1
|
Chen R, Zhong G, Ji T, Xu Q, Liu H, Xu Q, Chen L, Dai J. Serum cholesterol levels predict the survival in patients with idiopathic pulmonary fibrosis: A long-term follow up study. Respir Med 2024; 237:107937. [PMID: 39743155 DOI: 10.1016/j.rmed.2024.107937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/03/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND The relationship between serum lipid with idiopathic pulmonary fibrosis (IPF) required to be explored. We aim to evaluate the association of serum lipid levels with mortality in patients with IPF. MATERIALS AND METHODS This retrospective study included IPF patients with more than three years follow-up. We collected baseline demographics information, forced vital capacity (FVC)% predicted, carbon monoxide diffusion capacity (DLCO)% predicted, gender-age-physiology (GAP) index, and serum lipid levels, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C). We evaluate the relationship between the serum lipid levels and the disease severity, and the mortality in IPF. RESULTS This study enrolled 146 patients, with the three-year survival rate of 71.23 %. The median follow-up time was 46.5 months. There was no significant difference in baseline lipid levels between the survival and non-survival group. TG levels were positively correlated with DLCO% predicted (r = 0.189, p = 0.022) and negatively correlated with GAP index (r = -0.186, p = 0.025). After adjusting for GAP index, smoking history, body mass index and the use of antifibrotic and lipid-lowering drug, lower TC levels (HR: 0.74, 95 % CI: 0.58-0.94, p = 0.013) were identified as an independent risk factor for mortality. CONCLUSION This study demonstrated that lower TC levels were associated with increased mortality in IPF. More investigations are required to explore the role of lipid metabolism in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ranxun Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guanning Zhong
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tong Ji
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qinghua Xu
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huarui Liu
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qingqing Xu
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lulu Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Lin J, Pan Z, Sun J, Wang X, Yin D, Huo C, Guo Q. PCSK9 inhibitor alleviates experimental pulmonary fibrosis-induced pulmonary hypertension via attenuating epithelial-mesenchymal transition by suppressing Wnt/β-catenin signaling in vivo and in vitro. Front Med (Lausanne) 2024; 11:1509168. [PMID: 39722825 PMCID: PMC11668660 DOI: 10.3389/fmed.2024.1509168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Background The co-occurrence of pulmonary hypertension (PH) in patients with pulmonary fibrosis (PF) is linked to a more unfavorable prognosis and increased mortality compared to PF cases without PH. Early intervention and comprehensive management are pivotal for improving survival outcomes. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protein essential in cholesterol metabolism. However, the potential for PCSK9 inhibition to alleviate PF-induced PH has not been previously reported. Methods A mouse model of PF-induced PH was established using intratracheal injection of bleomycin (BLM), followed by administration of a PCSK9 inhibitor every other day. Data on right ventricle (RV) remodeling and changes in pulmonary arteries were collected and analyzed. Transforming growth factor-beta (TGF-β) was also administered to MLE-12 cells as an experimental lung fibrosis model. The mechanisms of PCSK9's impact on lung fibrosis were examined both in vivo and in vitro. Results Inhibition of PCSK9 significantly reduced pulmonary artery thickening and RV remodeling in the BLM-induced mouse model. Moreover, the blockage of PCSK9 effectively attenuated the migration and epithelial-mesenchymal transition (EMT) process of TGF-β-induced MLE-12 cells. We also observed that the PCSK9 inhibitor suppressed the expression of the Wnt/β-catenin pathway in both animal and cell experiments. Conclusion PCSK9 plays a crucial role in the progression of PF-induced PH by regulating cell EMT and Wnt/β-catenin signaling. Targeting PCSK9 expression or activity could effectively control lung fibrosis and its PH complication.
