1
|
Zhang C, Gao L, Zhang Y, Jin X, Wang M, Wang Q, Zhao W, Wu N, Zhang Y, Liu Y, Zhang Y, Ma L, Chen Y. Corosolic acid inhibits EMT in lung cancer cells by promoting YAP-mediated ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156110. [PMID: 39369568 DOI: 10.1016/j.phymed.2024.156110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Corosolic acid (CA), a naturally occurring pentacyclic triterpenoid is renowned for its anticancer attributes. Previous studies have predominantly centered on the anticancer properties of CA in lung cancer, specifically its role in inducing apoptosis, however, investigations regarding its involvement in ferroptosis have been scarce. METHODS The apoptotic and proliferative effects were evaluated by CCK8 and colony formation assay. Cell death and ROS generation were measured to assess the response of CA to iron death induction. Scratch and invasion assays were performed to verify the effect of CA on the invasive ability of lung cancer cells. Protein and mRNA expression were analyzed using Western blotting and qPCR. The CHX assay was carried out to detect protein half-life. Metabolite levels were measured with appropriate kits. Protein expression was detected through IF and IHC. A xenograft tumor model was established to investigate the inhibitory effect of CA on lung cancer in vivo. RESULTS The current findings revealed that CA exerts its anticancer effect by inducing cell death, accompanied by the accumulation of lipid reactive oxygen species (ROS), hinting at the possible involvement of ferroptosis. Our experimental results further substantiated the significance of ferroptosis in the CA anticancer mechanism, as ferroptosis inhibitors were found to effectively rescue CA-induced cell death. Significantly, we demonstrated for the first time that CA could induce ferroptosis further by suppressing EMT in lung cancer cells. Additionally, CA could regulate GPX4 to induce ferroptosis, interestingly, CA downregulated GSH synthetase by inhibiting YAP rather than GPX4, thereby reducing GSH, inducing ferroptosis, and further suppressing EMT in lung cancer cells.We also discovered that GSS is a crucial downstream target of YAP in regulating GSH. Moreover, a xenograft mouse model indicated that CA could trigger ferroptosis in lung cancer cells by regulating YAP expression and GSH levels. CONCLUSION CA inhibited lung cancer cell metastasis by inducing ferroptosis. Our data offer the first evidence that CA induces ferroptosis in lung cancer cells by regulating YAP/GSS to modulate GSH, thereby further suppressing EMT. These results imply the potential of CA as an inducer of ferroptosis to inhibit lung cancer metastasis.
Collapse
Affiliation(s)
- Congcong Zhang
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Lingli Gao
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Yinghui Zhang
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Xiaoqin Jin
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Mengyu Wang
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China.
| | - Qianna Wang
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Wenyu Zhao
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Nan Wu
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Yasu Zhang
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Yaru Liu
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Yanyu Zhang
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China.
| | - Liangliang Ma
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450014, PR China.
| | - Yulong Chen
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China.
| |
Collapse
|
2
|
Shao Y, Zuo X. PTPRC Inhibits Ferroptosis of Osteosarcoma Cells via Blocking TFEB/FTH1 Signaling. Mol Biotechnol 2024; 66:2985-2994. [PMID: 37851191 DOI: 10.1007/s12033-023-00914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
Protein tyrosine phosphatase receptor type C (PTPRC) is reported to function as an oncogenic role in various cancer. However, the studies on the roles of PTPRC in osteosarcoma (OS) are limited. This study aimed to explore the potentials of PTPRC in OS. mRNA levels were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Protein expression was detected by western blot. Lysosome biogenesis was determined using immunofluorescence. The binding sites of transcription factor EB (TFEB) on the promoter of ferritin heavy chain 1 (FTH1) were predicted by the online dataset JASPAR and confirmed by luciferase and chromatin immunoprecipitation (ChIP) assays. Cell death was determined using propidium iodide (PI) and TdT-mediated dUTP nick-end labeling (TUNEL) staining. The results showed that PTPRC was significantly overexpressed in OS tissues and cells. PTPRC knockdown promoted the phosphorylation and nuclear translocation of TFEB. Moreover, PTPRC knockdown markedly promoted lysosome biogenesis and the accumulation of ferrous ion (Fe2+), whereas decreased the release of glutathione (GSH). Besides, PTPRC knockdown significantly promoted autophagy and downregulated mRNA expression of FTH1 and ferritin light chain (FTL). Additionally, TFEB transcriptionally inactivated FTH1. PTPRC knockdown significantly promoted the ferroptosis of OS cells, which was markedly alleviated by TFEB shRNA. Taken together, PTPRC knockdown-mediated TFEB phosphorylation and translocation dramatically promoted lysosome biogenesis, ferritinophagy, as well as the ferroptosis of OS cells via regulating FTH1/FTL signaling. Therefore, PTPRC/TFEB/FTH1 signaling may be a potential target for OS.
