1
|
Dama G, Xue C, Zhang Y, Li D, Fan J, Qiao L, Xu Z, Yang C, Liu Y, Abdullah MFILB, Lin J. CD34 + stromal cells/telocytes and their role in mouse lung development: Light microscopy, immunofluorescence, ultrastructural and scanning electron microscopy evidence. Cell Biol Int 2024; 48:1680-1697. [PMID: 39099163 DOI: 10.1002/cbin.12223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024]
Abstract
Telocytes (TCs), a novel type of mesenchymal or interstitial cell with specific, very long and thin cellular prolongations, have been found in various mammalian organs and have potential biological functions. However, their existence during lung development is poorly understood. This study aimed to investigate the existence, morphological features, and role of CD34+ SCs/TCs in mouse lungs from foetal to postnatal life using primary cell culture, double immunofluorescence, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The immunofluorescence double staining profiles revealed positive expression of CD34 and PDGFR-α, Sca-1 or VEGFR-3, and the expression of these markers differed among the age groups during lung development. Intriguingly, in the E18.5 stage of development, along with the CD34+ SCs/TCs, haematopoietic stem cells and angiogenic factors were also significantly increased in number compared with those in the E14.5, E16.5, P0 and P7. Subsequently, TEM confirmed that CD34+ SCs/TCs consisted of a small cell body with long telopodes (Tps) that projected from the cytoplasm. Tps consisted of alternating thin and thick segments known as podomers and podoms. TCs contain abundant endoplasmic reticulum, mitochondria and secretory vesicles and establish close connections with neighbouring cells. Furthermore, SEM revealed characteristic features, including triangular, oval, spherical, or fusiform cell bodies with extensive cellular prolongations, depending on the number of Tps. Our findings provide evidence for the existence of CD34+ SCs/TCs, which contribute to vasculogenesis, the formation of the air‒blood barrier, tissue organization during lung development and homoeostasis.
Collapse
Affiliation(s)
- Ganesh Dama
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Community Health, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | - Chengxu Xue
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yangxia Zhang
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dezhuang Li
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinyu Fan
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liang Qiao
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhihao Xu
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ciqing Yang
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanli Liu
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | | | - Juntang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
2
|
Mierzejewski B, Różycka J, Stremińska W, Brągiel-Pieczonka A, Sidor K, Hoser G, Bartoszewicz Z, Gewartowska M, Frontczak-Baniewicz M, Ciemerych MA, Brzóska E, Skirecki T. The Role of Pericytes in Lipopolysaccharide-Induced Murine Acute Respiratory Distress Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1443-1457. [PMID: 38705380 DOI: 10.1016/j.ajpath.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/29/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a heterogeneous clinical syndrome that is most commonly triggered by infection-related inflammation. Lung pericytes can respond to infection and act as immune and proangiogenic cells; moreover, these cells can differentiate into myofibroblasts in nonresolving ARDS and contribute to the development of pulmonary fibrosis. Here, we aimed to characterize the role of lung cells, which present characteristics of pericytes, such as peri-endothelial location and expression of a panel of specific markers. A murine model of lipopolysaccharide (LPS)-induced resolving ARDS was used to study their role in ARDS. The development of ARDS was confirmed after LPS instillation, which was resolved 14 days after onset. Immunofluorescence and flow cytometry showed early expansion of neural-glial antigen 2+ β-type platelet-derived growth factor receptor+ pericytes in murine lungs with loss of CD31+ β-type platelet-derived growth factor receptor+ endothelial cells. These changes were accompanied by specific changes in lung structure and loss of vascular integrity. On day 14 after ARDS onset, the composition of pericytes and endothelial cells returned to baseline values. LPS-induced ARDS activated NOTCH signaling in lung pericytes, the inhibition of which during LPS stimulation reduced the expression of its downstream target genes, pericyte markers, and angiogenic factors. Together, these data indicate that lung pericytes in response to inflammatory injury activate NOTCH signaling that supports their maintenance and in turn can contribute to recovery of the microvascular endothelium.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Justyna Różycka
- Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Aneta Brągiel-Pieczonka
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Karolina Sidor
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Grażyna Hoser
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Zbigniew Bartoszewicz
- Department of Internal Diseases and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Gewartowska
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Edyta Brzóska
- Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland.
| |
Collapse
|
3
|
Babadag S, Altundag-Erdogan Ö, Akkaya-Ulum YZ, Çelebi-Saltik B. Evaluation of Tumorigenic Properties of MDA-MB-231 Cancer Stem Cells Cocultured with Telocytes and Telocyte-Derived Mitochondria Following miR-146a Inhibition. DNA Cell Biol 2024; 43:341-352. [PMID: 38634821 DOI: 10.1089/dna.2024.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Telocytes have some cytoplasmic extensions called telopodes, which are thought to play a role in mitochondrial transfer in intercellular communication. Besides, it is hypothesized that telocytes establish cell membrane-mediated connections with breast cancer cells in coculture and may contribute to the survival of neoplastic cell clusters together with other stromal cells. The aim of this study is to investigate the contribution of telocytes and telocyte-derived mitochondria, which have also been identified in breast tumors, to the tumor development of breast cancer stem cells (CSCs) via miR-146a-5p. The isolation/characterization of telocytes from bone marrow mononuclear cells and the isolation of mitochondria from these cells were performed, respectively. In the next step, CSCs were isolated from the MDA-MB-231 cell line and were characterized. Then, miR-146a-5p expressions of CSCs were inhibited by anti-miR-146a-5p. The epithelial-mesenchymal transition (EMT) was determined by evaluating changes in vimentin protein levels and was evaluated by analyzing BRCA1, P53, SOX2, E-cadherin, and N-cadherin gene expression changes. Our results showed that miR-146a promoted stemness and oncogenic properties in CSCs. EMT (N-cadherin, vimentin, E-cadherin) and tumorigenic markers (BRCA1, P53, SOX2) of CSCs decreased after miR-146a inhibition. Bone marrow-derived telocytes and mitochondria derived from telocytes favored the reduction of CSC aggressiveness following this inhibition.