Collapse
Affiliation(s)
- Jiancheng Lin
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
- Medical Center of Soochow University, Suzhou, Jiangsu, China
| | - Zetao Pan
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
- Medical Center of Soochow University, Suzhou, Jiangsu, China
| | - Jiayan Sun
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
- Medical Center of Soochow University, Suzhou, Jiangsu, China
| | - Xiaowan Wang
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
- Medical Center of Soochow University, Suzhou, Jiangsu, China
| | - Di Yin
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
- Medical Center of Soochow University, Suzhou, Jiangsu, China
| | - Cunyang Huo
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
- Medical Center of Soochow University, Suzhou, Jiangsu, China
| | - Qiang Guo
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
- Medical Center of Soochow University, Suzhou, Jiangsu, China
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Gu J, Xu J, Jiao A, Cai N, Gu T, Wu P, Cheng X, Chen B, Chen Y, Liu X. Comprehensive analysis of single-cell transcriptomics and genetic factors reveals the mechanisms and preventive strategies for the progression from pulmonary fibrosis to lung cancer. Int Immunopharmacol 2024; 140:112803. [PMID: 39094357 DOI: 10.1016/j.intimp.2024.112803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/24/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Pulmonary fibrosis (PF) leads to excessive deposition of fibrous connective tissue in the lungs, increasing the risk of lung cancer due to the enhanced activity of fibroblasts (FBs). Fibroblast-mediated collagen fiber deposition creates a tumor-like microenvironment, laying the foundation for tumorigenesis. Clinically, numerous cases of lung cancer induced by pulmonary fibrosis have been observed. In recent years, the study of nucleotide point mutations, which provide more detailed insights than gene expression, has made significant advancements, offering new perspectives for clinical research. METHODS We initially employed Mendelian randomization to ascertain that the initial stage of lung cancer induced by PF belongs to small cell lung cancer (SCLC). Subsequently, pulmonary neuroendocrine cells (PNECs) were identified by using pseudo-time series analysis as cell clusters with carcinogenic potential. We categorized FBs into four groups according to their cellular metabolism, and then analyzed the cellular communication between FBs and PNECs, as well as changes in intracellular pathways of PNECs. Additionally, we examined the characteristic genome of FBs which is significantly associated with PF and investigated the impact of FBs on immune cells in the PF microenvironment. Finally, we explored strategies for preventing the progression from PF to lung cancer. RESULTS The genetic features of cells with carcinogenic potential in PF tissues were revealed, characterized by upregulation of Achaete-Scute Family BHLH Transcription Factor 1 (ASCL1), Homeobox B2 (HOXB2), Teashirt Zinc Finger Homeobox 2 (TSHZ2), Insulinoma-associated 1 (INSM1), and reduced activity of RE1 Silencing Transcription Factor (REST). FBs characterized by high glycolysis and low tricarboxylic acid (TCA) cycling played a key role in the progression of PF. The microenvironment of PF resembles the tumor microenvironment, providing a conducive immunosuppressive environment for the occurrence of cancer cells. In dendritic cells, rs9265808 is a susceptibility locus for progression from pulmonary fibrosis to lung cancer, mutations at this locus increase the expression of Complement Factor B (CFB), and excessive activation of the complement pathway is a crucial factor leading to lung cancer development in patients with pulmonary fibrosis. Ensuring adequate nutritional supply and physical function is one of the effective measures to prevent progression from pulmonary fibrosis to lung cancer. CONCLUSION CFB promotes lung cancer occurrence by inducing the accumulation and polarization of a large number of monocytes/macrophages in the lungs, driving disease progression by reducing the physical fitness of patients with pulmonary fibrosis.