Collapse
Affiliation(s)
- Yan Shao
- Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, 434020, Hubei Province, China.
| | - Xiao Zuo
- Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, 434020, Hubei Province, China
| |
Collapse
|
3
|
Gawargi FI, Mishra PK. MMP9 drives ferroptosis by regulating GPX4 and iron signaling. iScience 2024; 27:110622. [PMID: 39252956 PMCID: PMC11382059 DOI: 10.1016/j.isci.2024.110622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
Ferroptosis, defined by the suppression of glutathione peroxidase-4 (GPX4) and iron overload, is a distinctive form of regulated cell death. Our in-depth research identifies matrix metalloproteinase-9 (MMP9) as a critical modulator of ferroptosis through its influence on GPX4 and iron homeostasis. Employing an innovative MMP9 construct without collagenase activity, we reveal that active MMP9 interacts with GPX4 and glutathione reductase, reducing GPX4 expression and activity. Furthermore, MMP9 suppresses key transcription factors (SP1, CREB1, NRF2, FOXO3, and ATF4), alongside GPX1 and ferroptosis suppressor protein-1 (FSP1), thereby disrupting the cellular redox balance. MMP9 regulates iron metabolism by modulating iron import, storage, and export via a network of protein interactions. LC-MS/MS has identified 83 proteins that interact with MMP9 at subcellular levels, implicating them in ferroptosis regulation. Integrated pathway analysis (IPA) highlights MMP9's extensive influence on ferroptosis pathways, underscoring its potential as a therapeutic target in conditions with altered redox homeostasis and iron metabolism.
Collapse
Affiliation(s)
- Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
4
|
Saqirile, Deng Y, Li K, Yan W, Li K, Wang C. Gene Expression Regulation and the Signal Transduction of Programmed Cell Death. Curr Issues Mol Biol 2024; 46:10264-10298. [PMID: 39329964 DOI: 10.3390/cimb46090612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Cell death is of great significance in maintaining tissue homeostasis and bodily functions. With considerable research coming to the fore, it has been found that programmed cell death presents in multiple modalities in the body, which is not only limited to apoptosis, but also can be divided into autophagy, pyroptosis, ferroptosis, mitotic catastrophe, entosis, netosis, and other ways. Different forms of programmed cell death have disparate or analogous characteristics with each other, and their occurrence is accompanied by multiple signal transduction and the role of a myriad of regulatory factors. In recent years, scholars across the world have carried out considerable in-depth research on programmed cell death, and new forms of cell death are being discovered continually. Concomitantly, the mechanisms of intricate signaling pathways and regulators have been discovered. More critically, cancer cells tend to choose distinct ways to evade cell death, and different tumors adapt to different manners of death. Therefore, targeting the cell death network has been regarded as an effective tumor treatment strategy for a long time. The objective of our paper is to review the signaling pathways and gene regulation in several typical types of programmed cell death and their correlation with cancer.
Collapse
Affiliation(s)
- Saqirile
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Yuxin Deng
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Kexin Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Wenxin Yan
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Ke Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Changshan Wang
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| |
Collapse
|
5
|
An S, Shi J, Huang J, Li Z, Feng M, Cao G. HIF-1α Induced by Hypoxia Promotes Peripheral Nerve Injury Recovery Through Regulating Ferroptosis in DRG Neuron. Mol Neurobiol 2024; 61:6300-6311. [PMID: 38291291 DOI: 10.1007/s12035-024-03964-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Peripheral nerve injury (PNI) usually has a poor effect on functional recovery and severely declines the patient's quality of life. Our prior findings indicated that hypoxia remarkably promoted nerve regeneration of rats with sciatic nerve transection. However, the underlying molecular mechanisms of hypoxia in functional recovery of PNI still remain elusive. In this research, we tried to explain the functional roles and mechanisms of hypoxia and the hypoxia-inducible factor-1α (HIF-1α) in PNI. Our results indicated that hypoxia promoted proliferation and migration of dorsal root ganglia (DRG) and increased the expression of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Mechanistically, hypoxia suppressed ferroptosis through activating HIF-1α in DRG neurons. Gain and loss of function studies were performed to evaluate the regulatory roles of HIF-1α in ferroptosis and neuron recovery. The results revealed that up-regulation of HIF-1α enhanced the expression of solute carrier family membrane 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) and increased the contents of cysteine and glutathione, while inhibiting the accumulation of reactive oxygen species (ROS). Our findings provided novel light on the mechanism of ferroptosis involved in PNI and manifest hypoxia as a potential therapeutic strategy for PNI recovery.
