.2020.123957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
The present study describes an unprecedented approach to valorize potentially hazardous poly-(bisphenol A carbonate) (PC) wastes. In THF, under non-severe conditions (120 °C), the reaction of PC with long-chain diamines H2NRNH2 (2 equivalents) provided a tool to regenerate the monomer bisphenol A (BPA; 83-95%, isolated) and repurpose waste PC into [-NHRNHCO-]n polyureas (PUs; 78-99%, isolated) through a non-isocyanate route. Basic diamines (1,6-diaminohexane, 4,7,10-trioxa-1,13-tridecanediamine, meta-xylylenediamine, para-xylylenediamine) reacted with PC without any auxiliary catalyst; less reactive aromatic diamines (4,4'-diaminodiphenylmethane, 2,4-diaminotoluene) required the assistance of a base catalyst (1,8-diazabicyclo[5.4.0]undec-7-ene, NaOH). The formation of [-NHRNHCO-]n goes through a carbamation step affording BPA and carbamate intermediates H[-OArOC(O)NHRNHC(O)-]nOArOH (Ar=4,4'-C6H4C(Me)2C6H4-) that, in a subsequent step, convert into [-NHRNHCO-]n and more BPA. All the PUs were characterized in the solid state by CP/MAS 13C NMR (δ(CO) = 152-161 ppm) and IR spectroscopy. The positions of ν(N-H) and ν(CO) absorptions are typical of "hydrogen-bonded ordered" bands suggesting the presence of H-bonded groups in network structures characterized by some degree of order or regularity. DSC and TGA analyses showed that the PUs are thermally stable (Td,5%: 212-270 °C) and suitable for being processed since their degradation begins at temperatures about 100 °C higher than their Tg or Tm.
Collapse
Affiliation(s)
- Eugenio Quaranta
- Università degli Studi di Bari "Aldo Moro", Dipartimento di Chimica, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; Consorzio Interuniversitario "Reattività e Catalisi", via Celso Ulpiani, 27, 70126 Bari, Italy.
| | - Angela Dibenedetto
- Università degli Studi di Bari "Aldo Moro", Dipartimento di Chimica, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; Consorzio Interuniversitario "Reattività e Catalisi", via Celso Ulpiani, 27, 70126 Bari, Italy
| | - Francesco Nocito
- Università degli Studi di Bari "Aldo Moro", Dipartimento di Chimica, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy
| | - Paola Fini
- Istituto per i Processi Chimico Fisici (IPCF-CNR) c/o Dipartimento di Chimica, Via Orabona, 4, 70126 Bari, Italy
| |
Collapse
|
10
|
O'Harra KE, Bara JE. Toward controlled functional sequencing and hierarchical structuring in imidazolium ionenes. POLYM INT 2020. [DOI: 10.1002/pi.6109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kathryn E O'Harra
- Department of Chemical and Biological Engineering University of Alabama Tuscaloosa AL USA
| | - Jason E Bara
- Department of Chemical and Biological Engineering University of Alabama Tuscaloosa AL USA
| |
Collapse
|
11
|
Designing Imidazolium Poly(amide-amide) and Poly(amide-imide) Ionenes and Their Interactions with Mono- and Tris(imidazolium) Ionic Liquids. Polymers (Basel) 2020; 12:polym12061254. [PMID: 32486156 PMCID: PMC7362236 DOI: 10.3390/polym12061254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022] Open
Abstract
Here we introduce the synthesis and thermal properties of a series of sophisticated imidazolium ionenes with alternating amide-amide or amide-imide backbone functionality, and investigate the structural effects of mono(imidazolium) and unprecedented tris(imidazolium) ionic liquids (ILs) in these ionenes. The new set of poly(amide-amide) (PAA) and poly(amide-imide) (PAI) ionenes represent the intersection of conventional high-performance polymers with the ionene archetype-presenting polymers with alternating functional and ionic elements precisely sequenced along the backbone. The effects of polymer composition on the thermal properties and morphology were analyzed. Five distinct polymer backbones were synthesized and combined with a stoichiometric equivalent of the IL 1-benzyl-3-methylimidazolium bistriflimide ([Bnmim][Tf2N]), which were studied to probe the self-assembly, structuring, and contributions of intermolecular forces when IL is added. Furthermore, three polyamide (PA) or polyimide (PI) ionenes with simpler xylyl linkages were interfaced with [Bnmim][Tf2N] as well as a novel amide-linked tris(imidazolium) IL, to demonstrate the structural changes imparted by the inclusion of functional, ionic additives dispersed within the ionene matrix. This work highlights the possibilities for utilizing concepts from small molecules which exhibit supramolecular self-assembly to guide creative design and manipulate the structuring of ionenes.
Collapse
|