1
|
Tang Q, Wan Y, Pan Z, Cheng Q. Visible light-driven triazine-based S-scheme COF-TpTt@BiOBr heterojunction with oxygen vacancy for enhanced photocatalytic pollutants removal and hydrogen production. ENVIRONMENTAL RESEARCH 2025:120901. [PMID: 39832551 DOI: 10.1016/j.envres.2025.120901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
S-scheme heterojunction is an effective tactic to improve photocatalytic property. But few studies on constructing heterojunction with BiOBr and covalent organic frameworks (COFs) are available. Herein, a novel series of COF-TpTt@BiOBr S-scheme heterojunctions with oxygen vacancies (OVs) were constructed via solvothermal method. COF-TpTt@BiOBr-10% showed enhanced photocatalytic performance under visible light. Pollutants (such as Methyl Orange (MO), methylene blue (MB), Rhodamine B (RhB), tetracycline (TC) and Levofloxacin hydrochloride (LEV)) can be efficiently degraded and the photocatalytic H2 generation rate reached 10828.075 μmol g-1 h-1, which was 12.4 and 8.5 times of COF-TpTt and BiOBr. In addition, 3,3',5,5'-tetramethylbenzidine (TMB) oxidation experiment showed it has excellent molecular oxygen activation capacity. Furthermore, the S-scheme heterojunction charge transfer mechanism was proved by density functional theory (DFT) calculations. Under the influence of internal electric field, energy band bending and Coulomb force, e- and h+ were efficiently separated and transferred. The formation of S-scheme heterojunction and generation of multiple free radicals assured the high redox activity of COF-TpTt@BiOBr-10% photocatalytic system. This study strengthened our deep understanding of S-scheme heterojunction charge transfer mechanism and offered a new way for high efficient hydrogen energy production.
Collapse
Affiliation(s)
- Qingmei Tang
- Engineering Research Center of Phosphorous Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Yuqi Wan
- Engineering Research Center of Phosphorous Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, PR China; The Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, PR China.
| | - Zhiquan Pan
- Engineering Research Center of Phosphorous Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Qingrong Cheng
- Engineering Research Center of Phosphorous Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
2
|
Katsamitros A, Giannakakis AN, Karamoschos N, Karousis N, Tasis D. Covalent Organic Frameworks for Photocatalytic Hydrogen Peroxide Evolution. Chemistry 2024:e202404272. [PMID: 39737706 DOI: 10.1002/chem.202404272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 01/01/2025]
Abstract
Covalent organic frameworks (COFs) are considered advanced class materials due to their exotic structural and optical properties. The abundance of starting monomers with variable linkage motifs may give rise to multiple conformations in either 2D or 3D fashion. Tailoring of the abovementioned properties has facilitated the application of COFs in a wide range of applications, which are strongly correlated with energy conversion schemes. Having a crystalline porous character and a large set of donor-acceptor combinations, COFs are expected to make huge impact in photocatalytic processes. In this Review, we present the recent advances in the development of semiconducting COF-based systems towards the photocatalytic hydrogen peroxide evolution. An overview is given about the effect of various parameters on the photocatalytic performance, such as charge transfer tuning, wettability by chemical functionalization, topology, porosity and crystallinity. Various challenges are discussed, and constructive insights are given for the development of highly functional COF-based photocatalysts for H2O2 evolution.
Collapse
Affiliation(s)
| | | | | | - Nikolaos Karousis
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| | - Dimitrios Tasis
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece
| |
Collapse
|
3
|
Liu D, Li K, Su X, Li Z, Tian Y, Zhang Y, Liu B, Yue G, Tian Y, Xiong X. Fluorination-mediated polarization engineering in block copolymers for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci 2024; 683:111-121. [PMID: 39673924 DOI: 10.1016/j.jcis.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Porous polymers have emerged as promising candidates for photocatalytic hydrogen evolution, but their structural rigidity and crosslinking pose significant challenges, often leading to charge recombination and inadequate water/polymer interfaces. This study introduces novel block copolymers (BCPs) comprising a rigid pyrene core and various fluorinated benzene structures coupled with flexible diethyl ether-based hydrophilic units. By computationally predicting monomer structures and dipoles, the relationship between structure and function in these BCPs is examined, particularly focusing on local charge delocalization. Four fluorinated block copolymers (F-BCPs), sharing identical π-conjugated skeletons but differing in the positions and quantities of fluorine atoms on the benzene rings, are explored. Experimental and theoretical analyses reveal that fine-tuning fluorination induces local charge polarization and delocalization. Notably, Py-DE-2F, with fluorination at two ortho positions on benzene, exhibits a remarkable hydrogen evolution rate of 77.68 μmol/h under visible light (λ > 420 nm) without any co-catalyst, surpassing other F-BCPs by an order of magnitude. These results underscore the potential of utilizing fluorination-mediated polarization engineering for developing advanced metal-free polymer photocatalysts.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Keming Li
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaohong Su
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhanfeng Li
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Yanting Tian
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongjia Zhang
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Baoyou Liu
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd., Yinchuan 750003, China
| | - Gang Yue
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd., Yinchuan 750003, China
| | - Yue Tian
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xianqiang Xiong
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China.
