1
|
Chen S, Qian H, Dai F, Fan G, Lu H, Deng C, Shi Y, He Y, Zhang X, Shi G, Liu Y. Detection of anti-calreticulin antibody in the sera of Chinese patients with primary Sjögren syndrome. Semin Arthritis Rheum 2024; 68:152488. [PMID: 38896912 DOI: 10.1016/j.semarthrit.2024.152488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Primary Sjögren syndrome (pSjS) is one of the most prevalent systemic autoimmune diseases and characterized with hyperactivation of B cell and the abundant presence of autoantibodies in sera. The salivary gland epithelial cells (SGECs) release autoantigens to evoke autoimmunity through releasing elevated apoptosis or secreting autoantigen-containing exosomes, thus identifying autoantibodies directly to SGECs might provide insights into disease related biomarkers as well as further elucidating pathogenesis mechanisms. The present study was undertaken to identify autoantibodies to SGECs and to evaluate its clinical values in Chinese pSjS. METHODS Cell-based indirect immunofluorescence and immunostaining, two-dimensional electrophoresis and liquid chromatograph-tandem mass spectrometry were conducted to identify the autoantibodies to human salivary gland cell line A253 in pSjS sera. Enzyme-linked immunosorbent assay (ELISA) was applied to identify autoantibody titer in pSjS cohort and healthy controls. The prevalence and clinical significance of the identified autoantibodies was further assessed in pSjS population. RESULTS Anti-calreticulin (CALR) antibody was identified as a new autoantibody directly to SGECs in sera from pSjS patients. Anti-CALR antibody were detected in 37 of 120 pSjS patients (30.83 %) and 1 of 54 healthy controls (1.85 %). It was found in 40.85 % pSjS with anti-SSA positive, 53.85 % with anti-SSB positive, and 14.7 % in sero-negative pSjS. Anti-CALR antibody was associated with clinical manifestations including weight loss(p = 0.045), vasculitis (p = 0.031), and laboratory parameters including erythrocyte sedimentation rate (ESR) (r = 0.056, p = 0.021), Krebs von den Lungen-6 (KL-6) (r = 0.121, p = 0.035), IgG (r = 0.097, p < 0.001), IgG2 (r = 0.142, p = 0.022), IgG3 (r = 0.287, p < 0.001), fibrinogen (r = 0.084, p = 0.016), D-Dimer (r = 0.086, p = 0.012) and fibrinogen degradation production (r = 0.150, p = 0.002). The expression of CALR in salivary glands was related to lymphocytes infiltration into salivary glands in pSjS patients (r = 0.7076, p = 0.0034). CONCLUSION To our knowledge, this was the first study to investigate the prevalence and clinical significance of anti-CALR antibody in Chinses pSjS patients. The present study identified an autoimmune antibody, anti-CALR antibody, as a good autoimmune biomarker for sero-negative pSjS.
Collapse
Affiliation(s)
- Shiju Chen
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, XM, 361000, China; Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China; Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Hongyan Qian
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, XM, 361000, China; Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China; Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Fan Dai
- School of Medicine, Xiamen University, Xiamen, XM, 361000, China
| | - Guihua Fan
- School of Medicine, Xiamen University, Xiamen, XM, 361000, China
| | - Huiqin Lu
- School of Medicine, Xiamen University, Xiamen, XM, 361000, China
| | - Chaoqiong Deng
- School of Medicine, Xiamen University, Xiamen, XM, 361000, China
| | - Yingying Shi
- School of Medicine, Xiamen University, Xiamen, XM, 361000, China
| | - Yan He
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, XM, 361000, China; Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China; Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Xinwei Zhang
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, XM, 361000, China; Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China; Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, XM, 361000, China; Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China; Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China.