Collapse
Affiliation(s)
- Sena Babadag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Özlem Altundag-Erdogan
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Qi R, Zhang Y, Yan F. Exosomes enriched by miR-429-3p derived from ITGB1 modified Telocytes alleviates hypoxia-induced pulmonary arterial hypertension through regulating Rac1 expression. Cell Biol Toxicol 2024; 40:32. [PMID: 38767703 PMCID: PMC11106170 DOI: 10.1007/s10565-024-09879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH. METHODS We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression. RESULTS Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation. CONCLUSIONS Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.
Collapse
Affiliation(s)
- Ruixue Qi
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
| | - Yong Zhang
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Furong Yan
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Sanches BDA, Teófilo FBS, Brunet MY, Villapun VM, Man K, Rocha LC, Neto JP, Matsumoto MR, Maldarine JS, Ciena AP, Cox SC, Carvalho HF. Telocytes: current methods of research, challenges and future perspectives. Cell Tissue Res 2024; 396:141-155. [PMID: 38539007 DOI: 10.1007/s00441-024-03888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/12/2024] [Indexed: 04/28/2024]
Abstract
Telocytes (TCs) are CD34-positive interstitial cells that have long cytoplasmic projections, called telopodes; they have been identified in several organs and in various species. These cells establish a complex communication network between different stromal and epithelial cell types, and there is growing evidence that they play a key role in physiology and pathology. In many tissues, TC network impairment has been implicated in the onset and progression of pathological conditions, which makes the study of TCs of great interest for the development of novel therapies. In this review, we summarise the main methods involved in the characterisation of these cells as well as their inherent difficulties and then discuss the functional assays that are used to uncover the role of TCs in normal and pathological conditions, from the most traditional to the most recent. Furthermore, we provide future perspectives in the study of TCs, especially regarding the establishment of more precise markers, commercial lineages and means for drug delivery and genetic editing that directly target TCs.
Collapse
Affiliation(s)
- Bruno D A Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil
| | - Francisco B S Teófilo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil
| | - Mathieu Y Brunet
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Victor M Villapun
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Kenny Man
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Lara C Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), 1515 24 A Ave., Rio Claro, São Paulo, Brazil
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), 1515 24 A Ave., Rio Claro, São Paulo, Brazil
| | - Marta R Matsumoto
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil
| | - Juliana S Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil
| | - Adriano P Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), 1515 24 A Ave., Rio Claro, São Paulo, Brazil
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil.
| |
Collapse
|
6
|
Wei X, Li H, Chen T, Yang X. Histological study of telocytes in mice intrauterine adhesion model and their positive effect on mesenchymal stem cells in vitro. Cell Biol Int 2024; 48:647-664. [PMID: 38353345 DOI: 10.1002/cbin.12137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/31/2023] [Accepted: 01/28/2024] [Indexed: 04/16/2024]
Abstract
Intrauterine adhesions (IUA), the main cause of secondary infertility in women, result from irreversible fibrotic repair of the endometrium due to inflammation or human factors, accompanied by disruptions in the repair function of endometrial stem cells. This significantly impacts the physical and mental health of women in their childbearing years. Telocytes (TCs), a distinctive type of interstitial cells found in various tissues and organs, play diverse repair functions due to their unique spatial structure. In this study, we conduct the inaugural exploration of the changes in TCs in IUA disease and their potential impact on the function of stem cells. Our results show that in vivo, through double immunofluorescence staining (CD34+/Vimentin+; CD34+/CD31-), as endometrial fibrosis deepens, the number of TCs gradually decreases, telopodes shorten, and the three-dimensional structure becomes disrupted in the mouse IUA mode. In vitro, TCs can promote the proliferation and cycle of bone mesenchymal stem cells (BMSCs) by promoting the Wnt/β-catenin signaling pathway, which were inhibited using XAV939. TCs can promote the migrated ability of BMSCs and contribute to the repair of stem cells during endometrial injury. In addition, TCs can inhibit the apoptosis of BMSCs through the Bcl-2/Bax pathway. In conclusion, our study demonstrates, for the first time, the resistance role of TCs in IUA disease, shedding light on their potential involvement in endometrial repair through the modulation of stem cell function.
Collapse
Affiliation(s)
- Xiaojiao Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, People's Republic of China
| | - Hui Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, People's Republic of China
| | - Tianquan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, People's Republic of China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People's Republic of China
| | - Xiaojun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, People's Republic of China
| |
Collapse
|
7
|
Qi R, Wang Y, Yan F, Zhong J. Exosomes derived from ITGB1 modified Telocytes alleviates LPS-induced inflammation and oxidative stress through YAP1/ROS axis. Heliyon 2024; 10:e27086. [PMID: 38486751 PMCID: PMC10938118 DOI: 10.1016/j.heliyon.2024.e27086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Aims Previous studies have demonstrated a significant upregulation of Integrin Beta 1 (ITGB1) in Telocytes. This study aims to explore the roles and underlying mechanisms of ITGB1 in inflammation and oxidative stress following Lipo-polysaccharide (LPS) administration in Telocytes. Methods We observed an increase in reactive oxygen species (ROS) production, accompanied by a reduction in ITGB1 levels post-LPS treatment. Results Notably, inhibiting ROS synthesis markedly reduced LPS-induced ITGB1 expression. Additionally, ectopic ITGB1 expression mitigated LPS-induced inflammation and oxidative stress, evident through decreased levels of pro-inflammatory markers such as Tumor Necrosis Factor-alpha (TNF-α), Interleukin (IL)-1β, IL-6, and Monocyte Chemoattractant Protein (MCP)-1. Depletion of endothelial Yes-Associated Protein 1 (YAP1) notably diminished the levels of inflammatory markers and ROS production. Furthermore, exosomes secreted by ITGB1-modified Telocytes promoted Human Umbilical Vein Endothelial Cells (HUVECs) proliferation and inhibited apoptosis. In vivo experiments revealed that exosomes from ITGB1-modified Telocytes modulated functional and structural changes, as well as inflammatory responses in Acute Lung Injury (ALI). Conclusion These findings highlight the critical role of the YAP1/ROS axis in LPS-induced Telocyte injuries, underlining the therapeutic potential of targeting ITGB1 for mitigating inflammation and oxidative stress in these cells.