Collapse
Affiliation(s)
- Jinghua Gu
- School of Life Sciences, Anhui Medical University, Hefei 230032, China; The First Clinical Medical College of Anhui Medical University, Hefei 230032, China; Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiansheng Xu
- The First Clinical Medical College of Anhui Medical University, Hefei 230032, China
| | - Annan Jiao
- The First Clinical Medical College of Anhui Medical University, Hefei 230032, China; The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Ningning Cai
- The First Clinical Medical College of Anhui Medical University, Hefei 230032, China
| | - Tianrui Gu
- School of Pharmacy, Zhejiang University, Hangzhou 310058, China
| | - Pengcheng Wu
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Xinyu Cheng
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Bo Chen
- The First Clinical Medical College of Anhui Medical University, Hefei 230032, China; The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| | - Yang Chen
- The First Clinical Medical College of Anhui Medical University, Hefei 230032, China; The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei 230032, China; Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Kestecher BM, Németh K, Ghosal S, Sayour NV, Gergely TG, Bodnár BR, Försönits AI, Sódar BW, Oesterreicher J, Holnthoner W, Varga ZV, Giricz Z, Ferdinandy P, Buzás EI, Osteikoetxea X. Reduced circulating CD63 + extracellular vesicle levels associate with atherosclerosis in hypercholesterolaemic mice and humans. Cardiovasc Diabetol 2024; 23:368. [PMID: 39420340 PMCID: PMC11487797 DOI: 10.1186/s12933-024-02459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024] Open
Abstract
AIMS The association and co-isolation of low-density lipoproteins (LDL) and extracellular vesicles (EVs) have been shown in blood plasma. Here we explore this relationship to better understand the role of EVs in atherogenesis. METHODS AND RESULTS Wild type (WT), PCSK9-/-, and LDLR-/- C57BL/6 mice were used in this study. Eleven week-old male mice were fed high-fat diet (HFD) for 12 weeks or kept on normal diet until old age (22-months). Cardiac function was assessed by ultrasound, cholesterol was quantified with a colorimetric kit and circulating EVs were measured using flow cytometry. Plaques were analysed post-mortem using Oil-Red-O staining of the aortic arch. EVs were measured from platelet free blood plasma samples of normal and hypercholesterolaemic clinical patients. Based on annexin V and CD63 staining, we found a significant increase in EV levels in LDLR-/- and PCSK9-/- mice after HFD, but CD81 showed no significant change in either group. There was no significant change in plaque formation after HFD. PCSK9-/- mice show a favourable cardiac function after HFD. Blood cholesterol levels progressively increased during HFD, with LDLR-/- mice showing high levels while PCSK9-/- were significantly lowered compared to WT animals. In mice at old age, similar cholesterol levels were observed as in young mice. In old age, LDLR-/- mice showed significantly increased plaques. At old age, ejection fraction was decreased in all groups of mice, as were CD63+ EVs. Similarly to mice, in patients with hypercholesterolaemia, CD63+ EVs were significantly depleted. CONCLUSIONS This research demonstrates an inverse relationship between circulating EVs and cholesterol, making EVs a potential marker for cardiovascular disease (CVD). HFD causes reduced cardiac function, but atherosclerotic development is slowly progressing in hypercholesterolaemic models and only observed with old animals. These results also bring further evidence for the benefit of using of PCSK9 inhibitors as therapeutic agents in CVD.
Collapse
Affiliation(s)
- Brachyahu M Kestecher
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Krisztina Németh
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
| | - Sayam Ghosal
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Nabil V Sayour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Tamás G Gergely
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bernadett R Bodnár
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - András I Försönits
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Barbara W Sódar
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Johannes Oesterreicher
- Ludwig-Boltzmann-Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig-Boltzmann-Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Edit I Buzás
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Xabier Osteikoetxea
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary.