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, XM, 361000, China; Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China; Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China.
| |
Collapse
|
2
|
Essouma M. Autoimmune inflammatory myopathy biomarkers. Clin Chim Acta 2024; 553:117742. [PMID: 38176522 DOI: 10.1016/j.cca.2023.117742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The autoimmune inflammatory myopathy disease spectrum, commonly known as myositis, is a group of systemic diseases that mainly affect the muscles, skin and lungs. Biomarker assessment helps in understanding disease mechanisms, allowing for the implementation of precise strategies in the classification, diagnosis, and management of these diseases. This review examines the pathogenic mechanisms and highlights current data on blood and tissue biomarkers of autoimmune inflammatory myopathies.
Collapse
Affiliation(s)
- Mickael Essouma
- Network of Immunity in Infections, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Cameroon
| |
Collapse
|
3
|
Yadav R, Li QZ, Huang H, Bridges SL, Kahlenberg JM, Stecenko AA, Rada B. Cystic fibrosis autoantibody signatures associate with Staphylococcus aureus lung infection or cystic fibrosis-related diabetes. Front Immunol 2023; 14:1151422. [PMID: 37767091 PMCID: PMC10519797 DOI: 10.3389/fimmu.2023.1151422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction While cystic fibrosis (CF) lung disease is characterized by persistent inflammation and infections and chronic inflammatory diseases are often accompanied by autoimmunity, autoimmune reactivity in CF has not been studied in depth. Methods In this work we undertook an unbiased approach to explore the systemic autoantibody repertoire in CF using autoantibody microarrays. Results and discussion Our results show higher levels of several new autoantibodies in the blood of people with CF (PwCF) compared to control subjects. Some of these are IgA autoantibodies targeting neutrophil components or autoantigens linked to neutrophil-mediated tissue damage in CF. We also found that people with CF with higher systemic IgM autoantibody levels have lower prevalence of S. aureus infection. On the other hand, IgM autoantibody levels in S. aureus-infected PwCF correlate with lung disease severity. Diabetic PwCF have significantly higher levels of IgA autoantibodies in their circulation compared to nondiabetic PwCF and several of their IgM autoantibodies associate with worse lung disease. In contrast, in nondiabetic PwCF blood levels of IgA autoantibodies correlate with lung disease. We have also identified other autoantibodies in CF that associate with P. aeruginosa airway infection. In summary, we have identified several new autoantibodies and associations of autoantibody signatures with specific clinical features in CF.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hanwen Huang
- Department of Epidemiology & Biostatistics, College of Public Health, The University of Georgia, Athens, GA, United States
| | - S. Louis Bridges
- Department of Medicine, Hospital for Special Surgery, Division of Rheumatology, Weill Cornell Medical College, New York, NY, United States
| | - J. Michelle Kahlenberg
- Division of Rheumatology, University of Michigan, School of Medicine, Ann Arbor, MI, United States
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| |
Collapse
|
4
|
Kyllesbech C, Trier N, Mughal F, Hansen P, Holmström M, El Fassi D, Hasselbalch H, Skov V, Kjær L, Andersen M, Ciplys E, Slibinskas R, Frederiksen J, Højrup P, Houen G. Antibodies to calnexin and mutated calreticulin are common in human sera. Curr Res Transl Med 2023; 71:103380. [PMID: 36738659 DOI: 10.1016/j.retram.2023.103380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
PURPOSE OF THE STUDY Calreticulin is an endoplasmic reticulum chaperone protein, which is involved in protein folding and in peptide loading of major histocompatibility complex class I molecules together with its homolog calnexin. Mutated calreticulin is associated with a group of hemopoietic disorders, especially myeloproliferative neoplasms. Currently only the cellular immune response to mutated calreticulin has been described, although preliminary findings have indicated that antibodies to mutated calreticulin are not specific for myeloproliferative disorders. These findings have prompted us to characterize the humoral immune response to mutated calreticulin and its chaperone homologue calnexin. PATIENTS AND METHODS We analyzed sera from myeloproliferative neoplasm patients, healthy donors and relapsing-remitting multiple sclerosis patients for the occurrence of autoantibodies to wild type and mutated calreticulin forms and to calnexin by enzyme-linked immunosorbent assay. RESULTS Antibodies to mutated calreticulin and calnexin were present at similar levels in serum samples of myeloproliferative neoplasm and multiple sclerosis patients as well as healthy donors. Moreover, a high correlation between antibodies to mutated calreticulin and calnexin was seen for all patient and control groups. Epitope binding studies indicated that cross-reactive antibodies bound to a three-dimensional epitope encompassing a short linear sequence in the C-terminal of mutated calreticulin and calnexin. CONCLUSION Collectively, these findings indicate that calreticulin mutations may be common and not necessarily lead to onset of myeloproliferative neoplasm, possibly due to elimination of cells with mutations. This, in turn, may suggest that additional molecular changes may be required for development of myeloproliferative neoplasm.