Collapse
Affiliation(s)
- Shuai An
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jingfei Shi
- Cerebrovascular and Neuroscience Research Institute, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiang Huang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zheng Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Mingli Feng
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Guanglei Cao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
6
|
Zhao C, Xu Z, Que H, Zhang K, Wang F, Tan R, Fan C. ASB1 inhibits prostate cancer progression by destabilizing CHCHD3 via K48-linked ubiquitination. Am J Cancer Res 2024; 14:3404-3418. [PMID: 39113857 PMCID: PMC11301297 DOI: 10.62347/feiz7492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
Prostate cancer is a major contributor to male mortality worldwide. In this study, we revealed that Ankyrin Repeat and SOCS Box Containing 1 (ASB1) expression was significantly decreased in prostate cancer tissues, correlating strongly with poor patient prognosis. Notably, the group with low ASB1 expression exhibited an increased proportion of M2 macrophages and showed resistance to immune checkpoint inhibitors and cisplatin, but remained sensitive to androgen-receptor-targeting drug bicalutamide. Silencing ASB1 enhanced prostate cancer cell proliferation, clonogenicity, and migration, whereas its overexpression exerted the opposite effects. Through quantitative mass spectrometry interactome analysis, we identified 37 novel proteins interacting with ASB1, including CHCHD3. Subsequent experiments including co-immunoprecipitation, cycloheximide treatment, and ubiquitination assays, revealed that ASB1 interacts with CHCHD3, promoting its degradation via K48-linked ubiquitination. Cell rescue experiments further demonstrated that ASB1 inhibits prostate cancer cell through the CHCHD3/reactive oxygen species (ROS) pathway. Taken together, our study indicated that ASB1 functions as a tumor suppressor by inhibiting CHCHD3/ROS signaling, thereby playing a vital part in prevention of prostate cancer proliferation, clonogenicity, and migration.
Collapse
Affiliation(s)
- Chunchun Zhao
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Zhen Xu
- Department of Urology, The Affiliated Taizhou People’s Hospital of Nanjing Medical UniversityTaizhou 225300, Jiangsu, China
| | - Hongliang Que
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Ke Zhang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Fei Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Caibin Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| |
Collapse
|
7
|
Zhao R, Chen Q, Qiao P, Lu Y, Chen X. A signature of four ferroptosis-related genes in laryngeal squamous cell carcinoma. Transl Cancer Res 2024; 13:2938-2949. [PMID: 38988911 PMCID: PMC11231803 DOI: 10.21037/tcr-23-2046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/06/2024] [Indexed: 07/12/2024]
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) prognosis has not improved significantly in the past few decades, and more effective treatments are needed to be explored. Ferroptosis is a newly discovered kind of regulated cell death in recent years, which is related to tumor immunity and can used to treat tumors. Therefore, the prognostic value of ferroptosis-related genes in laryngeal cancer needs further clarification. Methods In this study, the mRNA expression profile data of LSCC were downloaded from the public database. After identifying ferroptosis-related differentially expressed genes (FDGs), we explored the role of these genes through functional enrichment analysis. FDGs with prognostic significance were identified by univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses. By calculating the risk score, we constructed a prognostic model. Kaplan-Meier (K-M) analysis, the receiver operating characteristic (ROC) curves, and the nomogram were utilized to investigate this model. Public databases and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to verify the expression of model genes. Results The model consisting of four FDGs was acknowledged to be a self-determining predictor of prognosis. The K-M survival curves and the ROC curves confirmed the model's predictive ability. The C index (0.805) indicates that the nomogram has a good predictive ability. In vitro studies have confirmed the differential expression of the four FDGs. Conclusions We identified a novel ferroptosis-related gene signature for predicting prognosis in LSCC.