Collapse
Affiliation(s)
- Ruixue Qi
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yuchao Wang
- Medical Imaging Department, The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Furong Yan
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jinlong Zhong
- Department of Thoracic Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Zhang S, Sun L, Chen B, Lin S, Gu J, Tan L, Lin M. Telocytes protect against lung tissue fibrosis through hexokinase 2-dependent pathway by secreting hepatocyte growth factor. Clin Exp Pharmacol Physiol 2023; 50:964-972. [PMID: 37715611 DOI: 10.1111/1440-1681.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/08/2023] [Accepted: 08/27/2023] [Indexed: 09/17/2023]
Abstract
Pulmonary fibrosis (PF) is one of the common manifestations of end-stage lung disease. Chronic lung failure after lung transplantation is mainly caused by bronchiolitis obliterans syndrome (BOS) and is mainly characterized by lung tissue fibrosis. Pulmonary epithelial-mesenchymal transformation (EMT) is crucial for pulmonary fibrosis. Telocytes (TCs), a new type of mesenchymal cells, play a protective role in various acute injuries. For exploring the anti-pulmonary fibrosis effect of TCs in the BOS model in vitro and the related mechanism, rat tracheal epithelial (RTE) cells were treated with transforming growth factor-β (TGF-β) to simulate lung tissue fibrosis in vitro. The RTE cells were then co-cultured with TCs primarily extracted from rat lung tissue. Western blot, Seahorse XF Analysers and enzyme-linked immunosorbent assay were used to detect the level of EMT and aerobic respiration of RTE cells. Furthermore, anti-hepatocyte growth factor (anti-HGF) antibody was exogenously added to the cultured cells to explore further mechanisms. Moreover, hexokinase 2 (HK2) in RTE cells was knocked down to assess whether it influences the blocking effect of the anti-HGF antibody. TGF-β could induce lung tissue fibrosis in RTE cells in vitro. Nevertheless, TCs co-culture decreased the level of EMT, glucose metabolic indicators (lactate and ATP) and oxygen levels. Furthermore, TCs released hepatocyte growth factor (HGF). Therefore, the exogenous addition of anti-HGF antibody in the co-culture system blocked the anti-lung tissue fibrosis effect. However, HK2 knockdown attenuated the blocking effect of the anti-HGF antibody. In conclusion, TCs can protect against lung tissue fibrosis by releasing HGF, a process dependent on HK2.
Collapse
Affiliation(s)
- Shaoyuan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| | - Linyi Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| | - Borong Chen
- Department of Thoracic Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Siyun Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianmin Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| | - Miao Lin
- Department of Thoracic Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| |
Collapse
|
9
|
Qi R, Hou J, Yang Y, Yang Z, Wu L, Qiao T, Wang X, Song D. Integrin beta1 mediates the effect of telocytes on mesenchymal stem cell proliferation and migration in the treatment of acute lung injury. J Cell Mol Med 2023; 27:3980-3994. [PMID: 37855260 PMCID: PMC10746951 DOI: 10.1111/jcmm.17976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 08/22/2023] [Accepted: 09/16/2023] [Indexed: 10/20/2023] Open
Abstract
Co-transplantation of mesenchymal stem cells (MSCs) with telocytes (TCs) was found to have therapeutic effects, although the mechanism of intercellular communication is still unknown. Our current studies aim at exploring the potential molecular mechanisms of TCs interaction and communication with MSCs with a focus on integrin beta1 (ITGB1) in TCs. We found that the co-culture of MSCs with ITGB1-deleted TCs (TCITGB1-ko ) changed the proliferation, differentiation and growth dynamics ability of MSC in responses to LPS or PI3K inhibitor. Changes of MSC proliferation and apoptosis were accompanied with the dysregulation of cytokine mRNA expression in MSCs co-cultured with TCITGB1-ko during the exposure of PI3Kα/δ/β inhibitor, of which IL-1β, IL-6 and TNF-α increased, while IFN-γ, IL-4 and IL-10 decreased. The responses of PI3K p85, PI3K p110 and pAKT of MSCs co-cultured with TCITGB1-ko to LPS or PI3K inhibitor were opposite to those with ITGB1-presented TCs. The intraperitoneal injection of TCITGB1-ko , TCvector or MSCs alone, as well as the combination of MSCs with TCITGB1-ko or TCvector exhibited therapeutic effects on LPS-induced acute lung injury. Thus, our data indicate that telocyte ITGB1 contributes to the interaction and intercellular communication between MSCs and TCs, responsible for influencing other cell phenomes and functions.
Collapse
Affiliation(s)
- Ruixue Qi
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalFudan University Shanghai Medical SchoolShanghaiChina
| | - Jiayun Hou
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute of Clinical ScienceFudan University Shanghai Medical SchoolShanghaiChina
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Department of Pulmonary MedicineShanghai Xuhui Central Hospital, Fudan UniversityShanghaiChina
| | - Ying Yang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalFudan University Shanghai Medical SchoolShanghaiChina
| | - Zhicheng Yang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalFudan University Shanghai Medical SchoolShanghaiChina
| | - Lihong Wu
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalFudan University Shanghai Medical SchoolShanghaiChina
| | - Tiankui Qiao
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalFudan University Shanghai Medical SchoolShanghaiChina
| | - Xiangdong Wang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalFudan University Shanghai Medical SchoolShanghaiChina
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute of Clinical ScienceFudan University Shanghai Medical SchoolShanghaiChina
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Department of Pulmonary MedicineShanghai Xuhui Central Hospital, Fudan UniversityShanghaiChina
| | - Dongli Song
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute of Clinical ScienceFudan University Shanghai Medical SchoolShanghaiChina
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Department of Pulmonary MedicineShanghai Xuhui Central Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
10
|
Feng B, Feng X, Yu Y, Xu H, Ye Q, Hu R, Fang X, Gao F, Wu J, Pan Q, Yu J, Lang G, Li L, Cao H. Mesenchymal stem cells shift the pro-inflammatory phenotype of neutrophils to ameliorate acute lung injury. Stem Cell Res Ther 2023; 14:197. [PMID: 37553691 PMCID: PMC10408228 DOI: 10.1186/s13287-023-03438-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) treatment plays a major role in the management of acute lung injury (ALI), and neutrophils are the initial line of defense against ALI. However, the effect of MSCs on neutrophils in ALI remains mostly unknown. METHODS We investigated the characteristics of neutrophils in lung tissue of ALI mice induced by lipopolysaccharide after treatment with MSCs using single-cell RNA sequencing. Neutrophils separated from lung tissue in ALI were co-cultured with MSCs, and then samples were collected for reverse transcription-polymerase chain reaction and flow cytometry. RESULTS During inflammation, six clusters of neutrophils were identified, annotated as activated, aged, and circulatory neutrophils. Activated neutrophils had higher chemotaxis, reactive oxygen species (ROS) production, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase scores than aged neutrophils. Circulatory neutrophils occurred mainly in healthy tissue and were characterized by higher expression of Cxcr2 and Sell. Activated neutrophils tended to exhibit higher expression of Cxcl10 and Cd47, and lower expression of Cd24a, while aged neutrophils expressed a lower level of Cd47 and higher level of Cd24a. MSC treatment shifted activated neutrophils toward an aged neutrophil phenotype by upregulating the expression of CD24, thereby inhibiting inflammation by reducing chemotaxis, ROS production, and NADPH oxidase. CONCLUSION We identified the immunosuppressive effects of MSCs on the subtype distribution of neutrophils and provided new insight into the therapeutic mechanism of MSC treatment in ALI.