Collapse
Affiliation(s)
- C Kyllesbech
- Department of Neurology, Valdemar Hansens vej 23, Rigshospitalet, Glostrup, Denmark; Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, Denmark
| | - N Trier
- Department of Neurology, Valdemar Hansens vej 23, Rigshospitalet, Glostrup, Denmark
| | - F Mughal
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen Ø, Denmark
| | - P Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen Ø, Denmark
| | - M Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Borgmester Ib Juuls Vej 25C, Copenhagen University Hospital, Herlev, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - D El Fassi
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - H Hasselbalch
- Department of Hematology, Zealand University Hospital Roskilde, Sygehusvej 10, Roskilde, Denmark
| | - V Skov
- Department of Hematology, Zealand University Hospital Roskilde, Sygehusvej 10, Roskilde, Denmark
| | - L Kjær
- Department of Hematology, Zealand University Hospital Roskilde, Sygehusvej 10, Roskilde, Denmark
| | - M Andersen
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - E Ciplys
- Institute of Biotechnology, University of Vilnius, Sauletékio al. 7, Vilnius, Lithuania
| | - R Slibinskas
- Institute of Biotechnology, University of Vilnius, Sauletékio al. 7, Vilnius, Lithuania
| | - J Frederiksen
- Department of Neurology, Valdemar Hansens vej 23, Rigshospitalet, Glostrup, Denmark
| | - P Højrup
- Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, Denmark
| | - G Houen
- Department of Neurology, Valdemar Hansens vej 23, Rigshospitalet, Glostrup, Denmark; Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, Denmark.
| |
Collapse
|
5
|
Fiorentino DF, Casciola-Rosen L. Autoantibodies and Cancer Association: the Case of Systemic Sclerosis and Dermatomyositis. Clin Rev Allergy Immunol 2022; 63:330-341. [PMID: 35593962 PMCID: PMC10666558 DOI: 10.1007/s12016-022-08944-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 11/03/2022]
Abstract
Several rheumatic diseases have a perplexing association with cancer. Unraveling this mysterious connection is likely to provide deeper understanding regarding mechanisms governing the onset of both autoimmunity and cancer immunity, in addition to providing clinicians much needed guidance around whom and when to screen for occult malignancy. Systemic sclerosis (scleroderma) and dermatomyositis are two diseases in which the association with internal malignancy is well-described and can be considered as models from which to gain important insights that likely have broader applicability. The past 15 years have witnessed a striking acceleration in understanding how these two diseases are related to cancer emergence-an important crack in this inscrutable armor has been the discovery and characterization of disease-specific autoantigens that are closely tied with risk of cancer emergence. The best-described examples of this are antibodies against anti-RNA polymerase III (anti-POL3) and transcription intermediary factor 1-gamma (anti-TIF1γ). Patients with systemic sclerosis and cancer that are diagnosed within a short time interval of each other frequently have anti-POL3 antibodies. Antibodies against the minor spliceosome protein RNA-Binding Region Containing 3 (RNPC3) are also associated with increased cancer incidence in systemic sclerosis. Similarly, in the dermatomyositis spectrum, the majority of anti-TIF1γ-associated cancers are detected around the time of DM onset (most often within 1 year). Antibodies against Nuclear Matrix Protein 2 are also potentially associated with increased cancer emergence in dermatomyositis. The systemic sclerosis/anti-POL3 connection with close cancer onset led to the first experiments directly supporting the concept that rheumatic disease may in fact be a manifestation of cancer. It is now clear that studying these diseases through the lens of autoantibodies can reveal relationships and insights that would otherwise remain obscured. Extending these studies, new findings show that antibodies against RNA polymerase I large subunit are associated with protection against short interval cancers in anti-POL3-positive systemic sclerosis patients. These insights highlight the fact that autoantigen discovery related to cancer emergence remains an important priority; such new tools will enable the testing of specific hypotheses regarding mechanisms governing disease emergence and development of effective anti-tumor responses. Autoantibody phenotype will likely play an important role in the development of cancer screening guidelines that are critically needed by clinicians taking care of these patients. In this review, we will summarize the current state of knowledge regarding the different ways in which autoantibodies are connected with systemic sclerosis/dermatomyositis and malignancy and highlight potential paths forward.