| |
Collapse
|
4
|
Wan S, Wang W, Cheng B, Luo G, Shen Q, Yu J, Zhang J, Cao S, Zhang L. A superlattice interface and S-scheme heterojunction for ultrafast charge separation and transfer in photocatalytic H 2 evolution. Nat Commun 2024; 15:9612. [PMID: 39511168 PMCID: PMC11543929 DOI: 10.1038/s41467-024-53951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
The rapid recombination of photoinduced charge carriers in semiconductors fundamentally limits their application in photocatalysis. Herein, we report that a superlattice interface and S-scheme heterojunction based on Mn0.5Cd0.5S nanorods can significantly promote ultrafast charge separation and transfer. Specifically, the axially distributed zinc blende/wurtzite superlattice interfaces in Mn0.5Cd0.5S nanorods can redistribute photoinduced charge carriers more effectively when boosted by homogeneous internal electric fields and promotes bulk separation. Accordingly, S-scheme heterojunctions between the Mn0.5Cd0.5S nanorods and MnWO4 nanoparticles can further accelerate the surface separation of charge carriers via a heterogeneous internal electric field. Subsequent capture of the photoelectrons by adsorbed H2O is as fast as several picoseconds which results in a photocatalytic H2 evolution rate of 54.4 mmol·g-1·h-1 without any cocatalyst under simulated solar irradiation. The yields are increased by a factor of ~5 times relative to control samples and an apparent quantum efficiency of 63.1% at 420 nm is measured. This work provides a protocol for designing synergistic interface structure for efficient photocatalysis.
Collapse
Affiliation(s)
- Sijie Wan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Hubei Technology Innovation Center for Advanced Composites, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wang Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Hubei Technology Innovation Center for Advanced Composites, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Hubei Technology Innovation Center for Advanced Composites, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Guoqiang Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Hubei Technology Innovation Center for Advanced Composites, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qiang Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Hubei Technology Innovation Center for Advanced Composites, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
| | - Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
| | - Shaowen Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.
- Hubei Technology Innovation Center for Advanced Composites, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| | - Lianmeng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Hubei Technology Innovation Center for Advanced Composites, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
5
|
Su Y, Li K, Li Z, Tian Y, Liu B, Yue G, Tian Y. Visible light to the second near-infrared light-harvesting donor-acceptor 1-donor-acceptor 2-type terpolymers for boosted photocatalytic hydrogen evolution via dual-sulfone-acceptor engineering. J Colloid Interface Sci 2024; 661:333-344. [PMID: 38301470 DOI: 10.1016/j.jcis.2024.01.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/02/2023] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Developing visible to near-infrared light-absorbing conjugated polymer photocatalysts is crucial for enhancing solar energy utilization efficiency, as most conjugated organic polymers only absorb light in the visible range. In this work, we firstly developed a novel thiophene S,S-dioxide (TDO) monomer with the stronger electron-withdrawing character, and then prepared a series of donor-acceptor1-donor-acceptor2-type (D-A1-D-A2-type) conjugated terpolymers (THTDB-1-THTDB-5) by statistically adjusting the molar ratio of two sulfone-based acceptor monomers, dibenzothiophene-S,S-dioxide (BTDO, A1) and TDO (A2). These terpolymers demonstrate a gradually expanding absorption range from visible light to the second near-infrared (Vis-to-NIR-II) region with the gradual increase of the TDO contents in the polymer skeleton, showcasing excellent absorption properties and efficient light-capturing capabilities. The optimized D-A1-D-A2 polymer photocatalyst THTDB-4 exhibits a high hydrogen evolution rate of 21.27 mmol g-1 h-1 under visible light without any co-catalyst. The dual-sulfone-acceptor engineering offers a viable approach for developing efficient the longer Vis-to-NIR-II light-harvesting polymer photocatalysts.
Collapse
Affiliation(s)
- Yuanle Su
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Keming Li
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Zhanfeng Li
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yanting Tian
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Baoyou Liu
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd, Yinchuan 750003, PR China
| | - Gang Yue
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd, Yinchuan 750003, PR China
| | - Yue Tian
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China.
| |
Collapse
|
6
|
Zhao Y, Li L, Zang J, Young DJ, Ren ZG, Li HY, Yu L, Bian GQ, Li HX. Modulating β-Keto-enamine-Based Covalent Organic Frameworks for Photocatalytic Atom-Transfer Radical Addition Reaction. Chemistry 2024; 30:e202400377. [PMID: 38403857 DOI: 10.1002/chem.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
The atom-transfer radical addition (ATRA) reaction simultaneously forges carbon-carbon and carbon-halogen bonds. However, frequently-used photosensitizers such as precious transition metal complexes, or organic dyes have limitations in terms of their potential toxicity and recyclability. Three β-ketoenamine-linked covalent organic frameworks (COFs) from 1,3,5-triformylphloroglucinol and 1,4-phenylenediamines with variable transient photocurrent and photocatalytic activity have been prepared. A COF bearing electron-deficient Cl atoms displayed the highest photocatalytic activity toward the ATRA reaction of polyhalogenated alkanes to give halogenated olefins under visible light at room temperature. This heterogeneous photocatalyst exhibited good functional group tolerance and could be recycled without significant loss of activity.
