2
|
Su J, Liu Z, Tan Y, Xiao Y, Zhan N, Ding Y. Au-Based Bimetallic Catalysts for Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid under Base-Free Reaction Conditions. Molecules 2024; 29:2724. [PMID: 38930789 PMCID: PMC11205606 DOI: 10.3390/molecules29122724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) plays a pivotal role in the synthesis of renewable, biodegradable plastics and sustainable chemicals. Although supported gold nanoclusters (NCs) exhibit significant potential in this process, they often suffer from low selectivity. To address this challenge, a series of gold-M (M means Ni, Fe, Cu, and Pd) bimetallic NCs catalysts were designed and synthesized to facilitate the selective oxidation of HMF to FDCA. Our findings indicate that the introduction of doped metals, particularly Ni and Pd, not only improves the reaction rates for HMF tandem oxidation but also promotes high yields of FDCA. Various characterizations techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), in situ diffuse reflectance infrared Fourier transform spectroscopy of CO adsorption (CO-DRIFTS), and temperature-programmed desorption of oxygen (O2-TPD), were employed to scrutinize the structural and electronic properties of the prepared catalysts. Notably, an electronic effect was observed across the Au-based bimetallic catalysts, facilitating the activation of reactant molecules and enhancing the catalytic performance. This study provides valuable insights into the alloy effects, aiding in the development of highly efficient Au-based bimetallic catalysts for biomass conversions.
Collapse
Affiliation(s)
- Juan Su
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (J.S.); (Z.L.); (Y.X.); (N.Z.)
| | - Zongyang Liu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (J.S.); (Z.L.); (Y.X.); (N.Z.)
| | - Yuan Tan
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (J.S.); (Z.L.); (Y.X.); (N.Z.)
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yan Xiao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (J.S.); (Z.L.); (Y.X.); (N.Z.)
| | - Nannan Zhan
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (J.S.); (Z.L.); (Y.X.); (N.Z.)
| | - Yunjie Ding
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (J.S.); (Z.L.); (Y.X.); (N.Z.)
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- The State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
3
|
Van den Hoek J, Daems N, Arnouts S, Hoekx S, Bals S, Breugelmans T. Improving Stability of CO 2 Electroreduction by Incorporating Ag NPs in N-Doped Ordered Mesoporous Carbon Structures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6931-6947. [PMID: 38127786 DOI: 10.1021/acsami.3c12261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The electroreduction of carbon dioxide (eCO2RR) to CO using Ag nanoparticles as an electrocatalyst is promising as an industrial carbon capture and utilization (CCU) technique to mitigate CO2 emissions. Nevertheless, the long-term stability of these Ag nanoparticles has been insufficient despite initial high Faradaic efficiencies and/or partial current densities. To improve the stability, we evaluated an up-scalable and easily tunable synthesis route to deposit low-weight percentages of Ag nanoparticles (NPs) on and into the framework of a nitrogen-doped ordered mesoporous carbon (NOMC) structure. By exploiting this so-called nanoparticle confinement strategy, the nanoparticle mobility under operation is strongly reduced. As a result, particle detachment and agglomeration, two of the most pronounced electrocatalytic degradation mechanisms, are (partially) blocked and catalyst durability is improved. Several synthesis parameters, such as the anchoring agent, the weight percentage of Ag NPs, and the type of carbonaceous support material, were modified in a controlled manner to evaluate their respective impact on the overall electrochemical performance, with a strong emphasis on operational stability. The resulting powders were evaluated through electrochemical and physicochemical characterization methods, including X-ray diffraction (XRD), N2-physisorption, Inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), SEM-energy-dispersive X-ray spectroscopy (SEM-EDS), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM-EDS, electron tomography, and X-ray photoelectron spectroscopy (XPS). The optimized Ag/soft-NOMC catalysts showed both a promising selectivity (∼80%) and stability compared with commercial Ag NPs while decreasing the loading of the transition metal by more than 50%. The stability of both the 5 and 10 wt % Ag/soft-NOMC catalysts showed considerable improvements by anchoring the Ag NPs on and into a NOMC framework, resulting in a 267% improvement in CO selectivity after 72 h (despite initial losses) compared to commercial Ag NPs. These results demonstrate the promising strategy of anchoring Ag NPs to improve the CO selectivity during prolonged experiments due to the reduced mobility of the Ag NPs and thus enhanced stability.