Collapse
Affiliation(s)
- Runyu Zhao
- Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China
| | - Qun Chen
- Department of Otolaryngology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Peipei Qiao
- Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China
| | - Yingying Lu
- School of Medicine, Shanghai University, Shanghai, China
| | - Xiaoping Chen
- Department of Otolaryngology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| |
Collapse
|
8
|
Shu YJ, Lao B, Qiu YY. Research progress of ferroptosis regulating lipid peroxidation and metabolism in occurrence and development of primary liver cancer. World J Gastrointest Oncol 2024; 16:2335-2349. [PMID: 38994128 PMCID: PMC11236230 DOI: 10.4251/wjgo.v16.i6.2335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 06/13/2024] Open
Abstract
As a highly aggressive tumor, the pathophysiological mechanism of primary liver cancer has attracted much attention. In recent years, factors such as ferroptosis regulation, lipid peroxidation and metabolic abnormalities have emerged in the study of liver cancer, providing a new perspective for understanding the development of liver cancer. Ferroptosis regulation, lipid peroxidation and metabolic abnormalities play important roles in the occurrence and development of liver cancer. The regulation of ferroptosis is involved in apoptosis and necrosis, affecting cell survival and death. Lipid peroxidation promotes oxidative damage and promotes the invasion of liver cancer cells. Metabolic abnormalities, especially the disorders of glucose and lipid metabolism, directly affect the proliferation and growth of liver cancer cells. Studies of ferroptosis regulation and lipid peroxidation may help to discover new therapeutic targets and improve therapeutic outcomes. The understanding of metabolic abnormalities can provide new ideas for the prevention of liver cancer, and reduce the risk of disease by adjusting the metabolic process. This review focuses on the key roles of ferroptosis regulation, lipid peroxidation and metabolic abnormalities in this process.
Collapse
Affiliation(s)
- Yu-Jie Shu
- Department of Gastroenterology, Yinzhou District Second Hospital, Ningbo 315199, Zhejiang Province, China
| | - Bo Lao
- Department of Gastroenterology, Yinzhou District Second Hospital, Ningbo 315199, Zhejiang Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
9
|
Xiang D, Zhou L, Yang R, Yuan F, Xu Y, Yang Y, Qiao Y, Li X. Advances in Ferroptosis-Inducing Agents by Targeted Delivery System in Cancer Therapy. Int J Nanomedicine 2024; 19:2091-2112. [PMID: 38476278 PMCID: PMC10929151 DOI: 10.2147/ijn.s448715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, cancer remains one of the most significant threats to human health. Treatment of most cancers remains challenging, despite the implementation of diverse therapies in clinical practice. In recent years, research on the mechanism of ferroptosis has presented novel perspectives for cancer treatment. Ferroptosis is a regulated cell death process caused by lipid peroxidation of membrane unsaturated fatty acids catalyzed by iron ions. The rapid development of bio-nanotechnology has generated considerable interest in exploiting iron-induced cell death as a new therapeutic target against cancer. This article provides a comprehensive overview of recent advancements at the intersection of iron-induced cell death and bionanotechnology. In this respect, the mechanism of iron-induced cell death and its relation to cancer are summarized. Furthermore, the feasibility of a nano-drug delivery system based on iron-induced cell death for cancer treatment is introduced and analyzed. Secondly, strategies for inducing iron-induced cell death using nanodrug delivery technology are discussed, including promoting Fenton reactions, inhibiting glutathione peroxidase 4, reducing low glutathione levels, and inhibiting system Xc-. Additionally, the article explores the potential of combined treatment strategies involving iron-induced cell death and bionanotechnology. Finally, the application prospects and challenges of iron-induced nanoagents for cancer treatment are discussed.