Collapse
Affiliation(s)
- Yuting Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jiyuan Zang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - David J Young
- Glasgow College, UESTC, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hai-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Guo-Qing Bian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
7
|
Zhang F, Wang Y, Zhao H, Dong X, Gu XK, Lang X. Expanding Olefin-Linked Covalent Organic Frameworks toward Selective Photocatalytic Oxidation of Organic Sulfides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8772-8782. [PMID: 38324765 DOI: 10.1021/acsami.3c16838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Olefin-linked covalent organic frameworks (COFs) have exhibited great potential in visible-light photocatalysis. In principle, expanding fully conjugated COFs can facilitate light absorption and charge transfer, leading to improved photocatalysis. Herein, three olefin-linked COFs with the same topology are synthesized by combining 2,4,6-trimethyl-1,3,5-triazine (TMT) with 1,3,5-triformylbenzene (TFB), 1,3,5-tris(4-formylphenyl)benzene (TFPB), and 1,3,5-tris(4-formylphenylethynyl)benzene (TFPEB), namely, TMT-TFB-COF, TMT-TFPB-COF, and TMT-TFPEB-COF, respectively. From TMT-TFB-COF to TMT-TFPB-COF, expanding phenyl rings provides only limited expansion for π-conjugation due to the steric effect of structural twisting. However, from TMT-TFPB-COF to TMT-TFPEB-COF, the insertion of acetylenes eliminates the steric effect and provides more delocalized π-electrons. As such, TMT-TFPEB-COF exhibits the best optoelectronic properties among these three olefin-linked COFs. Consequently, the photocatalytic performance of TMT-TFPEB-COF is much better than those of TMT-TFB-COF and TMT-TFPB-COF on the oxidation of organic sulfides into sulfoxides with oxygen. The desirable reusability and substrate compatibility of the TMT-TFPEB-COF photocatalyst are further confirmed. The selective formation of organic sulfoxides over TMT-TFPEB-COF under blue light irradiation proceeds via both electron- and energy-transfer pathways. This work highlights a rational design of expanding the π-conjugation of fully conjugated COFs toward selective visible-light photocatalysis.
Collapse
Affiliation(s)
- Fulin Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuexin Wang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hongxiang Zhao
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Dong
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Cheng J, Wu Y, Zhang W, Zhang J, Wang L, Zhou M, Fan F, Wu X, Xu H. Fully Conjugated 2D sp 2 Carbon-Linked Covalent Organic Frameworks for Photocatalytic Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305313. [PMID: 37818737 DOI: 10.1002/adma.202305313] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Indexed: 10/13/2023]
Abstract
Covalent organic frameworks (COFs) hold great promise for solar-driven hydrogen production. However, metal-free COFs for photocatalytic overall water splitting remain elusive, primarily due to challenges in simultaneously regulating their band structures and catalytic sites to enable concurrent half-reactions. Herein, two types of π-conjugated COFs containing the same donor-acceptor structure are constructed via Knoevenagel condensation and Schiff base reaction to afford cyanovinylene- and imine-bridged COFs, respectively. The difference in the linkage leads to a remarkable difference in their photocatalytic activity toward water splitting. The 2D sp2 carbon-linked COF exhibits notable activity for photocatalytic overall water splitting, which can reach an apparent quantum efficiency of 2.53% at 420 nm. In contrast, the 2D imine-linked COF cannot catalyze the overall water-splitting reaction. Mechanistic investigations reveal that the cyanovinylene linkage is essential in modulating the band structure and promoting charge separation in COFs, thereby enabling overall water splitting. Moreover, it is further shown that crystallinity substantially impacts the photocatalytic performance of COFs. This study represents the first successful example of developing metal-free COFs with high crystallinity for photocatalytic overall water splitting.
Collapse
Affiliation(s)
- Jun Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuting Wu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jie Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Chean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Lei Wang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Meng Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Chean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xiaojun Wu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hangxun Xu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
9
|
Mabuchi H, Irie T, Sakai J, Das S, Negishi Y. Covalent Organic Frameworks: Cutting-Edge Materials for Carbon Dioxide Capture and Water Harvesting from Air. Chemistry 2024; 30:e202303474. [PMID: 38078517 DOI: 10.1002/chem.202303474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Indexed: 01/12/2024]
Abstract
The implacable rise of carbon dioxide (CO2 ) concentration in the atmosphere and acute water stress are one of the central challenges of our time. Present-day chemistry is strongly inclined towards more sustainable solutions. Covalent organic frameworks (COFs), attributable to their structural designability with atomic precision, functionalizable chemical environment and robust extended architectures, have demonstrated promising performances in CO2 trapping and water harvesting from air. In this Review, we discuss the major developments in this field as well as sketch out the opportunities and shortcomings that remain over large-scale COF synthesis, device engineering, and long-term performance in real environments.
