1
|
Isola JVV, Biswas S, Jayarathne H, Hubbart CR, Hense JD, Matsuzaki S, Kinter MT, Humphries KM, Ocañas SR, Sadagurski M, Stout MB. Canagliflozin treatment prevents follicular exhaustion and attenuates hallmarks of ovarian aging in genetically heterogenous mice. GeroScience 2024:10.1007/s11357-024-01465-w. [PMID: 39672978 DOI: 10.1007/s11357-024-01465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024] Open
Abstract
Ovarian aging is characterized by declines in follicular reserve and the emergence of mitochondrial dysfunction, reactive oxygen species production, inflammation, and fibrosis, which eventually results in menopause. Menopause is associated with increased systemic aging and the development of numerous comorbidities; therefore, the attenuation of ovarian aging could also delay systemic aging processes in women. Recent work has established that the anti-diabetic drug Canagliflozin (Cana), a sodium-glucose transporter 2 inhibitor, elicits benefits on aging-related outcomes, likely through the modulation of nutrient-sensing pathways and metabolic homeostasis. Given that nutrient-sensing pathways play a critical role in controlling primordial follicle activation, we sought to determine if chronic Cana administration would delay ovarian aging and curtail the emergence of pathological hallmarks associated with reproductive senescence. We found that mice receiving Cana maintained their ovarian reserve through 12 months of age, which was associated with declines in primordial follicles FoxO3a phosphorylation, a marker of activation, when compared to the age-matched controls. Furthermore, Cana treatment led to decreased collagen, lipofuscin, and T cell accumulation at 12 months of age. Whole ovary transcriptomic and proteomic analyses revealed subtle improvements, predominantly in mitochondrial function and the regulation of cellular proliferation. Pathway analyses of the transcriptomic data revealed a downregulation in cell proliferation and mitochondrial dysfunction signatures, with an upregulation of oxidative phosphorylation. Pathway analyses of the proteomic data revealed declines in signatures associated with PI3K/AKT activity and lymphocyte accumulation. Collectively, we demonstrate that Cana treatment can delay ovarian aging in mice and could potentially have efficacy for delaying ovarian aging in women.
Collapse
Affiliation(s)
- José V V Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Subhasri Biswas
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Hashan Jayarathne
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
| | - Chase R Hubbart
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Jessica D Hense
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Michael T Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Sarah R Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Marianna Sadagurski
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Athar F, Karmani M, Templeman N. Metabolic hormones are integral regulators of female reproductive health and function. Biosci Rep 2024; 44:BSR20231916. [PMID: 38131197 PMCID: PMC10830447 DOI: 10.1042/bsr20231916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The female reproductive system is strongly influenced by nutrition and energy balance. It is well known that food restriction or energy depletion can induce suppression of reproductive processes, while overnutrition is associated with reproductive dysfunction. However, the intricate mechanisms through which nutritional inputs and metabolic health are integrated into the coordination of reproduction are still being defined. In this review, we describe evidence for essential contributions by hormones that are responsive to food intake or fuel stores. Key metabolic hormones-including insulin, the incretins (glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1), growth hormone, ghrelin, leptin, and adiponectin-signal throughout the hypothalamic-pituitary-gonadal axis to support or suppress reproduction. We synthesize current knowledge on how these multifaceted hormones interact with the brain, pituitary, and ovaries to regulate functioning of the female reproductive system, incorporating in vitro and in vivo data from animal models and humans. Metabolic hormones are involved in orchestrating reproductive processes in healthy states, but some also play a significant role in the pathophysiology or treatment strategies of female reproductive disorders. Further understanding of the complex interrelationships between metabolic health and female reproductive function has important implications for improving women's health overall.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Muskan Karmani
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M. Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
3
|
Qin F, Wei W, Gao J, Jiang X, Che L, Fang Z, Lin Y, Feng B, Zhuo Y, Hua L, Wang J, Sun M, Wu D, Xu S. Effect of Dietary Fiber on Reproductive Performance, Intestinal Microorganisms and Immunity of the Sow: A Review. Microorganisms 2023; 11:2292. [PMID: 37764136 PMCID: PMC10534349 DOI: 10.3390/microorganisms11092292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Dietary fiber is a substance that cannot be digested by endogenous digestive enzymes but can be digested by the cellulolytic enzymes produced by intestinal microorganisms. In the past, dietary fiber was considered an anti-nutrient component in diets because it could resist digestion by endogenous enzymes secreted by the intestine and has a negative effect on the digestion of energy-producing nutrients. However, due to its functional properties, potential health benefits to animals, and innate fermentability, it has attracted increasing attention in recent years. There are a plethora of studies on dietary fiber. Evidence suggests that dietary fiber can provide energy for pigs through intestinal microbial fermentation and improve sow welfare, reproductive performance, intestinal flora, and immunity. This is a brief overview of the composition and classification of dietary fiber, the mechanism of action and effects of dietary fiber on reproductive performance, intestinal microorganisms, and the immune index of the sow. This review also provides scientific guidance for the application of dietary fiber in sow production.