Collapse
Affiliation(s)
- Debiao Xiang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan Province, People’s Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People’s Republic of China
- The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, Hunan Province, People’s Republic of China
| | - Lili Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, People’s Republic of China
| | - Rui Yang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan Province, People’s Republic of China
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, People’s Republic of China
| | - Fang Yuan
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan Province, People’s Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People’s Republic of China
- The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, Hunan Province, People’s Republic of China
| | - Yilin Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, People’s Republic of China
| | - Yuan Yang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan Province, People’s Republic of China
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, People’s Republic of China
| | - Yong Qiao
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan Province, People’s Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People’s Republic of China
- The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, Hunan Province, People’s Republic of China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan Province, People’s Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People’s Republic of China
- The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, Hunan Province, People’s Republic of China
| |
Collapse
|
10
|
Huang Y, Luo W, Yang Z, Lan T, Wei X, Wu H. Machine learning and experimental validation identified autophagy signature in hepatic fibrosis. Front Immunol 2024; 15:1337105. [PMID: 38481992 PMCID: PMC10933073 DOI: 10.3389/fimmu.2024.1337105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/14/2024] [Indexed: 04/10/2024] Open
Abstract
Background The molecular mechanisms of hepatic fibrosis (HF), closely related to autophagy, remain unclear. This study aimed to investigate autophagy characteristics in HF. Methods Gene expression profiles (GSE6764, GSE49541 and GSE84044) were downloaded, normalized, and merged. Autophagy-related differentially expressed genes (ARDEGs) were determined using the limma R package and the Wilcoxon rank sum test and then analyzed by GO, KEGG, GSEA and GSVA. The infiltration of immune cells, molecular subtypes and immune types of healthy control (HC) and HF were analyzed. Machine learning was carried out with two methods, by which, core genes were obtained. Models of liver fibrosis in vivo and in vitro were constructed to verify the expression of core genes and corresponding immune cells. Results A total of 69 ARDEGs were identified. Series functional cluster analysis showed that ARDEGs were significantly enriched in autophagy and immunity. Activated CD4 T cells, CD56bright natural killer cells, CD56dim natural killer cells, eosinophils, macrophages, mast cells, neutrophils, and type 17 T helper (Th17) cells showed significant differences in infiltration between HC and HF groups. Among ARDEGs, three core genes were identified, that were ATG5, RB1CC1, and PARK2. Considerable changes in the infiltration of immune cells were observed at different expression levels of the three core genes, among which the expression of RB1CC1 was significantly associated with the infiltration of macrophage, Th17 cell, natural killer cell and CD56dim natural killer cell. In the mouse liver fibrosis experiment, ATG5, RB1CC1, and PARK2 were at higher levels in HF group than those in HC group. Compared with HC group, HF group showed low positive area in F4/80, IL-17 and CD56, indicating decreased expression of macrophage, Th17 cell, natural killer cell and CD56dim natural killer cell. Meanwhile, knocking down RB1CC1 was found to inhibit the activation of hepatic stellate cells and alleviate liver fibrosis. Conclusion ATG5, RB1CC1, and PARK2 are promising autophagy-related therapeutic biomarkers for HF. This is the first study to identify RB1CC1 in HF, which may promote the progression of liver fibrosis by regulating macrophage, Th17 cell, natural killer cell and CD56dim natural killer cell.
Collapse
Affiliation(s)
- Yushen Huang
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Wen Luo
- Department of Gastrointestinal Surgery, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Zhijie Yang
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Tian Lan
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Xiaomou Wei
- Department of Scientific Research, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Hongwen Wu
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| |
Collapse
|
11
|
Sun H, Fu B, Qian X, Xu P, Qin W. Nuclear and cytoplasmic specific RNA binding proteome enrichment and its changes upon ferroptosis induction. Nat Commun 2024; 15:852. [PMID: 38286993 PMCID: PMC10825125 DOI: 10.1038/s41467-024-44987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
The key role of RNA-binding proteins (RBPs) in posttranscriptional regulation of gene expression is intimately tied to their subcellular localization. Here, we show a subcellular-specific RNA labeling method for efficient enrichment and deep profiling of nuclear and cytoplasmic RBPs. A total of 1221 nuclear RBPs and 1333 cytoplasmic RBPs were enriched and identified using nuclear/cytoplasm targeting enrichment probes, representing an increase of 54.4% and 85.7% compared with previous reports. The probes were further applied in the omics-level investigation of subcellular-specific RBP-RNA interactions upon ferroptosis induction. Interestingly, large-scale RBPs display enhanced interaction with RNAs in nucleus but reduced association with RNAs in cytoplasm during ferroptosis process. Furthermore, we discovered dozens of nucleoplasmic translocation candidate RBPs upon ferroptosis induction and validated representative ones by immunofluorescence imaging. The enrichment of Tricarboxylic acid cycle in the translocation candidate RBPs may provide insights for investigating their possible roles in ferroptosis induced metabolism dysregulation.