Collapse
Affiliation(s)
- David F Fiorentino
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
| | - Livia Casciola-Rosen
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Corona-Sanchez EG, Martínez-García EA, Lujano-Benítez AV, Pizano-Martinez O, Guerra-Durán IA, Chavarria-Avila E, Aguilar-Vazquez A, Martín-Márquez BT, Arellano-Arteaga KJ, Armendariz-Borunda J, Perez-Vazquez F, García-De la Torre I, Llamas-García A, Palacios-Zárate BL, Toriz-González G, Vazquez-Del Mercado M. Autoantibodies in the pathogenesis of idiopathic inflammatory myopathies: Does the endoplasmic reticulum stress response have a role? Front Immunol 2022; 13:940122. [PMID: 36189221 PMCID: PMC9520918 DOI: 10.3389/fimmu.2022.940122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/24/2022] [Indexed: 12/20/2022] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are a group of rare, acquired autoimmune diseases characterized by profound muscle weakness and immune cell invasion into non-necrotic muscle. They are related to the presence of antibodies known as myositis-specific antibodies and myositis-associated antibodies, which are associated with various IIM phenotypes and the clinical prognosis. The possibility of the participation of other pathological mechanisms involved in the inflammatory response in IIM has been proposed. Such mechanisms include the overexpression of major histocompatibility complex class I in myofibers, which correlates with the activation of stress responses of the endoplasmic reticulum (ER). Taking into account the importance of the ER for the maintenance of homeostasis of the musculoskeletal system in the regulation of proteins, there is probably a relationship between immunological and non-immunological processes and autoimmunity, and an example of this might be IIM. We propose that ER stress and its relief mechanisms could be related to inflammatory mechanisms triggering a humoral response in IIM, suggesting that ER stress might be related to the triggering of IIMs and their auto-antibodies’ production.
Collapse
Affiliation(s)
- Esther Guadalupe Corona-Sanchez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Erika Aurora Martínez-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Andrea Verónica Lujano-Benítez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Ciencias Biomedicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Oscar Pizano-Martinez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Morfología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ivette Alejandra Guerra-Durán
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Efrain Chavarria-Avila
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Disciplinas Filosófico Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Andrea Aguilar-Vazquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Ciencias Biomedicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Beatriz Teresita Martín-Márquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Kevin Javier Arellano-Arteaga
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Especialidad de Medicina Interna, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
| | - Juan Armendariz-Borunda
- Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Zapopan, Mexico
| | - Felipe Perez-Vazquez
- Departamento de Disciplinas Filosófico Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ignacio García-De la Torre
- Departamento de Inmunología y Reumatología, Hospital General de Occidente y Universidad de Guadalajara, Guadalajara, Mexico
| | - Arcelia Llamas-García
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca, ” Especialidad de Reumatología, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
| | - Brenda Lucía Palacios-Zárate
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca, ” Especialidad de Reumatología, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
| | - Guillermo Toriz-González
- Instituto Transdisciplinar de Investigación y Servicios (ITRANS), Universidad de Guadalajara, Zapopan, Mexico
| | - Monica Vazquez-Del Mercado
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca, ” Especialidad de Reumatología, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
- *Correspondence: Monica Vazquez-Del Mercado,
| |
Collapse
|