Collapse
Affiliation(s)
- Feng Qin
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Wenyan Wei
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Junjie Gao
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Xuemei Jiang
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Lianqiang Che
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Zhengfeng Fang
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Yan Lin
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Bin Feng
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Yong Zhuo
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Lun Hua
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Jianping Wang
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Yucheng District, Ya’an 625014, China;
| | - De Wu
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Shengyu Xu
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| |
Collapse
|
4
|
Dong L, Teh DBL, Kennedy BK, Huang Z. Unraveling female reproductive senescence to enhance healthy longevity. Cell Res 2023; 33:11-29. [PMID: 36588114 PMCID: PMC9810745 DOI: 10.1038/s41422-022-00718-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/19/2022] [Indexed: 01/03/2023] Open
Abstract
In a society where women often want successful careers and equal opportunities to men, the early nature of ovarian aging often forces women to make difficult life choices between career and family development. Fertility in women begins to decline after the age of 37 years and it is rare for pregnancies to occur after 45. This reproductive decline in women is inevitable and culminates in menopause, which is a major driver of age-related diseases. In a world where biomedical advances are leading to modifiable biological outcomes, it is time to focus on mitigating female reproductive senescence to maintain fertility and preserve age-related hormonal functions, with the goal of providing increased life choices and enhancing healthspan. To date, reproductive longevity research remains an understudied field. More needs to be done to unravel the biology of the ovarian follicles, which are the functional units of reproductive lifespan and are comprised of cell types including the oocyte (female gamete) and a group of specialized supporting somatic cells. Biological attempts to maintain the quality and quantity of follicles in animal models through manipulating pathways involved in aging can potentially prolong female reproductive lifespan and healthspan. Here, we summarize the molecular events driving ovarian aging and menopause and the interventional strategies to offset these events. Developing solutions to female reproductive senescence will open doors to discover ways to enhance true healthy longevity for both men and women.
Collapse
Affiliation(s)
- Lu Dong
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel Boon Loong Teh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Brian Keith Kennedy
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore.
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Zhongwei Huang
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore.
| |
Collapse
|
5
|
Yang Z, Lian W, Waiho K, Zhu L, Chen A, Cheng Y, Wang Y. Effects of copper exposure on lipid metabolism and SREBP pathway in the Chinese mitten crab Eriocheir sinensis. CHEMOSPHERE 2022; 308:136556. [PMID: 36155024 DOI: 10.1016/j.chemosphere.2022.136556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Copper (Cu) is not only a common metal pollutant in the aquatic environment but also an essential trace element for aquatic organisms such as the Chinese mitten crab (Eriocheir sinensis). Cu is known to regulate lipid metabolism yet exert toxic effects if ingested in excess. However, the molecular regulatory roles of Cu in the lipid metabolism of crabs remains unclear. Thus, this study investigated the potential regulatory mechanism of Cu onto lipid metabolism of E. sinensis following acute Cu exposure. Crabs were exposed to environmental concentration of Cu (50 μg/L) for 96 h, and the expression of sterol regulatory element binding protein (SREBP) was knocked down by RNA interference (RNAi) to test its effect on Cu exposure. The results showed that RNAi significantly attenuated the Cu exposure-induced increase in lipid synthesis and triglycerides (TG) hydrolysis, while significantly inhibited the Cu exposure-induced decrease in fatty acid β-oxidation, suggesting that SREBP is involved in Cu-induced lipid metabolism. Subsequent analyses of the transcriptome results further revealed potential responsive genes of SREBP that were linked to lipid metabolism and immune regulation. Moreover, Cu may affect lipid metabolism through the TOR-SREBP pathway in E. sinensis. This work provides a reference for exploring the effects of Cu on lipid metabolism disorders in crustaceans.
