1
|
Abba Moussa D, Vazquez M, Chable-Bessia C, Roux-Portalez V, Tamagnini E, Pedotti M, Simonelli L, Ngo G, Souchard M, Lyonnais S, Chentouf M, Gros N, Marsile-Medun S, Dinter H, Pugnière M, Martineau P, Varani L, Juan M, Calderon H, Naranjo-Gomez M, Pelegrin M. Discovery of a pan anti-SARS-CoV-2 monoclonal antibody with highly efficient infected cell killing capacity for novel immunotherapeutic approaches. Emerg Microbes Infect 2025; 14:2432345. [PMID: 39584380 PMCID: PMC11632933 DOI: 10.1080/22221751.2024.2432345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/24/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Unlocking the potential of broadly reactive coronavirus monoclonal antibodies (mAbs) and their derivatives offers a transformative therapeutic avenue against severe COVID-19, especially crucial for safeguarding high-risk populations. Novel mAb-based immunotherapies may help address the reduced efficacy of current vaccines and neutralizing mAbs caused by the emergence of variants of concern (VOCs). Using phage display technology, we discovered a pan-SARS-CoV-2 mAb (C10) that targets a conserved region within the receptor-binding domain (RBD) of the virus. Noteworthy, C10 demonstrates exceptional efficacy in recognizing all assessed VOCs, including recent Omicron variants. While C10 lacks direct neutralization capacity, it efficiently binds to infected lung epithelial cells and induces their lysis via natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC). Building upon this pan-SARS-CoV-2 mAb, we engineered C10-based, Chimeric Antigen Receptor (CAR)-T cells endowed with efficient killing capacity against SARS-CoV-2-infected lung epithelial cells. Notably, NK and CAR-T-cell mediated killing of lung infected cells effectively reduces viral titers. These findings highlight the potential of non-neutralizing mAbs in providing immune protection against emerging infectious diseases. Our work reveals a pan-SARS-CoV-2 mAb effective in targeting infected cells and demonstrates the proof-of-concept for the potential application of CAR-T cell therapy in combating SARS-CoV-2 infections. Furthermore, it holds promise for the development of innovative antibody-based and cell-based therapeutic strategies against severe COVID-19 by expanding the array of therapeutic options available for high-risk populations.Trial registration: ClinicalTrials.gov identifier: NCT04093596.
Collapse
Affiliation(s)
| | - Mario Vazquez
- IDIBAPS, Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses, Barcelona, Spain
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Vincent Roux-Portalez
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- GenAc, Siric Plateform, INSERM, Montpellier, France
| | - Elia Tamagnini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Giang Ngo
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- PPM, BioCampus Plateforme de Protéomique de Montpellier CNRS, Montpellier, France
| | - Manon Souchard
- IRMB, University of Montpellier, INSERM, CNRS, Montpellier, France
| | | | - Myriam Chentouf
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- GenAc, Siric Plateform, INSERM, Montpellier, France
| | - Nathalie Gros
- CEMIPAI, University of Montpellier, UAR3725 CNRS, Montpellier, France
| | | | - Heiko Dinter
- IRMB, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Martine Pugnière
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- PPM, BioCampus Plateforme de Protéomique de Montpellier CNRS, Montpellier, France
| | - Pierre Martineau
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- GenAc, Siric Plateform, INSERM, Montpellier, France
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Manel Juan
- IDIBAPS, Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses, Barcelona, Spain
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Hugo Calderon
- IDIBAPS, Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses, Barcelona, Spain
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Mireia Pelegrin
- IRMB, University of Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
2
|
English EP, Swingler RN, Patwa S, Tosun M, Howard JF, Miljković MD, Jewell CM. Engineering CAR-T therapies for autoimmune disease and beyond. Sci Transl Med 2024; 16:eado2084. [PMID: 39475572 DOI: 10.1126/scitranslmed.ado2084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/15/2024] [Accepted: 07/09/2024] [Indexed: 12/13/2024]
Abstract
Chimeric antigen receptor-T cell (CAR-T) therapy has transformed the management of refractory hematological malignancies. Now that targeting pathogenic cells of interest with antigen-directed cytotoxic T lymphocytes is possible, the field is expanding the reach of CAR-T therapy beyond oncology. Recently, breakthrough progress has been made in the application of CAR-T technology to autoimmune diseases, exploiting the same validated targets that were used by pioneering CAR-T therapies in hematology. Here, we discuss recent advances and outcomes that are paving the way for extension to new therapeutic areas, including autoimmunity.