Collapse
Affiliation(s)
- Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
10
|
Qin N, Mao A, Li L, Lin C, Zhai L, Liu J, Zou J, Cui CX, Mi L. Rational Design of Vinylene-Linked Covalent Organic Frameworks for Modulating Photocatalytic H 2 Evolution. CHEMSUSCHEM 2023; 16:e202300872. [PMID: 37466030 DOI: 10.1002/cssc.202300872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/20/2023]
Abstract
Vinylene-linked covalent organic frameworks (COFs) have attracted enormous attention for photocatalytic H2 evolution from water because of their fully conjugated structures, high chemical stabilities, and enhanced charge-carrier mobilities. In this work, two novel vinylene-linked COFs with tuned cyano contents were successfully synthesized and then employed as photocatalysts for H2 generation. Notably, the photocatalytic H2 production rate of the COF with the higher cyano content reached 73 μmol h-1 under visible light irradiation, which is 2.4 times higher than that with the lower content (30 μmol h-1 ). Both the experimental and computational results demonstrated that the rational design incorporating cyano groups into COF skeletons could precisely tune the corresponding energy levels, expand the visible-light absorption, and improve the photoinduced charge separation. This work not only provides a simple method for modulating the photocatalytic activities of COFs at the molecular level, but also affords interesting insights into the relationship between their structures and photocatalytic performance.
Collapse
Affiliation(s)
- Na Qin
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Aojie Mao
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Linqiang Li
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Chao Lin
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Jing Liu
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Junhua Zou
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, 330029, P.R. China
| | - Cheng-Xing Cui
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| |
Collapse
|
11
|
Yang D, Cai C, Liu K, Peng Z, Yan C, Xi J, Xie F, Li X. Recent advances in glucose-oxidase-based nanocomposites for diabetes diagnosis and treatment. J Mater Chem B 2023; 11:7582-7608. [PMID: 37522237 DOI: 10.1039/d3tb01097j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Glucose oxidase (GOx) has attracted a lot of attention in the field of diabetes diagnosis and treatment in recent years owing to its inherent biocompatibility and glucose-specific catalysis. GOx can effectively catalyze the oxidation of glucose in the blood to hydrogen peroxide (H2O2) and glucuronic acid and can be used as a sensitive element in biosensors to detect blood glucose concentrations. Nanomaterials based on the immobilization of GOx can significantly improve the performance of glucose sensors through, for example, reduced electron tunneling distance. Moreover, various insulin-loaded nanomaterials (e.g., metal-organic backbones, and mesoporous silica nanoparticles) have been developed for the control of blood glucose concentrations based on GOx catalytic chemistry. These nano-delivery carriers are capable of releasing insulin in response to GOx-mediated changes in the microenvironment, allowing for a rapid return of the blood microenvironment to a normal state. Therefore, glucose biosensors and insulin delivery vehicles immobilized with GOx are important tools for the diagnosis and treatment of diabetes. This paper reviews the characteristics of various GOx-based nanomaterials developed for glucose biosensing and insulin-responsive release as well as research progress, and also highlights the current challenges and opportunities facing this field.
Collapse
Affiliation(s)
- Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
12
|
Wu S, Li C, Wang Y, Zhuang Y, Pan Y, Wen N, Wang S, Zhang Z, Ding Z, Yuan R, Dai W, Fu X, Long J. The Keto-Switched Photocatalysis of Reconstructed Covalent Organic Frameworks for Efficient Hydrogen Evolution. Angew Chem Int Ed Engl 2023; 62:e202309026. [PMID: 37460792 DOI: 10.1002/anie.202309026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
The keto-switched photocatalysis of covalent organic frameworks (COFs) for efficient H2 evolution was reported for the first time by engineering, at a molecular level, the local structure and component of the skeletal building blocks. A series of imine-linked BT-COFs were synthesized by the Schiff-base reaction of 1, 3, 5-benzenetrialdehyde with diamines to demonstrate the structural reconstruction of enol to keto configurations by alkaline catalysis. The keto groups of the skeletal building blocks served as active injectors, where hot π-electrons were provided to Pt nanoparticles (NPs) across a polyvinylpyrrolidone (PVP) insulting layer. The characterization results, together with density functional theory calculations, indicated clearly that the formation of keto-injectors not only made the conduction band level more negative, but also led to an inhomogeneous charge distribution in the donor-acceptor molecular building blocks to form a strong intramolecular built-in electric field. As a result, visible-light photocatalysis of TP-COFs-1 with one keto group in the skeletal building blocks was successfully enabled and achieved an impressive H2 evolution rate as high as 0.96 mmol g-1 h-1 . Also, the photocatalytic H2 evolution rates of the reconstructed BT-COFs-2 and -3 with two and three keto-injectors were significantly enhanced by alkaline post-treatment.