| |
Collapse
|
5
|
Tan W, Liang Z, Liu Y, Tan X, Tan G. Genetic association of lipids and lipid lowering drug target genes with sarcoidosis. Sci Rep 2024; 14:24351. [PMID: 39420052 PMCID: PMC11487271 DOI: 10.1038/s41598-024-75322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
To determine the potential causal association between serum lipid levels and sarcoidosis, and to investigate the potential impact of lipid lowering agents on sarcoidosis. Two-sample Mendelian randomization (TSMR) was used to investigate the association between lipid levels (including LDL-c, HDL-c, TG, and TC) and sarcoidosis risk. In addition, we used Mendelian drug target randomization (DMR) to analyze the relationship between drug targets for lowering LDL-c levels (HMGCR, PCSK9, and NPC1L1) and drug targets for lowering TG levels (LPL and APOC3) and the risk of sarcoidosis. According to the TSMR analysis, a positive correlation was observed between the serum LDL-c concentration and sarcoidosis incidence (n = 153 SNPs, OR = 1.232, 95% CI = 1.018-1.491; p = 0.031). Similarly, serum TG concentration was found to be positively associated with sarcoidosis (n = 52 SNPs, OR = 1.287, 95% CI = 1.024-1.617; p = 0.03). The DMR results demonstrated a positive correlation between PCSK9-mediated serum LDL-c levels and sarcoidosis (n = 35 SNPs, OR = 1.681, 95% CI = 1.220-2.315; p = 0.001). Similarly, serum TG levels mediated by LPL were positively associated with sarcoidosis (n = 28 SNPs, OR = 1.569, 95% CI = 1.223-2.012; p = 0.0003). This study suggested that elevated serum TG and LDL-c levels may increase the risk of sarcoidosis. PCSK9-mediated reduction of LDL-C levels (simulating the effects of PCSK9 inhibitors) and LPL-mediated reduction of TG levels (simulating the effects of LPL-related lipid lowering drugs) can decrease the risk of developing sarcoidosis.
Collapse
Affiliation(s)
- Wei Tan
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Zicheng Liang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Yu Liu
- Department of Pulmonology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China.
| | - Xiaoning Tan
- Department of Oncology, Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China.
| | - Guangbo Tan
- Department of Pulmonology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China.
| |
Collapse
|
6
|
Shi X, Chen Y, Shi M, Gao F, Huang L, Wang W, Wei D, Shi C, Yu Y, Xia X, Song N, Chen X, Distler JHW, Lu C, Chen J, Wang J. The novel molecular mechanism of pulmonary fibrosis: insight into lipid metabolism from reanalysis of single-cell RNA-seq databases. Lipids Health Dis 2024; 23:98. [PMID: 38570797 PMCID: PMC10988923 DOI: 10.1186/s12944-024-02062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Pulmonary fibrosis (PF) is a severe pulmonary disease with limited available therapeutic choices. Recent evidence increasingly points to abnormal lipid metabolism as a critical factor in PF pathogenesis. Our latest research identifies the dysregulation of low-density lipoprotein (LDL) is a new risk factor for PF, contributing to alveolar epithelial and endothelial cell damage, and fibroblast activation. In this study, we first integrative summarize the published literature about lipid metabolite changes found in PF, including phospholipids, glycolipids, steroids, fatty acids, triglycerides, and lipoproteins. We then reanalyze two single-cell RNA-sequencing (scRNA-seq) datasets of PF, and the corresponding lipid metabolomic genes responsible for these lipids' biosynthesis, catabolism, transport, and modification processes are uncovered. Intriguingly, we found that macrophage is the most active cell type in lipid metabolism, with almost all lipid metabolic genes being altered in macrophages of PF. In type 2 alveolar epithelial cells, lipid metabolic differentially expressed genes (DEGs) are primarily associated with the cytidine diphosphate diacylglycerol pathway, cholesterol metabolism, and triglyceride synthesis. Endothelial cells are partly responsible for sphingomyelin, phosphatidylcholine, and phosphatidylethanolamines reprogramming as their metabolic genes are dysregulated in PF. Fibroblasts may contribute to abnormal cholesterol, phosphatidylcholine, and phosphatidylethanolamine metabolism in PF. Therefore, the reprogrammed lipid profiles in PF may be attributed to the aberrant expression of lipid metabolic genes in different cell types. Taken together, these insights underscore the potential of targeting lipid metabolism in developing innovative therapeutic strategies, potentially leading to extended overall survival in individuals affected by PF.
Collapse
Affiliation(s)
- Xiangguang Shi
- Department of Dermatology, Huashan Hospital, and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yahui Chen
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China
| | - Mengkun Shi
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fei Gao
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Lihao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Wei Wang
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Dong Wei
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Chenyi Shi
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuexin Yu
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China
| | - Xueyi Xia
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Fudan Zhangjiang Institute, Shanghai, People's Republic of China
| | - Xiaofeng Chen
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jörg H W Distler
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen, Nuremberg, Germany
| | - Chenqi Lu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Jingyu Chen
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China.