Collapse
Affiliation(s)
- Zhigang Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Wan Lian
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Liangliang Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Aqin Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
6
|
Clark KL, George JW, Przygrodzka E, Plewes MR, Hua G, Wang C, Davis JS. Hippo Signaling in the Ovary: Emerging Roles in Development, Fertility, and Disease. Endocr Rev 2022; 43:1074-1096. [PMID: 35596657 PMCID: PMC9695108 DOI: 10.1210/endrev/bnac013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/09/2023]
Abstract
Emerging studies indicate that the Hippo pathway, a highly conserved pathway that regulates organ size control, plays an important role in governing ovarian physiology, fertility, and pathology. Specific to the ovary, the spatiotemporal expression of the major components of the Hippo signaling cascade are observed throughout the reproductive lifespan. Observations from multiple species begin to elucidate the functional diversity and molecular mechanisms of Hippo signaling in the ovary in addition to the identification of interactions with other signaling pathways and responses to various external stimuli. Hippo pathway components play important roles in follicle growth and activation, as well as steroidogenesis, by regulating several key biological processes through mechanisms of cell proliferation, migration, differentiation, and cell fate determination. Given the importance of these processes, dysregulation of the Hippo pathway contributes to loss of follicular homeostasis and reproductive disorders such as polycystic ovary syndrome (PCOS), premature ovarian insufficiency, and ovarian cancers. This review highlights what is currently known about the Hippo pathway core components in ovarian physiology, including ovarian development, follicle development, and oocyte maturation, while identifying areas for future research to better understand Hippo signaling as a multifunctional pathway in reproductive health and biology.
Collapse
Affiliation(s)
- Kendra L Clark
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Jitu W George
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Emilia Przygrodzka
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Michele R Plewes
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cheng Wang
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
7
|
Gonfloni S, Jodice C, Gustavino B, Valentini E. DNA Damage Stress Response and Follicle Activation: Signaling Routes of Mammalian Ovarian Reserve. Int J Mol Sci 2022; 23:14379. [PMID: 36430860 PMCID: PMC9693393 DOI: 10.3390/ijms232214379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Chemotherapy regimens and radiotherapy are common strategies to fight cancer. In women, these therapies may cause side effects such as premature ovarian insufficiency (POI) and infertility. Clinical strategies to protect the ovarian reserve from the lethal effect of cancer therapies needs better understanding of the mechanisms underlying iatrogenic loss of follicle reserve. Recent reports demonstrate a critical role for p53 and CHK2 in the oocyte response to different DNA stressors, which are commonly used to treat cancer. Here we review the molecular mechanisms underlying the DNA damage stress response (DDR) and discuss crosstalk between DDR and signaling pathways implicated in primordial follicle activation.