Collapse
Affiliation(s)
- Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Yingduo Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Haoying Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Qingqing Ye
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, 79 Qingchun Rd, Hangzhou, 310003, China
| | - Ruitian Hu
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Xinru Fang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Feiqiong Gao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Jian Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Guanjing Lang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, Shandong, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China.
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China.
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, 79 Qingchun Rd, Hangzhou, 310003, China.
| |
Collapse
|
11
|
Correction to: Mechanisms of interactions between lung-origin telocytes and mesenchymal stem cells to treat experimental acute lung injury. Clin Transl Med 2023; 13:e1342. [PMID: 37507755 PMCID: PMC10382495 DOI: 10.1002/ctm2.1342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
|
12
|
Fu H, Liu X, Shi L, Wang L, Fang H, Wang X, Song D. Regulatory roles of Osteopontin in lung epithelial inflammation and epithelial-telocyte interaction. Clin Transl Med 2023; 13:e1381. [PMID: 37605313 PMCID: PMC10442477 DOI: 10.1002/ctm2.1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Lung epithelial cells play important roles in lung inflammation and injury, although mechanisms remain unclear. Osteopontin (OPN) has essential roles in epithelial damage and repair and in lung cancer biological behaviours. Telocyte (TC) is a type of interstitial cell that interacts with epithelial cells to alleviate acute inflammation and lung injury. The present studies aim at exploring potential mechanisms by which OPN regulates the epithelial origin lung inflammation and the interaction of epithelial cells with TCs in acute and chronic lung injury. METHODS The lung disease specificity of OPN and epithelial inflammation were defined by bioinformatics. We evaluated the regulatory roles of OPN in OPN-knockdown or over-expressed bronchial epithelia (HBEs) challenged with cigarette smoke extracts (CSE) or in animals with genome OPN knockout (gKO) or lung conditional OPN knockout (cKO). Acute lung injury and chronic obstructive pulmonary disease (COPD) were induced by smoking or lipopolysaccharide (LPS). Effects of OPN on PI3K subunits and ERK were assessed using the inhibitors. Spatialization and distribution of OPN, OPN-positive epithelial subtypes, and TCs were defined by spatial transcriptomics. The interaction between HBEs and TCs was assayed by the co-culture system. RESULTS Levels of OPN expression increased in smokers, smokers with COPD, and smokers with COPD and lung cancer, as compared with healthy nonsmokers. LPS and/or CSE induced over-production of cytokines from HBEs, dependent upon the dysfunction of OPN. The severity of lung inflammation and injury was significantly lower in OPN-gKO or OPN-cKO mice. HBEs transferred with OPN enhanced the expression of phosphoinositide 3-kinase (PI3K)CA/p110α, PIK3CB/p110β, PIK3CD/p110δ, PIK3CG/p110γ, PIK3R1, PIK3R2 or PIK3R3. Spatial locations of OPN and OPN-positive epithelial subtypes showed the tight contact of airway epithelia and TCs. Epithelial OPN regulated the epithelial communication with TCs, and the down-regulation of OPN induced more alterations in transcriptomic profiles than the up-regulation. CONCLUSION Our data evidenced that OPN regulated lung epithelial inflammation, injury, and cell communication between epithelium and TCs in acute and chronic lung injury. The conditional control of lung epithelial OPN may be an alternative for preventing and treating epithelial-origin lung inflammation and injury.
Collapse
Affiliation(s)
- Huirong Fu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Xuanqi Liu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
| | - Lin Shi
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Lingyan Wang
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Hao Fang
- Department of AnesthesiologyZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Department of AnesthesiologyShanghai Geriatric Medical CenterShanghaiChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Dongli Song
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Department of Pulmonary MedicineShanghai Xuhui Central HospitalFudan UniversityShanghaiChina
| |
Collapse
|
13
|
Li D, Yang L, Wang W, Song C, Xiong R, Pan S, Li N, Geng Q. Eriocitrin attenuates sepsis-induced acute lung injury in mice by regulating MKP1/MAPK pathway mediated-glycolysis. Int Immunopharmacol 2023; 118:110021. [PMID: 36966548 DOI: 10.1016/j.intimp.2023.110021] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/18/2023] [Accepted: 03/08/2023] [Indexed: 03/28/2023]
Abstract
Metabolic reprogramming has been shown to aggravate sepsis-induced acute lung injury. In particular, enhanced glycolysis is closely associated with inflammation and oxidative stress. Eriocitrin (ERI) is a natural flavonoid found in citrus fruit that exhibits various pharmacological activities, with antioxidant, anti-inflammatory, anti-diabetic, and anti-tumor properties. However, the role of ERI in lung injury is not well understood. We established a septic mouse model of acute lung injury (ALI) using lipopolysaccharide (LPS) for induction. Primary peritoneal macrophages were isolated to verify the relevant molecular mechanism. Tissues were assessed for lung pathology, pro-inflammatory cytokines, markers of oxidative stress, and protein and mRNA expression levels. In vivo experiments showed that ERI effectively alleviated LPS-induced pathological injury, suppress the inflammatory response (TNF-α, IL-1β, IL-6 levels) and decreased oxidative stress (MDA, ROS) in murine lung tissue. In vitro, ERI increased the resistance of LPS-treated cells to excessive inflammation and oxidative stress by inhibiting the enhancement of glycolysis (indicated by expression levels of HIF-1α, HK2, LDHA, PFKFB3, and PKM2). Specifically, the beneficial effects of ERI following LPS-induced lung injury occurred through promoting the expression of MKP1, which mediates the inactivation of the MAPK pathway to inhibit enhanced glycolysis. These results demonstrate that ERI has a protective effect on sepsis-induced ALI by regulating MKP1/MAPK pathway mediated-glycolysis. Hence, ERI is a promising candidate against ALI via inhibiting glycolysis.