- Center for Lung Transplantation, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiucun Wang
- Department of Dermatology, Huashan Hospital, and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China.
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China.
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Ma J, Li G, Wang H, Mo C. Comprehensive review of potential drugs with anti-pulmonary fibrosis properties. Biomed Pharmacother 2024; 173:116282. [PMID: 38401514 DOI: 10.1016/j.biopha.2024.116282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Pulmonary fibrosis is a chronic and progressive lung disease characterized by the accumulation of scar tissue in the lungs, which leads to impaired lung function and reduced quality of life. The prognosis for idiopathic pulmonary fibrosis (IPF), which is the most common form of pulmonary fibrosis, is generally poor. The median survival for patients with IPF is estimated to be around 3-5 years from the time of diagnosis. Currently, there are two approved drugs (Pirfenidone and Nintedanib) for the treatment of IPF. However, Pirfenidone and Nintedanib are not able to reverse or cure pulmonary fibrosis. There is a need for new pharmacological interventions that can slow or halt disease progression and cure pulmonary fibrosis. This review aims to provide an updated overview of current and future drug interventions for idiopathic pulmonary fibrosis, and to summarize possible targets of potential anti-pulmonary fibrosis drugs, providing theoretical support for further clinical combination therapy or the development of new drugs.
Collapse
Affiliation(s)
- Jie Ma
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; The Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Gang Li
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Han Wang
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Center for RNA Science and Therapeutics, School of Medicine, Cleveland, OH, USA
| | - Chunheng Mo
- The Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Zhao SS, Alton P, Rogers K, Hughes DM. Statin Use, Lipids, and 3-Hydroxy-3-Methyl-Glutaryl Coenzyme A Reductase Inhibition on Risk of Idiopathic Pulmonary Fibrosis. Clin Ther 2024; 46:79-81. [PMID: 37978012 DOI: 10.1016/j.clinthera.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Sizheng Steven Zhao
- Centre for Epidemiology Versus Arthritis, Division of Musculoskeletal and Dermatological Science, School of Biological Sciences, Faculty of Biological Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.
| | - Philip Alton
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Kira Rogers
- Manchester Medical School, The University of Manchester, Manchester, United Kingdom
| | - David M Hughes
- Department of Health Data Science, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
9
|
Yan P, Liu J, Li Z, Wang J, Zhu Z, Wang L, Yu G. Glycolysis Reprogramming in Idiopathic Pulmonary Fibrosis: Unveiling the Mystery of Lactate in the Lung. Int J Mol Sci 2023; 25:315. [PMID: 38203486 PMCID: PMC10779333 DOI: 10.3390/ijms25010315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by excessive deposition of fibrotic connective tissue in the lungs. Emerging evidence suggests that metabolic alterations, particularly glycolysis reprogramming, play a crucial role in the pathogenesis of IPF. Lactate, once considered a metabolic waste product, is now recognized as a signaling molecule involved in various cellular processes. In the context of IPF, lactate has been shown to promote fibroblast activation, myofibroblast differentiation, and extracellular matrix remodeling. Furthermore, lactate can modulate immune responses and contribute to the pro-inflammatory microenvironment observed in IPF. In addition, lactate has been implicated in the crosstalk between different cell types involved in IPF; it can influence cell-cell communication, cytokine production, and the activation of profibrotic signaling pathways. This review aims to summarize the current research progress on the role of glycolytic reprogramming and lactate in IPF and its potential implications to clarify the role of lactate in IPF and to provide a reference and direction for future research. In conclusion, elucidating the intricate interplay between lactate metabolism and fibrotic processes may lead to the development of innovative therapeutic strategies for IPF.
Collapse
Affiliation(s)
| | | | | | | | | | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China; (P.Y.); (J.L.); (Z.L.); (J.W.); (Z.Z.)