Collapse
Affiliation(s)
- Shuhong Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Chao Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Ying Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yan Zhuang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yi Pan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Na Wen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Shuo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Zizhong Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Zhenxin Ding
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Rusheng Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Wenxin Dai
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
13
|
Ji H, Qiao D, Yan G, Dong B, Feng Y, Qu X, Jiang Y, Zhang X. Zwitterionic and Hydrophilic Vinylene-Linked Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37845-37854. [PMID: 37489898 DOI: 10.1021/acsami.3c08250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Developing effective synthetic strategies as well as broadening functionalities for zwitterionic materials that comprise moieties with equimolar cationic and anionic groups still remains a huge challenge. Herein, we develop two zwitterionic vinylene-linked covalent organic frameworks (Zi-VCOF-1 and Zi-VCOF-2) that are a type of novel hydrophilic material. Zi-VCOF-1 and Zi-VCOF-2 are obtained directly through the convenient Knoevenagel condensation of new sulfonic-pyridinium zwitterionic monomers with aromatic aldehyde derivatives. This is the first report on zwitterionic COFs being constructed by the bottom-up functionalization approach from predesigned zwitterionic monomers. Both Zi-VCOFs exhibit a high photocatalytic hydrogen evolution rate (HER) because of their appropriate optical property and outstanding hydrophilicity. Specifically, Zi-VCOF-1 and Zi-VCOF-2 show photocatalytic HER of 13,547 and 5057 μmol h-1 g-1, respectively. Interestingly, the photocatalytic HER of Zi-VCOF-1 is about 2.68 times of that of Zi-VCOF-2, although they differ by only one methyl group in sulfonic-pyridinium zwitterionic pairs. The photocatalytic HER of Zi-VCOF-1 is not only the highest in the vinylene-linked COFs but also outstanding among the most reported COFs. This is the first application of zwitterionic COFs for photocatalytic hydrogen evolution, which would open a new frontier in zwitterionic COFs and be helpful for the design of other photocatalytic materials.
Collapse
Affiliation(s)
- Haifeng Ji
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Danyang Qiao
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Beibei Dong
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yu Jiang
- School of Pharmacy, Nantong University, Nantong 226019, P. R. China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
14
|
Ji H, Li M, Yan G, Qiao D, Dong B, Feng Y, Qu X, Shi J, Zhang X. Thiadiazole-Derived Covalent Organic Framework Macroscopic Ultralight Aerogel. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37487247 DOI: 10.1021/acsami.3c08351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Shaping covalent organic frameworks (COFs) into macroscopic objects for practical application remains a huge challenge. Herein, a new thiadiazole-derived COF macroscopic ultralight aerogel (NNS-VCOF) was prepared through acid-catalyzed aldol condensation between 2,5-dimethyl-1,3,4-thiadiazole and a tritopic aromatic aldehyde derivative. NNS-VCOF aerogel shows extremely low density (ca. 0.020 g cm-3), excellent mechanical properties (compression modulus of 16.65 kPa), thermal insulation properties (low thermal conductivity of 0.03270 W m-1 K-1 at 25 °C), and flame retardancy (quickly self-extinguishing after ignition) due to its three-dimensional sponge-like architecture and special nitrogen heterocyclic framework. To our delight, NNS-VCOF aerogel not only can be used as an outstanding macroscopic material but also shows efficient photocatalytic hydrogen evolution properties in a powder state because of the superhydrophilicity and appropriate optical properties.
Collapse
Affiliation(s)
- Haifeng Ji
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Mengke Li
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Danyang Qiao
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Beibei Dong
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Jingjing Shi
- School of Science, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
15
|
Ren R, Jiao Z, Li Z, Tian Y, Liu B, Yue G. Polarization-induced proton adsorption and charge separation in pyrene-based conjugated microporous polymers via substituent regulation for efficient photocatalytic hydrogen evolution. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
16
|
Qi W, Wu Q, Wang W, Feng J, Su Q. Fluorinated covalent organic framework materials for photocatalytically driven benzylamine coupling and azo dyes degradation. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Liu Z, Xiang H, Zhang A, Wu L, Fu Y, Zhou Q. Enhancing Photocatalytic Antibiotics Mineralization and Water Oxidation via Constructing Interfacial Electric Field in Plate-on-Plate BiOCl/WO3 Photocatalysts. J Colloid Interface Sci 2023; 642:264-272. [PMID: 37004260 DOI: 10.1016/j.jcis.2023.03.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Two-dimensional materials and related plate-on-plate interfacial heterostructures offer great flexibility for integrating different atomic layers, providing an attractive scheme for the construction of built-in electric fields in photocatalysts. Here, we developed an interfacial engineering strategy to construct well-interfaced plate-on-plate BiOCl/WO3 heterojunctions for general enhanced photocatalytic oxidation reactions. BiOCl/WO3 heterojunctions exhibited significant enhancements in oxygen evolution and antibiotic degradation, with a rate of 9.5 times and 14.7 times higher than that of WO3. This enhancement is attributed to the well lattice matching contact surface of WO3 {020} plane with BiOCl {001} plane, which integrates a strong built-in electric field induced by Bi-O chemically bonds, providing atomically fast transport channels for electrons. These findings offer new guidelines for designing interfacial structures for high-performance oxidative photocatalysts and provide insights into the underlying interfacial carrier transport mechanisms.