Collapse
Affiliation(s)
| | | | - Simran Patwa
- Cartesian Therapeutics, Gaithersburg, MD 20878, USA
| | - Mehmet Tosun
- Cartesian Therapeutics, Gaithersburg, MD 20878, USA
| | - James F Howard
- University of North Carolina, Chapel Hill, NC 27514, USA
| | | | | |
Collapse
|
3
|
Rolin C, Zimmer J, Seguin-Devaux C. Bridging the gap with multispecific immune cell engagers in cancer and infectious diseases. Cell Mol Immunol 2024; 21:643-661. [PMID: 38789528 PMCID: PMC11214628 DOI: 10.1038/s41423-024-01176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
By binding to multiple antigens simultaneously, multispecific antibodies are expected to substantially improve both the activity and long-term efficacy of antibody-based immunotherapy. Immune cell engagers, a subclass of antibody-based constructs, consist of engineered structures designed to bridge immune effector cells to their target, thereby redirecting the immune response toward the tumor cells or infected cells. The increasing number of recent clinical trials evaluating immune cell engagers reflects the important role of these molecules in new therapeutic approaches for cancer and infections. In this review, we discuss how different immune cell types (T and natural killer lymphocytes, as well as myeloid cells) can be bound by immune cell engagers in immunotherapy for cancer and infectious diseases. Furthermore, we explore the preclinical and clinical advancements of these constructs, and we discuss the challenges in translating the current knowledge from cancer to the virology field. Finally, we speculate on the promising future directions that immune cell engagers may take in cancer treatment and antiviral therapy.
Collapse
Affiliation(s)
- Camille Rolin
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354, Esch-Sur-Alzette, Luxembourg.
- University of Luxembourg, 2 Place de l'Université, L-4365, Esch-sur-Alzette, Luxembourg.
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354, Esch-Sur-Alzette, Luxembourg
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354, Esch-Sur-Alzette, Luxembourg
| |
Collapse
|
4
|
Chen Y, Liu C, Fang Y, Chen W, Qiu J, Zhu M, Wei W, Tu J. Developing CAR-immune cell therapy against SARS-CoV-2: Current status, challenges and prospects. Biochem Pharmacol 2024; 222:116066. [PMID: 38373592 DOI: 10.1016/j.bcp.2024.116066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Chimeric antigen receptor (CAR)-immune cell therapy has revolutionized the anti-tumor field, achieving efficient and precise tumor clearance by directly guiding immune cell activity to target tumors. In addition, the use of CAR-immune cells to influence the composition and function of the immune system and ultimately achieve virus clearance and immune system homeostasis has attracted the interest of researchers. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered a global pandemic of coronavirus disease 2019 (COVID-19). To date, the rapidly mutating SARS-CoV-2 continues to challenge existing therapies and has raised public concerns regarding reinfection. In patients with COVID-19, the interaction of SARS-CoV-2 with the immune system influences the course of the disease, and the coexistence of over-activated immune system components, such as macrophages, and severely compromised immune system components, such as natural killer cells, reveals a dysregulated immune system. Dysregulated immune-induced inflammation may impair viral clearance and T-cell responses, causing cytokine storms and ultimately leading to patient death. Here, we summarize the research progress on the use of CAR-immune cells against SARS-CoV-2 infection. Furthermore, we discuss the feasibility, challenges and prospect of CAR-immune cells as a new immune candidate therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Yizhao Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Chong Liu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Yilong Fang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Weile Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Jiaqi Qiu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Mengjuan Zhu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
| | - Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
5
|
Morte-Romea E, Pesini C, Pellejero-Sagastizábal G, Letona-Giménez S, Martínez-Lostao L, Aranda SL, Toyas C, Redrado S, Dolader-Ballesteros E, Arias M, Galvez EM, Sanz-Pamplona R, Pardo J, Paño-Pardo JR, Ramírez-Labrada A. CAR Immunotherapy for the treatment of infectious diseases: a systematic review. Front Immunol 2024; 15:1289303. [PMID: 38352878 PMCID: PMC10861799 DOI: 10.3389/fimmu.2024.1289303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Immunotherapy treatments aim to modulate the host's immune response to either mitigate it in inflammatory/autoimmune disease or enhance it against infection or cancer. Among different immunotherapies reaching clinical application during the last years, chimeric antigen receptor (CAR) immunotherapy has emerged as an effective treatment for cancer where different CAR T cells have already been approved. Yet their use against infectious diseases is an area still relatively poorly explored, albeit with tremendous potential for research and clinical application. Infectious diseases represent a global health challenge, with the escalating threat of antimicrobial resistance underscoring the need for alternative therapeutic approaches. This review aims to systematically evaluate the current applications of CAR immunotherapy in infectious diseases and discuss its potential for future applications. Notably, CAR cell therapies, initially developed for cancer treatment, are gaining recognition as potential remedies for infectious diseases. The review sheds light on significant progress in CAR T cell therapy directed at viral and opportunistic fungal infections.