Collapse
Affiliation(s)
- Järi Van den Hoek
- Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Nick Daems
- Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Sven Arnouts
- Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Saskia Hoekx
- Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Tom Breugelmans
- Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| |
Collapse
|
4
|
Zhou X, Zhang A, Chen B, Zhu S, Cui Y, Bai L, Yu J, Ge Y, Yun Q, Li L, Huang B, Liao L, Fu J, Wa Q, Wang G, Huang Z, Zheng L, Ren Y, Li S, Liu G, Zhai L, Li Z, Liu J, Chen Y, Ma L, Ling C, Wang J, Fan Z, Du Y, Shao M, Zhang H. Synthesis of 2H/fcc-Heterophase AuCu Nanostructures for Highly Efficient Electrochemical CO 2 Reduction at Industrial Current Densities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304414. [PMID: 37515580 DOI: 10.1002/adma.202304414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Structural engineering of nanomaterials offers a promising way for developing high-performance catalysts toward catalysis. However, the delicate modulation of thermodynamically unfavorable nanostructures with unconventional phases still remains a challenge. Here, the synthesis of hierarchical AuCu nanostructures is reported with hexagonal close-packed (2H-type)/face-centered cubic (fcc) heterophase, high-index facets, planar defects (e.g., stacking faults, twin boundaries, and grain boundaries), and tunable Cu content. The obtained 2H/fcc Au99 Cu1 hierarchical nanosheets exhibit excellent performance for the electrocatalytic CO2 reduction to produce CO, outperforming the 2H/fcc Au91 Cu9 and fcc Au99 Cu1 . The experimental results, especially those obtained by in-situ differential electrochemical mass spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy, suggest that the enhanced catalytic performance of 2H/fcc Au99 Cu1 arises from the unconventional 2H/fcc heterophase, high-index facets, planar defects, and appropriate alloying of Cu. Impressively, the 2H/fcc Au99 Cu1 shows CO Faradaic efficiencies of 96.6% and 92.6% at industrial current densities of 300 and 500 mA cm-2 , respectively, as well as good durability, placing it among the best CO2 reduction electrocatalysts for CO production. The atomically structural regulation based on phase engineering of nanomaterials (PEN) provides an avenue for the rational design and preparation of high-performance electrocatalysts for various catalytic applications.
Collapse
Affiliation(s)
- Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yu Cui
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Licheng Bai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518057, China
| | - Jinli Yu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Lingwen Liao
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jiaju Fu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Guangyao Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chongyi Ling
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Yonghua Du
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Energy Institute, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
5
|
Geng Y, Zhu R, Maimaituerxun M. Bibliometric review of carbon neutrality with CiteSpace: evolution, trends, and framework. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76668-76686. [PMID: 36169840 DOI: 10.1007/s11356-022-23283-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The concept of carbon neutrality has been promoted and implemented in increasing countries since the twenty-first century. In-depth research on carbon neutrality has helped improve the environmental conditions and played a particular role in sustaining economic and social development. However, there is a less comprehensive review of the status in this field; therefore, this article uses the information visualization software CiteSpace to thoroughly analyze carbon neutrality research from multiple perspectives. This study aims to reveal the current research evolutions and hotspots in this field, predict future research trends, and construct the framework for better understanding. The results find that the number of papers published on carbon neutrality keeps increasing annually, and carbon neutrality has been the widely participated domain. In addition, publications by organizations and in top journals have aroused wide attention, and the hot spots on carbon neutrality have shifted to policy, recovery, and efficiency. Based on the results, a knowledge framework of this domain is constructed to give readers a clearer understanding of the evolvement and trends, which will also provide targeted references and help for future researchers.
Collapse
Affiliation(s)
- Yuqing Geng
- School of Business, Shanghai Dianji University, 300 Shuihua Road, Shanghai, China
| | - Renjun Zhu
- School of Business, Shanghai Dianji University, 300 Shuihua Road, Shanghai, China.
| | | |
Collapse
|