Collapse
|
18
|
Liu Y, Jiang L, Tian Y, Xu Z, Wang W, Qiu M, Wang H, Li X, Zhu G, Wang Y. Covalent Organic Framework/g-C 3N 4 van der Waals Heterojunction toward H 2 Production. Inorg Chem 2023; 62:3271-3277. [PMID: 36755483 DOI: 10.1021/acs.inorgchem.2c04366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Photocatalytic water splitting into H2 is the most economic and environmentally friendly strategy for H2 production, and rationally constructing a heterojunction retains enormous influence on a photocatalytic system. Herein, 2D/2D covalent organic framework/graphitic carbon nitride (COF/CN) van der Waals heterojunctions were readily prepared via an ultrasonic method for high-efficiency visible-light photocatalytic H2 production. The photocatalytic H2 production performance of optimized COF/CN composites can reach up to 449.64 μmol·h-1, which is approximately 5 times that of pure CN (89.08 μmol·h-1). The characterization and experimental studies reveal that the synergistic effect between COF and CN contributes to promoting the interfacial migration and spatial separation of photoinduced e--h+ pairs, further boosting the photocatalytic hydrogen production activity. This work may open a new window to design and fabricate effective heterojunction photocatalysts for photocatalytic energy conversion.
Collapse
Affiliation(s)
- Yanan Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Lingchang Jiang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Yuyang Tian
- Faculty of Chemistry, Northeast Normal University, No. 5268, Renmin Street, Nanguan District, Changchun, Jilin 130024, People's Republic of China
| | - Zhifeng Xu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Wenting Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Ming Qiu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Hongmei Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, No. 5268, Renmin Street, Nanguan District, Changchun, Jilin 130024, People's Republic of China
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People's Republic of China
| |
Collapse
|
19
|
Chandra P, Choudhary N, Mobin SM. The game between molecular photoredox catalysis and hydrogen: The golden age of hydrogen budge. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Boosting photocatalytic hydrogen evolution of β-keto-enamine-based covalent organic frameworks by introducing electron-donating functional substituents. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
21
|
Wang GB, Xie KH, Xu HP, Wang YJ, Zhao F, Geng Y, Dong YB. Covalent organic frameworks and their composites as multifunctional photocatalysts for efficient visible-light induced organic transformations. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Lv M, Ren X, Cao R, Chang Z, Chang X, Bai F, Li Y. Zn (II) Porphyrin Built-in D-A Covalent Organic Framework for Efficient Photocatalytic H 2 Evolution. Polymers (Basel) 2022; 14:polym14224893. [PMID: 36433020 PMCID: PMC9696642 DOI: 10.3390/polym14224893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Covalent organic frameworks (COFs) with donor-acceptor (D-A) units are credible photocatalysts for their per-designed structure, inherent porosity, large surface area, splendid stability and so forth. Developing COFs with an excellent photocatalytic efficiency for hydrogen evolution is of a great significance in alleviating the energy crisis. Herein, a D-A type imine-linked crystalline Zn-Por-TT COF was fabricated successfully via the co-polymerization of electron-deficient Zinc (II) 5,10,15,20-tetrakis(para-aminophenyl) porphyrin (Zn-TAPP), and electron-rich thieno[3,2-b]thiophene-2,5-dicarbaldehyde (TT). Profiting from the D-A complex structure, the obtained Zn-Por-TT COF showcases an excellent photocatalytic activity with a hydrogen evolution rate of 8200 μmol/g/h, while the Zn-TAPP monomer presents practically no capacity for the generation of hydrogen under identical conditions. In addition, the counterparts Por-TT COF and COF-366-Zn were employed to illustrate the enhancement of the photocatalytic performance by metal catalytic sites and D-A structures. In addition, the counterparts Por-TT COF and COF-366-Zn were employed to illustrate the enhancement of metal catalytic sites and D-A structures for the photocatalytic performance.
Collapse
Affiliation(s)
- Mingbo Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xitong Ren
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Ronghui Cao
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Zhiming Chang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xiao Chang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
- Correspondence: (F.B.); (Y.L.)
| | - Yusen Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
- Correspondence: (F.B.); (Y.L.)
| |
Collapse
|
23
|
Wang X, Sun B, Ye Z, Zhang W, Xu W, Gao S, Zhou N, Wu F, Shen J. Enzyme-Responsive COF-Based Thiol-Targeting Nanoinhibitor for Curing Bacterial Infections. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38483-38496. [PMID: 35989491 DOI: 10.1021/acsami.2c08845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pathogen infections impose severe challenges in clinical practice, especially for patients infected with antibiotic-resistant microbes. The thioredoxin (Trx) system in Gram-positive bacteria serves as an ideal antimicrobial target for novel medicine design due to the structural differences from corresponding system in mammals. However, a backup thiol-dependent antioxidant glutathione (GSH) system limits the effectiveness of drugs in many Gram-negative bacteria. Herein, we synthesize a thiol-targeting nanoinhibitor based on an enzyme-responsive covalent organic framework (COF) coloaded with silver nanoparticles (AgNPs) and ebselen (EBS) (Ag-TA-CON@EBS@PEG) to exert synergistic antibacterial effects. Since azoreductase can dissociate the enzyme-responsive COF, we adopt this strategy to achieve the accurate release of EBS and Ag+ at infection sites. Our research identifies that the functionalized nanoinhibitor shows excellent bactericidal performance for Gram-positive and Gram-negative bacteria in vitro and exhibits low toxicity to normal cells. Besides, the nanoinhibitor presents favorable biocompatibility, anti-inflammatory property, and effective wound healing ability in mice. This paper provides a promising clinical strategy for synergistic antibacterial therapy and enhanced wound healing properties via an optimized combination of the targeted nanomedicines with an intelligent drug conveying platform.