Collapse
Affiliation(s)
- Elena Morte-Romea
- Infectious Diseases Department, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), Madrid, Spain
| | - Cecilia Pesini
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), Madrid, Spain
- Immunotherapy, Cytotoxicity, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Galadriel Pellejero-Sagastizábal
- Infectious Diseases Department, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain
| | - Santiago Letona-Giménez
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain
| | - Luis Martínez-Lostao
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain
- Department of Immunology, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Department of Microbiology, Pediatry, Radiology and Public Health, University of Zaragoza, Zaragoza, Spain
- Nanoscience Institute of Aragon (INA), Consejo Superior de Investigaciones Científicas (CSIC), University of Zaragoza, Zaragoza, Spain
| | - Silvia Loscos Aranda
- Infectious Diseases Department, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain
| | - Carla Toyas
- Infectious Diseases Department, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain
| | - Sergio Redrado
- Instituto de Carboquímica-Consejo Superior de Investigaciones Científicadas (ICB-CSIC), Zaragoza, Spain
| | - Elena Dolader-Ballesteros
- Department of Microbiology, Pediatry, Radiology and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Maykel Arias
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), Madrid, Spain
- Instituto de Carboquímica-Consejo Superior de Investigaciones Científicadas (ICB-CSIC), Zaragoza, Spain
| | - Eva M. Galvez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), Madrid, Spain
- Instituto de Carboquímica-Consejo Superior de Investigaciones Científicadas (ICB-CSIC), Zaragoza, Spain
| | - Rebeca Sanz-Pamplona
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Instituto de Salud Carlos III (CIBERESP), Madrid, Spain
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), Madrid, Spain
- Department of Microbiology, Pediatry, Radiology and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Jose Ramón Paño-Pardo
- Infectious Diseases Department, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), Madrid, Spain
| | - Ariel Ramírez-Labrada
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), Madrid, Spain
- Unidad de Nanotoxicología e Inmunotoxicología Experimental (UNATI), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| |
Collapse
|
6
|
Abidin MR, Alpan O, Plassmeyer M, Kozhaya L, Loizou D, Dogan M, Upchurch Z, Manes NP, Nita-Lazar A, Unutmaz D, Sønder SU. STAT4 Phosphorylation of T-helper Cells predicts surgical outcomes in Refractory Chronic Rhinosinusitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.11.23299743. [PMID: 38168423 PMCID: PMC10760250 DOI: 10.1101/2023.12.11.23299743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Objective Chronic rhinosinusitis (CRS) impacts an estimated 5% to 15% of people worldwide, incurring significant economic healthcare burden. There is a urgent need for the discovery of predictive biomarkers to improve treatment strategies and outcomes for CRS patients. Study design Cohort study of CRS patients and healthy controls using blood samples. Setting Out-patient clinics. Methods Whole blood samples were collected for flow cytometric analysis. Mechanistic studies involved the transfection of human primary T cells and Jurkat cells. Results Our analysis began with a 63-69 year-old female patient diagnosed with refractory CRS,. Despite undergoing multiple surgeries, she continually faced sinus infections. Whole exome sequencing pinpointed a heterozygous IL-12Rb1 mutation situated in the linker region adjacent to the cytokine binding domain. When subjected to IL-12 stimulation, the patient's CD4 T-cells exhibited diminished STAT4 phosphorylation. However, computer modeling or T-cell lines harboring the same IL-12 receptor mutation did not corroborate the hypothesis that IL-12Rb could be responsible for the reduced phosphorylation of STAT4 by IL-12 stimulation. Upon expanding our investigation to a broader CRS patient group using the pSTAT4 assay, we discerned a subset of refractory CRS patients with abnormally low STAT4 phosphorylation. The deficiency showed improvement both in-vitro and in-vivo after exposure to Latilactobacillus sakei (aka Lactobacillus sakei), an effect at least partially dependent on IL-12. Conclusion In refractory CRS patients, an identified STAT4 defect correlates with poor clinical outcomes after sinus surgery, which can be therapeutically targeted by Latilactobacillus sakei treatment. Prospective double-blind placebo-controlled trials are needed to validate our findings.
