1
|
Liu YY, Huang JR, Zhu HL, Liao PQ, Chen XM. Simultaneous Capture of CO 2 Boosting Its Electroreduction in the Micropores of a Metal-organic Framework. Angew Chem Int Ed Engl 2023; 62:e202311265. [PMID: 37782029 DOI: 10.1002/anie.202311265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Integration of CO2 capture capability from simulated flue gas and electrochemical CO2 reduction reaction (eCO2 RR) active sites into a catalyst is a promising cost-effective strategy for carbon neutrality, but is of great difficulty. Herein, combining the mixed gas breakthrough experiments and eCO2 RR tests, we showed that an Ag12 cluster-based metal-organic framework (1-NH2 , aka Ag12 bpy-NH2 ), simultaneously possessing CO2 capture sites as "CO2 relays" and eCO2 RR active sites, can not only utilize its micropores to efficiently capture CO2 from simulated flue gas (CO2 : N2 =15 : 85, at 298 K), but also catalyze eCO2 RR of the adsorbed CO2 into CO with an ultra-high CO2 conversion of 60 %. More importantly, its eCO2 RR performance (a Faradaic efficiency (CO) of 96 % with a commercial current density of 120 mA cm-2 at a very low cell voltage of -2.3 V for 300 hours and the full-cell energy conversion efficiency of 56 %) under simulated flue gas atmosphere is close to that under 100 % CO2 atmosphere, and higher than those of all reported catalysts at higher potentials under 100 % CO2 atmosphere. This work bridges the gap between CO2 enrichment/capture and eCO2 RR.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
2
|
Zhu HL, Han YX, Liao PQ, Chen XM. Efficient electroreduction of CO to acetate using a metal-azolate framework with dicopper active sites. Dalton Trans 2023; 52:15317-15320. [PMID: 37161782 DOI: 10.1039/d3dt00921a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Electrochemical reduction of CO to value-added products, especially C2 products, provides a potential approach to achieve carbon neutrality and overcome the energy crisis. Herein, we report a metal-azolate framework (CuBpz) with dicopper active sites as an electrocatalyst for the electrochemical CO reduction reaction (eCORR). As a result, CuBpz achieved an impressive faradaic efficiency (FE) of 47.8% for yielding acetate with a current density of -200 mA cm-2, while no obvious degradation was observed over 60 hours of continuous operation at a current density of -200 mA cm-2. Mechanism studies revealed that the dicopper site can promote C-C coupling between two C1 intermediates, thereby being conducive to the generation of the key *CH2COOH intermediate.
Collapse
Affiliation(s)
- Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yu-Xuan Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
3
|
Zhu HL, Huang JR, Liao PQ, Chen XM. Rational Design of Metal-Organic Frameworks for Electroreduction of CO 2 to Hydrocarbons and Carbon Oxygenates. ACS CENTRAL SCIENCE 2022; 8:1506-1517. [PMID: 36439306 PMCID: PMC9686201 DOI: 10.1021/acscentsci.2c01083] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 05/25/2023]
Abstract
Since CO2 can be reutilized by using renewable electricity in form of product diversity, electrochemical CO2 reduction (ECR) is expected to be a burgeoning strategy to tackle environmental problems and the energy crisis. Nevertheless, owing to the limited selectivity and reaction efficiency for a single component product, ECR is still far from a large-scale application. Therefore, designing high performance electrocatalysts is the key objective in CO2 conversion and utilization. Unlike most other types of electrocatalysts, metal-organic frameworks (MOFs) have clear, designable, and tunable catalytic active sites and chemical microenvironments, which are highly conducive to establish a clear structure-performance relationship and guide the further design of high-performance electrocatalysts. This Outlook concisely and critically discusses the rational design strategies of MOF catalysts for ECR in terms of reaction selectivity, current density, and catalyst stability, and outlines the prospects for the development of MOF electrocatalysts and industrial applications. In the future, more efforts should be devoted to designing MOF structures with high stability and electronic conductivity besides high activity and selectivity, as well as to develop efficient electrolytic devices suitable for MOF catalysts.