Collapse
Affiliation(s)
- Donghang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liu Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shize Pan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
14
|
Tang L, Song D, Qi R, Zhu B, Wang X. Roles of pulmonary telocytes in airway epithelia to benefit experimental acute lung injury through production of telocyte-driven mediators and exosomes. Cell Biol Toxicol 2023; 39:451-465. [PMID: 34978009 PMCID: PMC8720540 DOI: 10.1007/s10565-021-09670-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Telocytes (TCs) are experimentally evidenced as an alternative of cell therapies for organ tissue injury and repair. The aims of the present studies are to explore direct roles of TCs and the roles of TC-derived exosomes in support of experimental acute lung injury (ALI) in vivo or in vitro. MATERIALS AND METHODS The roles of TCs in experimental ALI were firstly estimated. Phosphoinositide 3-kinase (PI3K) p110δ and α/δ/β isoform inhibitors were used in study dynamic alterations of bio-behaviors, and in expression of functional factors of TCs per se and TC-co-cultured airway epithelial cells during the activation with lipopolysaccharide (LPS). TC-driven exosomes were furthermore characterized for intercellular communication by which activated or non-activated TCs interacted with epithelia. RESULTS Our results showed that TCs mainly prevented from lung tissue edema and hemorrhage and decreased the levels of VEGF-A and MMP9 induced by LPS. Treatment with CAL101 (PI3K p110δ inhibitor) and LY294002 (PI3Kα/δ/β inhibitor) could inhibit TC movement and differentiation and increase the number of dead TCs. The expression of Mtor, Hif1α, Vegf-a, or Mmp9 mRNA increased in TCs challenged with LPS, while Mtor, Hif1α, and Vegf-a even more increased after adding CAL101 or Mtor after adding LY. The rate of epithelial cell proliferation was higher in co-culture of human bronchial epithelial (HBE) and TCs than that in HBE alone under conditions with or without LPS challenge or when cells were treated with LPS and CAL101 or LY294002. The levels of mTOR, HIF1α, or VEGF-A significantly increased in mono-cultured or co-cultured cells, challenged with LPS as compared with those with vehicle. LPS-pretreated TC-derived exosomes upregulated the expression of AKT, p-AKT, HIF1α, and VEGF-A protein of HBE. CONCLUSION The present study demonstrated that intraperitoneal administration of TCs ameliorated the severity of lung tissue edema accompanied by elevated expression of VEGF-A. TCs could nourish airway epithelial cells through nutrients produced from TCs, increasing epithelial cell proliferation, and differentiation as well as cell sensitivity to LPS challenge and PI3K p110δ and α/δ/β inhibitors, partially through exosomes released from TCs.
Collapse
Affiliation(s)
- Li Tang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China
| | - Dongli Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China.
| | - Ruixue Qi
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China
| | - Bijun Zhu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
15
|
Yang D, Yuan L, Chen S, Zhang Y, Ma X, Xing Y, Song J. Morphological and histochemical identification of telocytes in adult yak epididymis. Sci Rep 2023; 13:5295. [PMID: 37002252 PMCID: PMC10066225 DOI: 10.1038/s41598-023-32220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Telocytes (TCs) are a newly discovered type of mesenchymal cell that are closely related to the tissue's internal environment. The study aimed to investigate the morphological identification of TCs in the epididymis of adult yak and their role in the local microenvironment. In this study, transmission electron microscopy (TEM), scanning electron microscopy, immunofluorescence, qRT-PCR, and western blotting were used to analyze the cell morphology of TCs. The results showed that there are two types of TCs in the epididymal stroma of yak by TEM; one type is distributed around the capillaries with full cell bodies, longer TPs, and a large number of secretory vesicles; the other is distributed outside the basement membrane with irregularly long, striped, large nuclei and short telopodes (TPs). In addition, these TCs formed complex TC cell networks through TPs with epididymal interstitial capillaries and basal fibroblasts. TCs often appear near the capillaries and basement membrane by special staining. The surface markers of TCs (CD34, vimentin, and CD117) were positively expressed in the epididymal stroma and epithelium by immunohistochemistry, and immunofluorescence co-expression of vimentin + CD34 and CD117 + CD34 was observed on the surface of TCs. The trends in the mRNA and protein expression of TCs surface markers revealed expression was highest in the caput epididymis. In summary, this is first report of TCs in the epididymis of yak, and two phenotypes of TCs were observed. The existence and distribution characteristics of TCs in the epididymis of plateau yaks provide important clues for further study of the adaptation to reproductive function in the plateau.