Collapse
Affiliation(s)
- Haofan Sun
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Bin Fu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaohong Qian
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ping Xu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Weijie Qin
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
12
|
Luo J, Lu Q, Sun B, Shao N, Huang W, Hu G, Cai B, Si W. Chrysophanol improves memory impairment and cell injury by reducing the level of ferroptosis in A β25-35 treated rat and PC12 cells. 3 Biotech 2023; 13:348. [PMID: 37780805 PMCID: PMC10539257 DOI: 10.1007/s13205-023-03769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related chronic and neurodegenerative disease that has become a global health problem. AD pathogenesis is complex, and the clinical efficacy of commonly used anti-AD drugs is suboptimal. Recent research has revealed a close association between AD-induced damage and the activation of ferroptosis signaling pathways. Chrysophanol (CHR) the principal medicinal component of Rhubarb, has been reported to have anti-AD effects and can reduce ROS levels in AD-damaged models. AD has been linked to the activation of ferroptosis signaling pathways, which has an important feature of higher levels of reactive oxygen species (ROS). Therefore, the present study explored whether CHR had an anti-AD effect by regulating the ferroptosis levels in AD injury models. Morris water maze, novel object recognition test, Y-maze test, Hematoxylin-eosin (H&E) staining, western blotting, ROS measurement, GPx activity measurement, LPO measurement, transmission electron microscopy, live/dead cell staining were used to investigate the changes in spatial memory level and ferroptosis level in AD model, and the intervention effect of CHR. CHR improved the spatial memory level of AD rat models, reduced the level of hippocampal neuron damage, and improved the survival rate of PC12 cells damaged by β-amyloid (Aβ). Meanwhile, CHR increased glutathione peroxidase-4 (GPX4) protein expression, GPx activity, and GSH, decreased ROS and LPO levels in AD rat models and Aβ-damaged PC12 cells, and improved mitochondrial pathological damage. Our findings suggest that CHR may play a protective role in AD injury by lowering ferroptosis levels, which may provide a potential pathway for developing drugs for AD. However, the mechanism of CHR's role requires further investigation.
Collapse
Affiliation(s)
- Jing Luo
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Qingyang Lu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Bin Sun
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Nan Shao
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Wei Huang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Guanhua Hu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Biao Cai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012 China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012 China
| | - Wenwen Si
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012 China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012 China
| |
Collapse
|
13
|
Qu S, Qi S, Zhang H, Li Z, Wang K, Zhu T, Ye R, Zhang W, Huang G, Yi GZ. Albumin-bound paclitaxel augment temozolomide treatment sensitivity of glioblastoma cells by disrupting DNA damage repair and promoting ferroptosis. J Exp Clin Cancer Res 2023; 42:285. [PMID: 37891669 PMCID: PMC10612313 DOI: 10.1186/s13046-023-02843-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Temozolomide (TMZ) treatment efficacy in glioblastoma (GBM) patients has been limited by resistance in the clinic. Currently, there are no clinically proven therapeutic options available to restore TMZ treatment sensitivity. Here, we investigated the potential of albumin-bound paclitaxel (ABX), a novel microtubule targeting agent, in sensitizing GBM cells to TMZ and elucidated its underlying molecular mechanism. METHODS A series of in vivo and in vitro experiments based on two GBM cell lines and two primary GBM cells were designed to evaluate the efficacy of ABX in sensitizing GBM cells to TMZ. Further proteomic analysis and validation experiments were performed to explore the underlying molecular mechanism. Finally, the efficacy and mechanism were validated in GBM patients derived organoids (PDOs) models. RESULTS ABX exhibited a synergistic inhibitory effect on GBM cells when combined with TMZ in vitro. Combination treatment of TMZ and ABX was highly effective in suppressing GBM progression and significantly prolonged the survival oforthotopic xenograft nude mice, with negligible side effects. Further proteomic analysis and experimental validation demonstrated that the combined treatment of ABX and TMZ can induce sustained DNA damage by disrupting XPC and ERCC1 expression and nuclear localization. Additionally, the combination treatment can enhance ferroptosis through regulating HOXM1 and GPX4 expression. Preclinical drug-sensitivity testing based on GBM PDOs models confirmed that combination therapy was significantly more effective than conventional TMZ monotherapy. CONCLUSION Our findings suggest that ABX has the potential to enhance TMZ treatment sensitivity in GBM, which provides a promising therapeutic strategy for GBM patients.
Collapse
Affiliation(s)
- Shanqiang Qu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Nanfang Glioma Center, Guangzhou, Guangdong, People's Republic of China
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Nanfang Glioma Center, Guangzhou, Guangdong, People's Republic of China
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Huayang Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Nanfang Glioma Center, Guangzhou, Guangdong, People's Republic of China
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Kaicheng Wang
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Taichen Zhu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Rongxu Ye
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wanghao Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
- Nanfang Glioma Center, Guangzhou, Guangdong, People's Republic of China.
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Guo-Zhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
- Nanfang Glioma Center, Guangzhou, Guangdong, People's Republic of China.