Collapse
Affiliation(s)
- Xinye Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Baohong Sun
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ziqiu Ye
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wenjia Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wang Xu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shurui Gao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ninglin Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fan Wu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
24
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
25
|
Chen T, Weng B, Lu S, Zhu H, Chen Z, Shen L, Roeffaers MBJ, Yang MQ. Photocatalytic Anaerobic Dehydrogenation of Alcohols over Metal Halide Perovskites: A New Acid-Free Scheme for H 2 Production. J Phys Chem Lett 2022; 13:6559-6565. [PMID: 35830601 DOI: 10.1021/acs.jpclett.2c01501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic H2 evolution from haloid acid (HX) solution by metal halide perovskites (MHPs) has been intensively investigated; however, the corrosive acid solution severely restricts its practical operability. Therefore, developing acid-free schemes for H2 evolution using MHPs is highly desired. Here, we investigate the photocatalytic anaerobic dehydrogenation of alcohols over a series of MHPs (APbX3, A = Cs+, CH3NH3+ (MA), CH(NH2)2+ (FA); X = Cl-, Br-, I-) to simultaneously produce H2 and aldehydes. Via the coassembly of Pt and rGO nanosheets on MAPbBr3 microcrystals, the optimal MAPbBr3/rGO-Pt reaches a H2 evolution rate of 3150 μmol g-1 h-1 under visible light irradiation (780 nm ≥ λ ≥ 400 nm), which is more than 105-fold higher than pure MAPbBr3 (30 μmol g-1 h-1). The present work not only brings new ample opportunities toward photocatalytic H2 evolution but also opens up new avenues for more effective utilization of MHPs in photocatalysis.
Collapse
Affiliation(s)
- Taoran Chen
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Suwei Lu
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Haixia Zhu
- Hunan Key Laboratory of Nanophononics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China
| | - Zhihui Chen
- Hunan Key Laboratory of Nanophononics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China
| | - Lijuan Shen
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Maarten B J Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Min-Quan Yang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
26
|
Zhang H, Lin Z, Guo J. Enhanced photocatalytic H 2 evolution over covalent organic frameworks through an assembled NiS cocatalyst. RSC Adv 2022; 12:14932-14938. [PMID: 35702250 PMCID: PMC9115773 DOI: 10.1039/d2ra02236b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022] Open
Abstract
Covalent organic frameworks (COFs) have been investigated in the field of photocatalysts for H2 evolution because of their crystalline structure and diversity. However, most of them need the help of noble metals as co-catalysts to realize a high hydrogen evolution. Herein, we chose typical COFs as a platform and constructed NiSX-BD (X: weight fraction of NiS) composites by assembling NiS at room temperature. The NiS nanoparticles are shown to tightly adhere to the COFs surface. Under visible light irradiation (wavelength > 420 nm), the optimized sample with 3 wt% NiS loading exhibits a photocatalytic H2 evolution rate of 38.4 μmol h−1 (3840 μmol h−1 g−1), which is about 120 folds higher than that of the pure TpBD-COF and better than TpBD-COF/Pt with the same Pt loading (3 wt%). NiS3-BD shows stable hydrogen evolution in at least six consecutive cycle tests totaling 18 h. Further investigation reveals that the loaded NiS can facilitate the transfer of photogenerated electrons from TpBD-COF to the co-catalyst, leading to efficient and high photocatalytic activity. Combining the significant feature of COFs, this study opens up a feasible avenue to boost the photocatalytic H2 performance by constructing the synergetic effects between COFs and cost-effective material. We constructed a novel hybrid photocatalyst by assembling NiS through a milder method. Under visible light irradiation, controlled NiS/TpBD-COF composites can readily optimize photocatalytic performances without a noble cocatalyst.![]()
Collapse
Affiliation(s)
- Hualei Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 China
| | - Zheng Lin
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 China
| |
Collapse
|
27
|
Alves Fávaro M, Ditz D, Yang J, Bergwinkl S, Ghosh AC, Stammler M, Lorentz C, Roeser J, Quadrelli EA, Thomas A, Palkovits R, Canivet J, Wisser FM. Finding the Sweet Spot of Photocatalysis─A Case Study Using Bipyridine-Based CTFs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14182-14192. [PMID: 35293203 DOI: 10.1021/acsami.1c24713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Covalent triazine frameworks (CTFs) are a class of porous organic polymers that continuously attract growing interest because of their outstanding chemical and physical properties. However, the control of extended porous organic framework structures at the molecular scale for a precise adjustment of their properties has hardly been achieved so far. Here, we present a series of bipyridine-based CTFs synthesized through polycondensation, in which the sequence of specific building blocks is well controlled. The reported synthetic strategy allows us to tailor the physicochemical features of the CTF materials, including the nitrogen content, the apparent specific surface area, and optoelectronic properties. Based on a comprehensive analytical investigation, we demonstrate a direct correlation of the CTF bipyridine content with the material features such as the specific surface area, band gap, charge separation, and surface wettability with water. The entirety of these parameters dictates the catalytic activity as demonstrated for the photocatalytic hydrogen evolution reaction (HER). The material with the optimal balance between optoelectronic properties and highest hydrophilicity enables HER production rates of up to 7.2 mmol/(h·g) under visible light irradiation and in the presence of a platinum cocatalyst.