Collapse
Affiliation(s)
- Dapeng Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, 730070, China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, 730070, China.
| | - Shaoyu Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, 730070, China
| | - Xiaojie Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yindi Xing
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juanjuan Song
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
16
|
Chen TQ, Wei XJ, Liu HY, Zhan SH, Yang XJ. Telocyte-Derived Exosomes Provide an Important Source of Wnts That Inhibits Fibrosis and Supports Regeneration and Repair of Endometrium. Cell Transplant 2023; 32:9636897231212746. [PMID: 38006220 PMCID: PMC10676634 DOI: 10.1177/09636897231212746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Intrauterine adhesions (IUAs) often occurred after common obstetrical and gynecological procedures or infections in women of reproductive age. It was characterized by the formation of endometrial fibrosis and prevention of endometrial regeneration, usually with devastating fertility consequences and poor treatment outcomes so far. Telocytes (TCs), as a novel interstitial cell type, present in female uterus with in vitro therapeutic potential in decidualization-defective gynecologic diseases. This study aims to further investigate the role of TC-derived Wnt ligands carried by exosomes (Exo) in reversal of fibrosis and enhancement of regeneration repair in endometrium. IUA cellular and animal models were established from endometrial stromal cells (ESCs) and mice, followed with treatment of TC-conditioned medium (TCM) or TC-derived Exo. In cellular model, fibrosis markers (collagen type 1 alpha 1 [COL1A1], fibronectin [FN], and α-smooth muscle actin [α-SMA]), angiogenesis (vascular endothelial growth factor [VEGF]), and pathway protein (β-catenin) were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting (WB), and immunofluorescence. Results showed that, TCs (either TCM or TC-derived Exo) provide a source of Wnts that inhibit cellular fibrosis, as evidenced by significantly elevated VEGF and β-catenin with decreased fibrotic markers, whereas TCs lost salvage on fibrosis after being blocked with Wnt/β-catenin inhibitors (XAV939 or ETC-159). Further in mouse model, regeneration repair (endometrial thickness, number of glands, and fibrosis area ratio), fibrosis markers (fibronectin [FN]), mesenchymal-epithelial transition (MET) (E-cadherin, N-cadherin), and angiogenesis (VEGF, microvessel density [MVD]) were studied by hematoxylin-eosin (HE), Masson staining, and immunohistochemistry. Results demonstrated that TC-Exo treatment effectively promotes regeneration repair of endometrium by relieving fibrosis, enhancing MET, and angiogenesis. These results confirmed new evidence for therapeutic perspective of TC-derived Exo in IUAs.
Collapse
Affiliation(s)
- Tian-Quan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiao-Jiao Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hai-Yan Liu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Sheng-Hua Zhan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Zhang L, Chen D, Song D, Liu X, Zhang Y, Xu X, Wang X. Clinical and translational values of spatial transcriptomics. Signal Transduct Target Ther 2022; 7:111. [PMID: 35365599 PMCID: PMC8972902 DOI: 10.1038/s41392-022-00960-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
The combination of spatial transcriptomics (ST) and single cell RNA sequencing (scRNA-seq) acts as a pivotal component to bridge the pathological phenomes of human tissues with molecular alterations, defining in situ intercellular molecular communications and knowledge on spatiotemporal molecular medicine. The present article overviews the development of ST and aims to evaluate clinical and translational values for understanding molecular pathogenesis and uncovering disease-specific biomarkers. We compare the advantages and disadvantages of sequencing- and imaging-based technologies and highlight opportunities and challenges of ST. We also describe the bioinformatics tools necessary on dissecting spatial patterns of gene expression and cellular interactions and the potential applications of ST in human diseases for clinical practice as one of important issues in clinical and translational medicine, including neurology, embryo development, oncology, and inflammation. Thus, clear clinical objectives, designs, optimizations of sampling procedure and protocol, repeatability of ST, as well as simplifications of analysis and interpretation are the key to translate ST from bench to clinic.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, 200000, China
| | - Dongsheng Chen
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Dongli Song
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, 200000, China
| | - Xiaoxia Liu
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, 200000, China
| | - Yanan Zhang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Xiangdong Wang
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, 200000, China.
| |
Collapse
|
18
|
Telocytes reduce oxidative stress by downregulating DUOX2 expression in inflamed lungs of mice. Acta Biochim Biophys Sin (Shanghai) 2022; 54:574-582. [PMID: 35607956 PMCID: PMC9828416 DOI: 10.3724/abbs.2022017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Telocytes (TCs), a novel type of interstitial cells, have been found to participate in tissue protection and repair. In this study, we investigated the antioxidative effects of TCs in inflamed lungs of mice. Acute respiratory distress syndrome (ARDS) mice were used as models of inflamed lungs of mice. Gene sequencing was used to screen the differentially expressed miRNAs in TCs after lipopolysaccharide (LPS) stimulation. AntagomiR-146a-5p-pretreated TCs were first injected into mice, and antioxidant activity of TCs was estimated. TCs, RAW264.7 cells, and MLE-12 cells were collected for the detection of expressions of NOX1-4, DUOX1-2, SOD1-3, GPX1-2, CAT, Nrf2, miR-146a-5p, and miR-21a-3p after LPS stimulation. Silencing miRNAs were delivered to examine the involved signaling pathways. Oxidative stress was examined by measuring malondialdehyde (MDA) levels. We found that microRNA-146a-5p and microRNA-21a-3p were upregulated in TCs after LPS stimulation. ARDS mice that were preinfused with TCs had lower lung tissue injury scores, lung wet-dry ratios, white blood cell counts in alveolar lavage fluid and lower MDA concentrations in lung tissue. However, in antagomiR-146a-5p-pretreated ARDS mice, the infusion of TCs caused no corresponding changes. After LPS stimulation, DUOX2 and MDA concentrations were downregulated in TCs, while DUOX2 was restored by antagomiR-146a-5p in TCs. Dual-luciferase reporter assay confirmed that CREB1 was downregulated by miR-146a-5p, while DUOX2 was downregulated by CREB1, which was confirmed by treating TCs with a specific CREB1 inhibitor. This study demonstrates that LPS stimulation upregulates miR-146a-5p in TCs, which downregulates the CREB1/DUOX2 pathway, resulting in a decrease in oxidative stress in cultured TCs. TCs reduce LPS-induced oxidative stress by decreasing DUOX2 in inflamed lungs of mice.