Collapse
Affiliation(s)
- Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Huang DS, Zhu HL, Zhao ZH, Huang JR, Liao PQ, Chen XM. A Stable and Low-Cost Metal-Azolate Framework with Cyclic Tricopper Active Sites for Highly Selective CO 2 Electroreduction to C 2+ Products. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Da-Shuai Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhen-Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Zhan T, Zou Y, Yang Y, Ma X, Zhang Z, Xiang S. Two‐dimensional Metal‐organic Frameworks for Electrochemical CO
2
Reduction Reaction. ChemCatChem 2021. [DOI: 10.1002/cctc.202101453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tingting Zhan
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 P. R. China
| | - Yingbing Zou
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 P. R. China
| | - Ying Yang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 P. R. China
| | - Xiuling Ma
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 P. R. China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 P. R. China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 P. R. China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
6
|
Han Y, Zhu S, Xu S, Niu X, Xu Z, Zhao R, Wang Q. Understanding Structure‐activity Relationship on Metal‐Organic‐Framework‐Derived Catalyst for CO
2
Electroreduction to C
2
Products. ChemElectroChem 2021. [DOI: 10.1002/celc.202100942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yunxi Han
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Shuaikang Zhu
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Shuang Xu
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Xiaopo Niu
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Zhihong Xu
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Rong Zhao
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Qingfa Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| |
Collapse
|
7
|
Wang D, Liu C, Zhang Y, Wang Y, Wang Z, Ding D, Cui Y, Zhu X, Pan C, Lou Y, Li F, Zhu Y, Zhang Y. CO 2 Electroreduction to Formate at a Partial Current Density up to 590 mA mg -1 via Micrometer-Scale Lateral Structuring of Bismuth Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100602. [PMID: 34121332 DOI: 10.1002/smll.202100602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/26/2021] [Indexed: 06/12/2023]
Abstract
2D bismuth nanosheets are a promising layered material for formate-producing via electrocatalytic CO2 conversion. However, the commercial interest of bismuth nanosheets in CO2 electroreduction is still rare due to the undesirable current density for formate at moderate operation potentials (about 200 mA mg-1 ) and harsh synthesis conditions (high temperature and/or high pressure). This work reports the preparation of Bi nanosheets with a lateral size in micrometer-scale via electrochemical cathodic exfoliation in aqueous solution at normal pressure and temperature. As-prepared Bi LNSs (L indicates large lateral size) possess high Faradaic efficiencies over 90% within a broad potential window from -0.44 to -1.10 V versus RHE and a superior partial current density about 590 mA mg-1 for formate in comparison with state-of-the-art results. Structure analysis, electrochemical results, and density functional theory calculations demonstrate that the increasing tensile lattice strain observed in Bi LNSs leads to less overlap of d orbitals and a narrower d-band width, which tuning the intermediate binding energies, and therefore promotes the intrinsic activity.
Collapse
Affiliation(s)
- Dan Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chuangwei Liu
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Yaning Zhang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yanying Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhenlin Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ding Ding
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiangmiao Zhu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chengsi Pan
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yang Lou
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Fengwang Li
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ying Zhang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
8
|
Zhao Y, Zheng L, Jiang D, Xia W, Xu X, Yamauchi Y, Ge J, Tang J. Nanoengineering Metal-Organic Framework-Based Materials for Use in Electrochemical CO 2 Reduction Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006590. [PMID: 33739607 DOI: 10.1002/smll.202006590] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Electrocatalytic reduction of carbon dioxide to valuable chemicals is a sustainable technology that can achieve a carbon-neutral energy cycle in the environment. Electrochemical CO2 reduction reaction (CO2 RR) processes using metal-organic frameworks (MOFs), featuring atomically dispersed active sites, large surface area, high porosity, controllable morphology, and remarkable tunability, have attracted considerable research attention. Well-defined MOFs can be constructed to improve conductivity, introduce active centers, and form carbon-based single-atom catalysts (SACs) with enhanced active sites that are accessible for the development of CO2 conversion. In this review, the progress on pristine MOFs, MOF hybrids, and MOF-derived carbon-based SACs is summarized for the electrocatalytic reduction of CO2 . Finally, the limitations and potential improvement directions with respect to the advancement of MOF-related materials for the field of research are discussed. These summaries are expected to provide inspiration on reasonable design to develop stable and high-efficiency MOFs-based electrocatalysts for CO2 RR.
Collapse
Affiliation(s)
- Yingji Zhao
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Lingling Zheng
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Dong Jiang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Wei Xia
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Xingtao Xu
- JST-ERATO Yamauchi Materials Space-Tectonics Project, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba, 305-0044, Japan
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jianping Ge
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Jing Tang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
9
|
|
10
|
Mousazade Y, Mohammadi MR, Chernev P, Bagheri R, Song Z, Dau H, Najafpour MM. Revisiting Metal–Organic Frameworks for Oxygen Evolution: A Case Study. Inorg Chem 2020; 59:15335-15342. [DOI: 10.1021/acs.inorgchem.0c02305] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Younes Mousazade
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731 Zanjan, Iran
| | | | - Petko Chernev
- Department of Chemistry − Ångströmlaboratoriet, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Robabeh Bagheri
- School of Physical Science and Technology, College of Energy, Soochow Institute for Energy and Materials Innovations and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Zhenlun Song
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Holger Dau
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731 Zanjan, Iran
| |
Collapse
|