Collapse
Affiliation(s)
- Stefania Gonfloni
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Carla Jodice
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Bianca Gustavino
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Elvia Valentini
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy
- PhD Program in Cellular and Molecular Biology, 00133 Rome, Italy
| |
Collapse
|
8
|
Xu S, Dong Y, Chen S, Liu Y, Li Z, Jia X, Briens M, Jiang X, Lin Y, Che L, Zhuo Y, Li J, Feng B, Fang Z, Wang J, Ren Z, Wu D. 2-Hydroxy-4-Methylselenobutanoic Acid Promotes Follicle Development by Antioxidant Pathway. Front Nutr 2022; 9:900789. [PMID: 35619952 PMCID: PMC9127692 DOI: 10.3389/fnut.2022.900789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022] Open
Abstract
Selenium (Se) is assumed to promote the follicle development by attenuating oxidative stress. The current study was developed to evaluate the effects of dietary 2-hydroxy-4-methylselenobutanoic acid (HMSeBA) supplementation on the follicle development in vivo and on the function of ovarian granulosa cells (GCs) in vitro. Thirty-six gilts were randomly assigned to fed control diet (CON), Na2SeO3 diet (0.3 mg Se/kg) or HMSeBA diet (0.3 mg Se/kg). The results showed that HMSeBA and Na2SeO3 supplementation both increased the total selenium content in liver and serum compared with control, while HMSeBA increased the total selenium content in liver compared with Na2SeO3 group. HMSeBA tended to increase the total selenium content in ovary compared with control. HMSeBA and Na2SeO3 supplementation both increased the weight of uteri in gilts at the third estrus. Moreover, HMSeBA supplementation down-regulated the gene expression of growth differentiation factor-9 (GDF-9) and bone morpho-genetic protein-15 (BMP-15) in cumulus-oocyte complexes (COCs). HMSeBA supplementation decreased malondialdehyde (MDA) content in serum, liver and ovary, increased activity of T-AOC in liver, TXNRD in ovary and GPX in serum, liver and ovary, while up-regulated the liver GPX2, SOD1 and TXNRD1, ovarian GPX1 gene expression. In vitro, HMSeBA treatment promoted GCs' proliferation and secretion of estradiol (E2). HMSeBA treatment increased the activity of T-AOC, T-SOD, GPX, TXNRD and decreased MDA content in GCs in vitro. Meanwhile, HMSeBA treatment up-regulated SOD2 and GPX1 gene expression in GCs in vitro. In conclusion, HMSeBA supplementation is more conducive to promoting follicle development by antioxidant pathway.
Collapse
Affiliation(s)
- Shengyu Xu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China,*Correspondence: Shengyu Xu
| | - Yanpeng Dong
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Sirun Chen
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yalei Liu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zimei Li
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xinlin Jia
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | | | - Xuemei Jiang
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China,De Wu
| |
Collapse
|
9
|
Wang J, Jia R, Gong H, Celi P, Zhuo Y, Ding X, Bai S, Zeng Q, Yin H, Xu S, Liu J, Mao X, Zhang K. The Effect of Oxidative Stress on the Chicken Ovary: Involvement of Microbiota and Melatonin Interventions. Antioxidants (Basel) 2021; 10:1422. [PMID: 34573054 PMCID: PMC8472688 DOI: 10.3390/antiox10091422] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
The poultry ovary is used as a classic model to study ovarian biology and ovarian cancer. Stress factors induced oxidative stress to cause follicle atresia, which may be a fundamental reason for the reduction in fertility in older laying hens or in aging women. In the present study, we set out to characterize the relationships between oxidative stress and ovarian function. Layers (62 weeks of age; BW = 1.42 ± 0.12 kg) were injected with tert-butyl hydroperoxide (tBHP) at 0 (CON) and 800 μmol/kg BW (oxidative stress group, OS) for 24 days and the role of melatonin (Mel) on tBHP-induced ovary oxidative stress was assessed through ovary culture in vitro. The OS (800 μmol/kg BW tert-butyl hydroperoxide) treatment decreased the reproduction performance and ovarian follicle numbers. OS decreased the expression of SIRT1 and increased the P53 and FoxO1 expression of the ovary. A decreased Firmicutes to Bacteroidetes ratio, enriched Marinifilaceae (family), Odoribacter (genus) and Bacteroides_plebeius (species) were observed in the cecum of the OS group. Using Mel in vitro enhanced the follicle numbers and decreased the ovary cell apoptosis induced by tBHP. In addition, it increased the expression of SIRT1 and decreased the P53 and FoxO1 expression. These findings indicated that oxidative stress could decrease the laying performance, ovarian function and influence gut microbiota and body metabolites in the layer model, while the melatonin exerts an amelioration the ovary oxidative stress through SIRT1-P53/FoxO1 pathway.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Ru Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Haojie Gong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Pietro Celi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia;
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Xuemei Ding
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Shiping Bai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Qiufeng Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Huadong Yin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Keying Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| |
Collapse
|