Collapse
|
19
|
Wei XJ, Chen TQ, Yang XJ. Telocytes in Fibrosis Diseases: From Current Findings to Future Clinical Perspectives. Cell Transplant 2022; 31:9636897221105252. [PMID: 35748420 PMCID: PMC9235300 DOI: 10.1177/09636897221105252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Telocytes (TCs), a distinct type of interstitial (stromal) cells, have been discovered in many organs of human and mammal animals. TCs, which have unique morphological characteristics and abundant paracrine substance, construct a three-dimensional (3D) interstitial network within the stromal compartment by homocellular and heterocellular communications which are important for tissue homeostasis and normal development. Fibrosis-related diseases remain a common but challenging problem in the field of medicine with unclear pathogenesis and limited therapeutic options. Recently, increasing evidences suggest that where TCs are morphologically or numerically destructed, many diseases continuously develop, finally lead to irreversible interstitial fibrosis. It is not difficult to find that TCs are associated with chronic inflammation and fibrosis. This review mainly discusses relationship between TCs and the occurrence of fibrosis in various diseases. We analyzed in detail the potential roles and speculated mechanisms of TCs in onset and progression of systemic fibrosis diseases, as well as providing the most up-to-date research on the current therapeutic roles of TCs and involved related pathways. Only through continuous research and exploration in the future can we uncover its magic veil and provide strategies for treatment of fibrosis-related disease.
Collapse
Affiliation(s)
- Xiao-jiao Wei
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| | - Tian-quan Chen
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| | - Xiao-jun Yang
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| |
Collapse
|
20
|
Song D, Yan F, Fu H, Li L, Hao J, Zhu Z, Ye L, Zhang Y, Jin M, Dai L, Fang H, Song Z, Wu D, Wang X. A cellular census of human peripheral immune cells identifies novel cell states in lung diseases. Clin Transl Med 2021; 11:e579. [PMID: 34841705 PMCID: PMC8611783 DOI: 10.1002/ctm2.579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence supports a central role of the immune system in lung diseases. Understanding how immunological alterations between lung diseases provide opportunities for immunotherapy. Exhausted T cells play a key role of immune suppression in lung cancer and chronic obstructive pulmonary disease was proved in our previous study. The present study aims to furthermore define molecular landscapes and heterogeneity of systemic immune cell target proteomic and transcriptomic profiles and interactions between circulating immune cells and lung residential cells in various lung diseases. We firstly measured target proteomic profiles of circulating immune cells from healthy volunteers and patients with stable pneumonia, stable asthma, acute asthma, acute exacerbation of chronic obstructive pulmonary disease, chronic obstructive pulmonary disease and lung cancer, using single-cell analysis by cytometry by time-of-flight with 42 antibodies. The nine immune cells landscape was mapped among those respiratory system diseases, including CD4+ T cells, CD8+ T cells, dendritic cells, B cells, eosinophil, γδT cells, monocytes, neutrophil and natural killer cells. The double-negative T cells and exhausted CD4+ central memory T cells subset were identified in patients with acute pneumonia. This T subset expressed higher levels of T-cell immunoglobulin and mucin domain-containing protein 3 (Tim3) and T-cell immunoreceptor with Ig and ITIM domains (TIGIT) in patients with acute pneumonia and stable pneumonia. Biological processes and pathways of immune cells including immune response activation, regulation of cell cycle and pathways in cancer in peripheral blood immune cells were defined by bulk RNA sequencing (RNA-seq). The heterogeneity among immune cells including CD4+ , CD8+ T cells and NK T cells by single immune cell RNA-seq with significant difference was found by single-cell sequencing. The effect of interstitial telocytes on the immune cell types and immune function was finally studied and the expressions of CD8a and chemokine C-C motif receptor 7 (CCR7) were increased significantly in co-cultured groups. Our data indicate that proteomic and transcriptomic profiles and heterogeneity of circulating immune cells provides new insights for understanding new molecular mechanisms of immune cell function, interaction and modulation as a source to identify and develop biomarkers and targets for lung diseases.
Collapse
Affiliation(s)
- Dongli Song
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Furong Yan
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Huirong Fu
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Liyang Li
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Jie Hao
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Zhenhua Zhu
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Ling Ye
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Yong Zhang
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Meiling Jin
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Lihua Dai
- Department of EmergencyShidong Hospital of Yangpu DistrictShanghaiChina
| | - Hao Fang
- Department of AnesthesiologyZhongshan HospitalShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Zhenju Song
- Department of EmergencyZhongshan HospitalShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Duojiao Wu
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumour Diagnosis and TherapyShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Xiangdong Wang
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumour Diagnosis and TherapyShanghai Medical UniversityFudan UniversityShanghaiChina
| |
Collapse
|
21
|
Cardiac Telocytes 16 Years on-What Have We Learned So Far, and How Close Are We to Routine Application of the Knowledge in Cardiovascular Regenerative Medicine? Int J Mol Sci 2021; 22:ijms222010942. [PMID: 34681601 PMCID: PMC8535888 DOI: 10.3390/ijms222010942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
The regeneration of a diseased heart is one of the principal challenges of modern cardiovascular medicine. There has been ongoing research on stem-cell-based therapeutic approaches. A cell population called telocytes (TCs) described only 16 years ago largely contributed to the research area of cardiovascular regeneration. TCs are cells with small bodies and extremely long cytoplasmic projections called telopodes, described in all layers of the heart wall. Their functions include cell-to-cell signaling, stem-cell nursing, mechanical support, and immunoregulation, to name but a few. The functional derangement or quantitative loss of TCs has been implicated in the pathogenesis of myocardial infarction, heart failure, arrhythmias, and many other conditions. The exact pathomechanisms are still unknown, but the loss of regulative, integrative, and nursing functions of TCs may provide important clues. Therefore, a viable avenue in the future modern management of these conditions is TC-based cell therapy. TCs have been previously transplanted into a mouse model of myocardial infarction with promising results. Tandem transplantation with stem cells may provide additional benefit; however, many underresearched areas need to be addressed in future research before routine application of TC-based cell therapy in human subjects. These include the standardization of protocols for isolation, cultivation, and transplantation, quantitative optimization of TC transplants, cost-effectivity analysis, and many others.