Collapse
Affiliation(s)
| | - Oral Alpan
- Amerimmune LLC, 8260 Greensboro Dr VA-22102 McLean, USA
| | | | - Lina Kozhaya
- The Jackson Laboratory, Farmington, CT, 06032 USA
| | - Denise Loizou
- Amerimmune LLC, 8260 Greensboro Dr VA-22102 McLean, USA
| | - Mikail Dogan
- The Jackson Laboratory, Farmington, CT, 06032 USA
| | | | - Nathan P Manes
- Functional Cellular Networks Section, Laboratory of Immune System Biology, NIAID, NIH, USA
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, NIAID, NIH, USA
| | | | | |
Collapse
|
7
|
Zhang T, Tian W, Wei S, Lu X, An J, He S, Zhao J, Gao Z, Li L, Lian K, Zhou Q, Zhang H, Wang L, Su L, Kang H, Niu T, Zhao A, Pan J, Cai Q, Xu Z, Chen W, Jing H, Li P, Zhao W, Cao Y, Mi J, Chen T, Chen Y, Zou P, Lukacs-Kornek V, Kurts C, Li J, Liu X, Mei Q, Zhang Y, Wei J. Multidisciplinary recommendations for the management of CAR-T recipients in the post-COVID-19 pandemic era. Exp Hematol Oncol 2023; 12:66. [PMID: 37501090 PMCID: PMC10375673 DOI: 10.1186/s40164-023-00426-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) posed an unprecedented challenge on public health systems. Despite the measures put in place to contain it, COVID-19 is likely to continue experiencing sporadic outbreaks for some time, and individuals will remain susceptible to recurrent infections. Chimeric antigen receptor (CAR)-T recipients are characterized by durable B-cell aplasia, hypogammaglobulinemia and loss of T-cell diversity, which lead to an increased proportion of severe/critical cases and a high mortality rate after COVID-19 infection. Thus, treatment decisions have become much more complex and require greater caution when considering CAR T-cell immunotherapy. Hence, we reviewed the current understanding of COVID-19 and reported clinical experience in the management of COVID-19 and CAR-T therapy. After a panel discussion, we proposed a rational procedure pertaining to CAR-T recipients with the aim of maximizing the benefit of CAR-T therapy in the post COVID-19 pandemic era.
Collapse
Affiliation(s)
- Tingting Zhang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Weiwei Tian
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Respiratory and Critical Care Medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Xinyi Lu
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Jing An
- School of Public Health, Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Shaolong He
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Jie Zhao
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Zhilin Gao
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Li Li
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Ke Lian
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Qiang Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Cardiovascular Medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Liang Wang
- Department of Hematology, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
| | - Liping Su
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Huicong Kang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Neurology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Pan
- State Key Laboratory of Experimental Hematology, Boren Biotherapy Translational Laboratory, Boren Clinical Translational Center, Beijing GoBroad Boren Hospital, Beijing, 100070, China
| | - Qingqing Cai
- Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Zhenshu Xu
- Hematology Department, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fuzhou, 350001, Fujian, China
| | - Wenming Chen
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hongmei Jing
- Department of Hematology, Peking University Third Hospital, Beijing, 100191, China
| | - Peng Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510535, Guangdong, China
| | - Wanhong Zhao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Jianqing Mi
- Shanghai Institute of Hematology, Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tao Chen
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuan Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Geriatrics, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Ping Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, 53111, Bonn, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, 53111, Bonn, Germany
| | - Jian Li
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, 53111, Bonn, Germany
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Department of Respiratory and Critical Care Medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China.
| | - Qi Mei
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China.