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China; (P.Y.); (J.L.); (Z.L.); (J.W.); (Z.Z.)
| |
Collapse
|
10
|
Chen R, Dai J. Lipid metabolism in idiopathic pulmonary fibrosis: From pathogenesis to therapy. J Mol Med (Berl) 2023; 101:905-915. [PMID: 37289208 DOI: 10.1007/s00109-023-02336-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic irreversible interstitial lung disease characterized by a progressive decline in lung function. The etiology of IPF is unknown, which poses a significant challenge to the treatment of IPF. Recent studies have identified a strong association between lipid metabolism and the development of IPF. Qualitative and quantitative analysis of small molecule metabolites using lipidomics reveals that lipid metabolic reprogramming plays a role in the pathogenesis of IPF. Lipids such as fatty acids, cholesterol, arachidonic acid metabolites, and phospholipids are involved in the onset and progression of IPF by inducing endoplasmic reticulum stress, promoting cell apoptosis, and enhancing the expression of pro-fibrotic biomarkers. Therefore, targeting lipid metabolism can provide a promising therapeutic strategy for pulmonary fibrosis. This review focuses on lipid metabolism in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ranxun Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
11
|
Cellular and Molecular Control of Lipid Metabolism in Idiopathic Pulmonary Fibrosis: Clinical Application of the Lysophosphatidic Acid Pathway. Cells 2023; 12:cells12040548. [PMID: 36831215 PMCID: PMC9954511 DOI: 10.3390/cells12040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a representative disease that causes fibrosis of the lungs. Its pathogenesis is thought to be characterized by sustained injury to alveolar epithelial cells and the resultant abnormal tissue repair, but it has not been fully elucidated. IPF is currently difficult to cure and is known to follow a chronic progressive course, with the patient's survival period estimated at about three years. The disease occasionally exacerbates acutely, leading to a fatal outcome. In recent years, it has become evident that lipid metabolism is involved in the fibrosis of lungs, and various reports have been made at the cellular level as well as at the organic level. The balance among eicosanoids, sphingolipids, and lipid composition has been reported to be involved in fibrosis, with particularly close attention being paid to a bioactive lipid "lysophosphatidic acid (LPA)" and its pathway. LPA signals are found in a wide variety of cells, including alveolar epithelial cells, vascular endothelial cells, and fibroblasts, and have been reported to intensify pulmonary fibrosis via LPA receptors. For instance, in alveolar epithelial cells, LPA signals reportedly induce mitochondrial dysfunction, leading to epithelial damage, or induce the transcription of profibrotic cytokines. Based on these mechanisms, LPA receptor inhibitors and the metabolic enzymes involved in LPA formation are now considered targets for developing novel means of IPF treatment. Advances in basic research on the relationships between fibrosis and lipid metabolism are opening the path to new therapies targeting lipid metabolism in the treatment of IPF.
Collapse
|
12
|
Sreekumar PG, Su F, Spee C, Araujo E, Nusinowitz S, Reddy ST, Kannan R. Oxidative Stress and Lipid Accumulation Augments Cell Death in LDLR-Deficient RPE Cells and Ldlr-/- Mice. Cells 2022; 12:43. [PMID: 36611838 PMCID: PMC9818299 DOI: 10.3390/cells12010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Lipid peroxidation from oxidative stress is considered a major contributor to age-related macular degeneration (AMD). The retina is abundant with circulating low-density lipoproteins (LDL), which are taken up by LDL receptor (LDLR) in the RPE and Müller cells. The purpose of this study is to investigate the role of LDLR in the NaIO3-induced model of dry AMD. Confluent primary human RPE (hRPE) and LDLR-silenced ARPE-19 cells were stressed with 150 µM tert-butyl hydroperoxide (tBH) and caspase 3/7 activation was determined. WT and Ldlr-/- mice were administered NaIO3 (20 mg/kg) intravenously. On day 7, fundus imaging, OCT, ERG, and retinal thickness were measured. Histology, TUNEL, cleaved caspase 3 and lipid accumulation were assessed. Treatment of hRPE with tBH markedly decreased LDLR expression. Caspase 3/7 activation was significantly increased in LDLR-silenced ARPE-19 cells treated with tBH. In Ldlr-/- mice, NaIO3 administration resulted in significant (a) retinal thinning, (b) compromised photoreceptor function, (c) increased percentage of cleaved caspase 3 positive and apoptotic cells, and (d) increased lipid droplet accumulation in the RPE, Bruch membrane, choroid, and sclera, compared to WT mice. Our findings imply that LDLR loss leads to lipid accumulation and impaired retinal function, which may contribute to the development of AMD.