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
14
|
Zhang X, Ma L, Wang J. Cross-Regulation Between Redox and Epigenetic Systems in Tumorigenesis: Molecular Mechanisms and Clinical Applications. Antioxid Redox Signal 2023; 39:445-471. [PMID: 37265163 DOI: 10.1089/ars.2023.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Significance: Redox and epigenetics are two important regulatory processes of cell physiological functions. The cross-regulation between these processes has critical effects on the occurrence and development of various types of tumors. Recent Advances: The core factor that influences redox balance is reactive oxygen species (ROS) generation. The ROS functions as a double-edged sword in tumors: Low levels of ROS promote tumors, whereas excessive ROS induces various forms of tumor cell death, including apoptosis and ferroptosis as well as necroptosis and pyroptosis. Many studies have shown that the redox balance is influenced by epigenetic mechanisms such as DNA methylation, histone modification, chromatin remodeling, non-coding RNAs (microRNA, long non-coding RNA, and circular RNA), and RNA N6-methyladenosine modification. Several oxidizing or reducing substances also affect the epigenetic state. Critical Issues: In this review, we summarize research on the cross-regulation between redox and epigenetics in cancer and discuss the relevant molecular mechanisms. We also discuss the current research on the clinical applications. Future Directions: Future research can use high-throughput methods to analyze the molecular mechanisms of the cross-regulation between redox and epigenetics using both in vitro and in vivo models in more detail, elucidate regulatory mechanisms, and provide guidance for clinical treatment. Antioxid. Redox Signal. 39, 445-471.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Lifang Ma
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jiayi Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
15
|
Yang S, Yin X, Wang J, Li H, Shen H, Sun Q, Li X. MIC19 Exerts Neuroprotective Role via Maintaining the Mitochondrial Structure in a Rat Model of Intracerebral Hemorrhage. Int J Mol Sci 2023; 24:11553. [PMID: 37511310 PMCID: PMC10380515 DOI: 10.3390/ijms241411553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
As an essential constituent of the mitochondrial contact site and cristae organization system (MICOS), MIC19 plays a crucial role in maintaining the stability of mitochondrial function and microstructure. However, the mechanisms and functions of MIC19 in intracerebral hemorrhage (ICH) remain unknown and need to be investigated. Sprague Dawley (SD) rats injected with autologous blood obtained from the caudal artery, and cultured neurons exposed to oxygen hemoglobin (OxyHb) were used to establish and emulate the ICH model in vivo and in vitro. Lentiviral vector encoding MIC19 or MIC19 short hairpin ribonucleic acid (shRNA) was constructed and administered to rats by intracerebroventricular injection to overexpress or knock down MIC19, respectively. First, MIC19 protein levels were increased after ICH modeling. After virus transfection and subsequent ICH modeling, we observed that overexpression of MIC19 could mitigate cell apoptosis and neuronal death, as well as abnormalities in mitochondrial structure and function, oxidative stress within mitochondria, and neurobehavioral deficits in rats following ICH. Conversely, knockdown of MIC19 had the opposite effect. Moreover, we found that the connection between MIC19 and SAM50 was disrupted after ICH, which may be a reason for the impairment of the mitochondrial structure after ICH. In conclusion, MIC19 exerts a protective role in the subsequent injury induced by ICH. The investigation of MIC19 may offer clinicians novel therapeutic insights for patients afflicted with ICH.