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| | - Jia Wei
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China.
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China.
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| |
Collapse
|
8
|
Zheng W, Zhu T, Tang L, Li Z, Jiang G, Huang X. Inhalable CAR-T cell-derived exosomes as paclitaxel carriers for treating lung cancer. J Transl Med 2023; 21:383. [PMID: 37308954 DOI: 10.1186/s12967-023-04206-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a worldwide health threat with high annual morbidity and mortality. Chemotherapeutic drugs such as paclitaxel (PTX) have been widely applied clinically. However, systemic toxicity due to the non-specific circulation of PTX often leads to multi-organ damage, including to the liver and kidney. Thus, it is necessary to develop a novel strategy to enhance the targeted antitumor effects of PTX. METHODS Here, we engineered exosomes derived from T cells expressing the chimeric antigen receptor (CAR-Exos), which targeted mesothelin (MSLN)-expressing Lewis lung cancer (MSLN-LLC) through the anti-MSLN single-chain variable fragment (scFv) of CAR-Exos. PTX was encapsulated into CAR-Exos (PTX@CAR-Exos) and administered via inhalation to an orthotopic lung cancer mouse model. RESULTS Inhaled PTX@CAR-Exos accumulated within the tumor area, reduced tumor size, and prolonged survival with little toxicity. In addition, PTX@CAR-Exos reprogrammed the tumor microenvironment and reversed the immunosuppression, which was attributed to infiltrating CD8+ T cells and elevated IFN-γ and TNF-α levels. CONCLUSIONS Our study provides a nanovesicle-based delivery platform to promote the efficacy of chemotherapeutic drugs with fewer side effects. This novel strategy may ameliorate the present obstacles to the clinical treatment of lung cancer.
Collapse
Affiliation(s)
- Wei Zheng
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Tianchuan Zhu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Lantian Tang
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zhijian Li
- Foshan Fourth People's Hospital, Foshan, 528200, Guangdong, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| | - Xi Huang
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
9
|
Li F, Xu W, Zhang X, Wang W, Su S, Han P, Wang H, Xu Y, Li M, Fan L, Zhang H, Dai Q, Lin H, Qi X, Liang J, Wang X, Jiang S, Xie Y, Lu L, Yang X. A spike-targeting bispecific T cell engager strategy provides dual layer protection against SARS-CoV-2 infection in vivo. Commun Biol 2023; 6:592. [PMID: 37264086 PMCID: PMC10234585 DOI: 10.1038/s42003-023-04955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
Neutralizing antibodies exert a potent inhibitory effect on viral entry; however, they are less effective in therapeutic models than in prophylactic models, presumably because of their limited efficacy in eliminating virus-producing cells via Fc-mediated cytotoxicity. Herein, we present a SARS-CoV-2 spike-targeting bispecific T-cell engager (S-BiTE) strategy for controlling SARS-CoV-2 infection. This approach blocks the entry of free virus into permissive cells by competing with membrane receptors and eliminates virus-infected cells via powerful T cell-mediated cytotoxicity. S-BiTE is effective against both the original and Delta variant of SARS-CoV2 with similar efficacy, suggesting its potential application against immune-escaping variants. In addition, in humanized mouse model with live SARS-COV-2 infection, S-BiTE treated mice showed significantly less viral load than neutralization only treated group. The S-BiTE strategy may have broad applications in combating other coronavirus infections.
Collapse
Affiliation(s)
- Fanlin Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China
| | - Xiaoqing Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Physiology, Naval Medical University, Shanghai, 200433, China
| | - Wanting Wang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China
| | - Ping Han
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyong Wang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanqin Xu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Min Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lilv Fan
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huihui Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Dai
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Lin
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyue Qi
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Liang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Wang
- Shanghai Longyao Biotechnology Limited, Shanghai, 201203, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China.
| | - Xuanming Yang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|