Collapse
Affiliation(s)
| | - Feng Su
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | - Eduardo Araujo
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Steven Nusinowitz
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Srinivasa T Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Ram Kannan
- Doheny Eye Institute, Pasadena, CA 91103, USA
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Bao L, Ye J, Liu N, Shao Y, Li W, Fan X, Zhao D, Wang H, Chen X. Resveratrol Ameliorates Fibrosis in Rheumatoid Arthritis-Associated Interstitial Lung Disease via the Autophagy-Lysosome Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238475. [PMID: 36500562 PMCID: PMC9740423 DOI: 10.3390/molecules27238475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/11/2022]
Abstract
Interstitial lung disease associated with rheumatoid arthritis (RA-ILD) can lead to interstitial fibrosis and even lung failure as a complication of rheumatoid arthritis (RA), and there is currently no effective treatment and related basic research. Studies have found that resveratrol (Res) can improve the progression of RA by regulating autophagy, and increasing evidence supports the connection between autophagy and common interstitial lung disease (ILD). We explored changes in autophagy levels in fibrotic lungs in RA-ILD and found that the level of autophagy is enhanced in the early stage but inhibited in the late stage. However, resveratrol treatment improved the level of autophagy and reversed the inhibition of autophagy, and attenuated fibrosis. We created corresponding cell models that exhibited the same phenotypic changes as animal models; under the effect of resveratrol, the level of fibrosis changed accordingly, and the fusion process of lysosomes and autophagosomes in autophagy was liberated from the inhibition state. Resveratrol effects were reversed by the addition of the late autophagy inhibitor chloroquine. These results suggest that resveratrol attenuates pulmonary fibrosis, increases autophagic flux, and modulates the autophagy-lysosome pathway, and particularly it may work by improving the formation of autophagic lysosomes, which may be an effective treatment for induced RA-ILD.
Collapse
Affiliation(s)
- Lanxin Bao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230601, China
| | - Jing Ye
- Department of Respiratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Nannan Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230601, China
| | - Yubao Shao
- Microscopic Morphological Center Laboratory, Anhui Medical University, Hefei 230032, China
| | - Wenhao Li
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Xuefei Fan
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230601, China
| | - Dahai Zhao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Correspondence: (D.Z.); (H.W.); (X.C.)
| | - Hongzhi Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230601, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
- Correspondence: (D.Z.); (H.W.); (X.C.)
| | - Xiaoyu Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230601, China
- Microscopic Morphological Center Laboratory, Anhui Medical University, Hefei 230032, China
- Correspondence: (D.Z.); (H.W.); (X.C.)