Collapse
|
22
|
Chen X, Zeng J, Huang Y, Gong M, Ye Y, Zhao H, Chen Z, Zhang H. Telocytes and their structural relationships with surrounding cell types in the skin of silky fowl by immunohistochemistrical, transmission electron microscopical and morphometric analysis. Poult Sci 2021; 100:101367. [PMID: 34325111 PMCID: PMC8334741 DOI: 10.1016/j.psj.2021.101367] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/18/2023] Open
Abstract
Telocytes (TCs), a novel type of interstitial cells, were identified in various animals. Since TCs have not observed in avian skin, hence, we carried out immunohistochemistrical and transmission electron microscopical studies in the skin of the silky fowl to investigate the TCs. TCs appear as CD34, c-Kit, and PDGFRα immunopositive. The elongated TCs with 2 long and thin telopodes (Tps) are located in the dermis. Generally, a TC possesses a fusiform, ovoid and polygonal cell body with 2 Tps (lengths = 5.27-21.85 μm), which are uneven in thickness including thick sections - podoms (diameters = 0.40-0.47 μm) and thin sections - podomers (diameters = 0.03-0.04 μm). TCs/Tps are observed frequently in close proximity to neighboring cell types/structures, such as adipocytes, collagen fibers, and capillaries. Under a magnified field, homocellular TCs/Tps contacts are observed through gap junctions (distances = 0.01-0.05 μm), whereas some of TCs/Tps have heterocellular close contacts by point contacts with surrounding cells, including stem cells and melanocytes. The multivisicular bodies, especially exosomes (diameters = 0.09-0.23 μm) releasing from TCs/Tps are observed in close proximity to TCs/Tps. Our results illustrated that the novel type of interstitial cells - TCs are present in the dermis of the silky fowl, and they have special structural relationships with surrounding cell types. The study provides histological evidence for TCs involvement in intercellular communication, skin regeneration, and pigmentogenesis in avian skin.
Collapse
Affiliation(s)
- Xianshu Chen
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Jie Zeng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yujie Huang
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Meiling Gong
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Yaqiong Ye
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Haiquan Zhao
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Zhisheng Chen
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Hui Zhang
- College of Life Science and Engineering, Foshan University, Foshan 528231, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
23
|
Shi L, Hou J, Wang L, Fu H, Zhang Y, Song Y, Wang X. Regulatory roles of osteopontin in human lung cancer cell epithelial-to-mesenchymal transitions and responses. Clin Transl Med 2021; 11:e486. [PMID: 34323425 PMCID: PMC8265167 DOI: 10.1002/ctm2.486] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lung cancer is still the main cause of death in patients with cancer, due to poor understanding of intracellular regulations. Of those, osteopontin (OPN) may induce the epithelial-to-mesenchymal transition (EMT) to promote tumor cell metastasis. The present study aims to evaluate the regulatory mechanism of internal and external OPN in the development of lung cancer. METHODS We evaluated genetic variations and different bioinformatics of genes in chromosome 4 among subtypes of lung cancer using global databases. We validated the expression of OPN and EMT-related proteins (e.g., E-cadherin, vimentin) in 208 non-small-cell lung cancer (NSCLC) tumors and the adjacent nontumorous tissues, further to explore the function of OPN in the progression of lung cancer, with a focus on a potential communication between OPN and EMT in the lung cancer. RESULTS We found that OPN might act as a target molecule in lung cancer, which is associated with lymph node metastasis, postresection recurrence/metastasis, and prognosis of patients with lung cancer. Biological behaviors and pathological responses of OPN varied among diseases, challenges, and severities. Overexpression of OPN was correlated with the existence of EMT in lung cancer tissues. Internal and external OPN plays the decisive roles in lung cancer cell movement, proliferation, and EMT formation, through the upregulation of OPN-PI3K and OPN-MEK pathways. PI3K and MEK inhibitors downregulated the process of EMT and biological behaviors of lung cancer cells, probably through altering vimentin-associated cytoskeletons. CONCLUSION OPN can be a metastasis-associated or specific biomarker for lung cancer and a potential target for antimetastatic treatment.
Collapse
Affiliation(s)
- Lin Shi
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Fudan University Shanghai Medical CollegeShanghaiChina
| | - Jiayun Hou
- Institute for Clinical ScienceShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyShanghaiChina
- Fudan University Shanghai Medical CollegeShanghaiChina
| | - Lin Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Fudan University Shanghai Medical CollegeShanghaiChina
| | - Huirong Fu
- Institute for Clinical ScienceShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyShanghaiChina
- Fudan University Shanghai Medical CollegeShanghaiChina
| | - Yiwen Zhang
- Institute for Clinical ScienceShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyShanghaiChina
- Fudan University Shanghai Medical CollegeShanghaiChina
| | - Yuanlin Song
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Fudan University Shanghai Medical CollegeShanghaiChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalShanghaiChina
- Institute for Clinical ScienceShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyShanghaiChina
- Fudan University Shanghai Medical CollegeShanghaiChina
| |
Collapse
|
24
|
Li N, Xiong R, He R, Liu B, Wang B, Geng Q. Mangiferin Mitigates Lipopolysaccharide-Induced Lung Injury by Inhibiting NLRP3 Inflammasome Activation. J Inflamm Res 2021; 14:2289-2300. [PMID: 34103962 PMCID: PMC8178744 DOI: 10.2147/jir.s304492] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Scope Mangiferin (MF) is a natural phytopolyphenol, which displays potential pharmacological properties involving antibacterial, anti-inflammation, antioxidant and anti-tumor. However, little is known about the roles of MF in lung injury. The aim of this study is to demonstrate the modulatory effects and molecular mechanisms by which MF operates in sepsis-induced lung injury. Methods and Results To examine the protective properties of MF, an in vivo model of lipopolysaccharide (LPS)-induced lung injury in mice and an in vitro model of LPS-treated J774A.1 cells were established, respectively. The results revealed that MF treatment significantly relieved LPS-induced pathological injury and inflammatory response in murine lung tissues. Meanwhile, MF treatment also inhibited nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome activation and pyroptosis induced by LPS. In macrophage-specific NLRP3 deficiency mice treated with LPS, MF showed little protective effects. NLRP3 overexpression by adenovirus could also offset the beneficial effects of MF in LPS-treated J774A.1 cells. Furthermore, we found that MF could suppress the expression of NLPR3 and pyroptosis of macrophages by inhibiting the nuclear translocation of the nuclear factor-κB (NF-κB) subunits P50 and P65. Conclusion MF protects against lung injury and inflammatory response by inhibiting NLRP3 inflammasome activation in a NF-κB-dependent manner in macrophages, which provides a promising therapeutic candidate for the treatment of lung injury.
Collapse
Affiliation(s)
- Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Bo Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| |
Collapse
|