Collapse
Affiliation(s)
- Marcelo Alves Fávaro
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Daniel Ditz
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Jin Yang
- Fakultät II Institut für Chemie, Technische Universität Berlin, Hardenbergstrasse 40, 10623 Berlin, Germany
| | - Sebastian Bergwinkl
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Ashta C Ghosh
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Michael Stammler
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Chantal Lorentz
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Jérôme Roeser
- Fakultät II Institut für Chemie, Technische Universität Berlin, Hardenbergstrasse 40, 10623 Berlin, Germany
| | - Elsje Alessandra Quadrelli
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Arne Thomas
- Fakultät II Institut für Chemie, Technische Universität Berlin, Hardenbergstrasse 40, 10623 Berlin, Germany
| | - Regina Palkovits
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Jérôme Canivet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Florian M Wisser
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
28
|
Lin H, Wang J, Zhao J, Zhuang Y, Liu B, Zhu Y, Jia H, Wu K, Shen J, Fu X, Zhang X, Long J. Molecular Dipole-Induced Photoredox Catalysis for Hydrogen Evolution over Self-Assembled Naphthalimide Nanoribbons. Angew Chem Int Ed Engl 2022; 61:e202117645. [PMID: 35040544 DOI: 10.1002/anie.202117645] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Indexed: 12/31/2022]
Abstract
D-π-A type 4-((9-phenylcarbazol-3-yl)ethynyl)-N-dodecyl-1,8-naphthalimide (CZNI) with a large dipole moment of 8.49 D and A-π-A type bis[(4,4'-1,8-naphthalimide)-N-dodecyl]ethyne (NINI) with a negligible dipole moment of 0.28 D, were smartly designed and synthesized to demonstrate the evidence of a molecular dipole as the dominant mechanism for controlling charge separation of organic semiconductors. In aqueous solution, these two novel naphthalimides can self-assemble to form nanoribbons (NRs) that present significantly different traces of exciton dissociation dynamics. Upon photoexcitation of NINI-NRs, no charge-separated excitons (CSEs) are formed due to the large exciton binding energy, accordingly there is no hydrogen evolution. On the contrary, in the photoexcited CZNI-NRs, the initial bound Frenkel excitons are dissociated to long-lived CSEs after undergoing ultrafast charge transfer within ca. 1.25 ps and charge separation within less than 5.0 ps. Finally, these free electrons were injected into Pt co-catalysts for reducing protons to H2 at a rate of ca. 417 μmol h-1 g-1 , correspondingly an apparent quantum efficiency of ca. 1.3 % can be achieved at 400 nm.
Collapse
Affiliation(s)
- Huan Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.,Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China.,Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Jiwu Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yan Zhuang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Bingqian Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yujiao Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Huaping Jia
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Jinni Shen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xuming Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
29
|
Long J, Lin H, Wang J, Zhao J, Zhuang Y, Liu B, Zhu Y, Jia H, Wu K, Shen J, Fu X, Zhang X. Molecular Dipole‐Induced Photoredox Catalysis for Hydrogen Evolution over Self‐assembled Naphthalimide Nanoribbons. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinlin Long
- State Key Lab of Photocatalysis on Energy and Environmental College of Chemistry Xueyuan Road 2# 350108 Fuzhou CHINA
| | - Huan Lin
- Beijing University of Technology Department of Environmental Chemical Engineering CHINA
| | - Junhui Wang
- Dalian Institute of Chemical Physics State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials CHINA
| | - Jiwu Zhao
- Fuzhou University College of Chemistry CHINA
| | - Yan Zhuang
- Fuzhou University College of Chemistry CHINA
| | | | - Yujiao Zhu
- The Hong Kong Polytechnic University Department of Applied Physics CHINA
| | - Huaping Jia
- The Hong Kong Polytechnic University Department of Applied Physics CHINA
| | - Kaifeng Wu
- Dalian Institute of Chemical Physics State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials CHINA
| | - Jinni Shen
- Fuzhou University College of Chemistry CHINA
| | - Xianzhi Fu
- Fuzhou University College of Chemistry CHINA
| | - Xuming Zhang
- The Hong Kong Polytechnic University Department of Applied Physics CHINA
| |
Collapse
|
30
|
Constructing 0D/1D Ag3PO4/TiO2 S-scheme heterojunction for efficient photodegradation and oxygen evolution. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64099-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Roeffaers MBJ, Wang C, Weng B, Liao Y, Liu B, Keshavarz M, Ding Y, Huang H, Verhaeghe D, Steele J, Feng W, Su BL, Hofkens J. Simultaneous photocatalytic H2 generation and organic synthesis over crystalline-amorphous Pd nanocube decorated Cs3Bi2Br9. Chem Commun (Camb) 2022; 58:10691-10694. [DOI: 10.1039/d2cc02453e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cs3Bi2Br9 decorated with crystalline-amorphous Pd nanocubes as cocatalyst is reported to photocatalytically coproduce ca. 1400 μmol h−1 g−1 of H2 and benzaldehyde from the selective benzyl alcohol oxidation. This route...
Collapse
|