| |
Collapse
|
14
|
Cheng D, Li Z, Wang Y, Xiong H, Sun W, Zhou S, Liu Y, Ni C. Targeted delivery of ZNF416 siRNA-loaded liposomes attenuates experimental pulmonary fibrosis. J Transl Med 2022; 20:523. [PMID: 36371191 PMCID: PMC9652794 DOI: 10.1186/s12967-022-03740-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/29/2022] [Indexed: 11/15/2022] Open
Abstract
Background Pulmonary fibrosis is a chronic progressive fibrotic interstitial lung disease characterized by excessive extracellular matrix (ECM) deposition caused by activated fibroblasts. Increasing evidence shows that matrix stiffness is essential in promoting fibroblast activation and profibrotic changes. Here, we investigated the expression and function of matrix stiffness-regulated ZNF416 in pulmonary fibrotic lung fibroblasts. Methods 1 kappa (soft), 60 kappa (stiff) gel-coated coverslips, or transforming growth factor-beta 1 (TGF-β1)-cultured lung fibroblasts and the gain- or loss- of the ZNF416 function assays were performed in vitro. We also established two experimental pulmonary fibrosis mouse models by a single intratracheal instillation with 50 mg/kg silica or 6 mg/kg bleomycin (BLM). ZNF416 siRNA-loaded liposomes and TGF-β1 receptor inhibitor SB431542 were administrated in vivo. Results Our study identified that ZNF416 could regulate fibroblast differentiation, proliferation, and contraction by promoting the nuclear accumulation of p-Smad2/3. Besides, ZNF416 siRNA-loaded liposome delivery by tail-vein could passively target the fibrotic area in the lung, and co-administration of ZNF416 siRNA-loaded liposomes and SB431542 significantly protects mice against silica or BLM-induced lung injury and fibrosis. Conclusion In this study, our results indicate that mechanosensitive ZNF416 is a potential molecular target for the treatment of pulmonary fibrosis. Strategies aimed at silencing ZNF416 could be a promising approach to fight against pulmonary fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03740-w.
Collapse
|
15
|
Dong Q, Yan S, Li D, Zhou C, Tian S, Wang Y, Miao P, Zhu W, Zhu S, Pan C. Feeding foliar nano-selenium biofortified panax notoginseng could reduce the occurrence of glycolipid metabolism disorder in mice caused by high-fat diets. Front Nutr 2022; 9:973027. [PMID: 36091251 PMCID: PMC9450130 DOI: 10.3389/fnut.2022.973027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Nano-selenium (nano-Se) has been extensively explored as a biostimulant for improving the quality of grain crops. However, there are few reports about the effect on the medicinal components of Chinese herbal medicine cultured with nano-Se. Here, we sprayed nano-Se during the cultivation of Panax notoginseng (SePN), and measured the changes of medicinal components compared with conventional Panax notoginseng (PN). Furthermore, we identified a more pronounced effect of SePN on reducing obesity in animals compared with PN. By measuring antioxidant capacity, histopathology, gene expression related to glycolipid metabolism, and gut microbiota composition, we propose a potential mechanism for SePN to improve animal health. Compared with the control groups, foliar spraying of nano-Se increased saponins contents (Rb2, Rb3, Rc, F2, Rb2, and Rf) in the roots of Panax notoginseng, the content of Rb2 increased by 3.9 times particularly. Interestingly, animal studies indicated that taking selenium-rich Panax notoginseng (SePN) can further ameliorate liver antioxidation (SOD, MDA, and GSH) and enzyme activities involved in glycolipid metabolism (ATGL and PFK). It also relieved inflammation and regulated the expression of genes (MCAD, PPAR-α, and PCSK9) related to fatty acid oxidation. The abundance ratio of Firmicutes/Bacteroides and beneficial bacteria abundance (Bifidobacterium, Butyricimonas, and Parasutterella) in gut microbiota were improved relative to the control. In summary, the application of nano-Se on PN may effectively raise the content of Panax notoginseng saponins (PNS) and immensely lower the risk of metabolic disorders of glycolipids.
Collapse
Affiliation(s)
- Qinyong Dong
- Department of Applied Chemistry, College of Science, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Sen Yan
- Department of Applied Chemistry, College of Science, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Dong Li
- Department of Applied Chemistry, College of Science, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Chunran Zhou
- Department of Applied Chemistry, College of Science, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Sinuo Tian
- Department of Applied Chemistry, College of Science, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Yu Wang
- Department of Applied Chemistry, College of Science, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Peijuan Miao
- Department of Applied Chemistry, College of Science, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Wentao Zhu
- Department of Applied Chemistry, College of Science, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, National Engineering Research Center for Applied Technology of Agricultural Biodiversity, Yunnan Agricultural University, Kunming, China
| | - Canping Pan
- Department of Applied Chemistry, College of Science, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
- *Correspondence: Canping Pan
| |
Collapse
|