Collapse
Affiliation(s)
- Siyuan Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xulong Yin
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiahe Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
| |
Collapse
|
16
|
Wang Y, Zeng Z, Zeng Z, Chu G, Shan X. Elevated CHCHD4 orchestrates mitochondrial oxidative phosphorylation to disturb hypoxic pulmonary hypertension. J Transl Med 2023; 21:464. [PMID: 37438854 DOI: 10.1186/s12967-023-04268-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/11/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a highly prevalent cardiopulmonary disorder characterized by vascular remodeling and increased resistance in pulmonary artery. Mitochondrial coiled-coil-helix-coiled-coil-helix domain (CHCHD)-containing proteins have various important pathophysiological roles. However, the functional roles of CHCHD proteins in hypoxic PAH is still ambiguous. Here, we aimed to investigate the role of CHCHD4 in hypoxic PAH and provide new insight into the mechanism driving the development of PAH. METHODS Serotype 1 adeno-associated viral vector (AAV) carrying Chchd4 was intratracheally injected to overexpress CHCHD4 in Sprague Dawley (SD) rats. The Normoxia groups of animals were housed at 21% O2. Hypoxia groups were housed at 10% O2, for 8 h/day for 4 consecutive weeks. Hemodynamic and histological characteristics are investigated in PAH. Primary pulmonary artery smooth muscle cells of rats (PASMCs) are used to assess how CHCHD4 affects proliferation and migration. RESULTS We found CHCHD4 was significantly downregulated among CHCHD proteins in hypoxic PASMCs and lung tissues from hypoxic PAH rats. AAV1-induced CHCHD4 elevation conspicuously alleviates vascular remodeling and pulmonary artery resistance, and orchestrates mitochondrial oxidative phosphorylation in PASMCs. Moreover, we found overexpression of CHCHD4 impeded proliferation and migration of PASMCs. Mechanistically, through lung tissues bulk RNA-sequencing (RNA-seq), we further identified CHCHD4 modulated mitochondrial dynamics by directly interacting with SAM50, a barrel protein on mitochondrial outer membrane surface. Furthermore, knockdown of SAM50 reversed the biological effects of CHCHD4 overexpression in isolated PASMCs. CONCLUSIONS Collectively, our data demonstrated that CHCHD4 elevation orchestrates mitochondrial oxidative phosphorylation and antagonizes aberrant PASMC cell growth and migration, thereby disturbing hypoxic PAH, which could serve as a promising therapeutic target for PAH treatment.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Zhenyu Zeng
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Zhaoxiang Zeng
- Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Guojun Chu
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| | - Xinghua Shan
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
17
|
Wang H, Xu X, Wang Y, Xue X, Guo W, Guo S, Qiu S, Cui J, Qiao Y. NMT1 sustains ICAM-1 to modulate adhesion and migration of tumor cells. Cell Signal 2023:110739. [PMID: 37269961 DOI: 10.1016/j.cellsig.2023.110739] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/17/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Protein modifications have significant effects on tumorigenesis. N-Myristoylation is one of the most important lipidation modifications, and N-myristoyltransferase 1 (NMT1) is the main enzyme required for this process. However, the mechanism underlying how NMT1 modulates tumorigenesis remains largely unclear. Here, we found that NMT1 sustains cell adhesion and suppresses tumor cell migration. Intracellular adhesion molecule 1 (ICAM-1) was a potential functional downstream effector of NMT1, and its N-terminus could be N-myristoylated. NMT1 prevented ubiquitination and proteasome degradation of ICAM-1 by inhibiting Ub E3 ligase F-box protein 4, which prolonged the half-life of ICAM1 protein. Correlations between NMT1 and ICAM-1 were observed in liver and lung cancers, which were associated with metastasis and overall survival. Therefore, carefully designed strategies focusing on NMT1 and its downstream effectors might be helpful to treat tumors.
Collapse
Affiliation(s)
- Hong Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin Xu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Yikun Wang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Xiangfei Xue
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Wanxin Guo
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Susu Guo
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Shiyu Qiu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Jiangtao Cui
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
18
|
Huang Z, Xia H, Cui Y, Yam JWP, Xu Y. Ferroptosis: From Basic Research to Clinical Therapeutics in Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:207-218. [PMID: 36406319 PMCID: PMC9647096 DOI: 10.14218/jcth.2022.00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and highly heterogeneous malignancies worldwide. Despite the rapid development of multidisciplinary treatment and personalized precision medicine strategies, the overall survival of HCC patients remains poor. The limited survival benefit may be attributed to difficulty in early diagnosis, the high recurrence rate and high tumor heterogeneity. Ferroptosis, a novel mode of cell death driven by iron-dependent lipid peroxidation, has been implicated in the development and therapeutic response of various tumors, including HCC. In this review, we discuss the regulatory network of ferroptosis, describe the crosstalk between ferroptosis and HCC-related signaling pathways, and elucidate the potential role of ferroptosis in various treatment modalities for HCC, such as systemic therapy, radiotherapy, immunotherapy, interventional therapy and nanotherapy, and applications in the diagnosis and prognosis of HCC, to provide a theoretical basis for the diagnosis and treatment of HCC to effectively improve the survival of HCC patients.
Collapse
Affiliation(s)
- Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Correspondence to: Yi Xu, Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China. ORCID: https://orcid.org/0000-0003-2720-0005. Tel/Fax: +852-94791847, E-mail: ; Judy Wai Ping Yam, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong 999077, China. ORCID: https://orcid.org/0000-0002-5637-121X. Tel: +852-22552681, Fax: +852-22185212, E-mail:
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Correspondence to: Yi Xu, Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China. ORCID: https://orcid.org/0000-0003-2720-0005. Tel/Fax: +852-94791847, E-mail: ; Judy Wai Ping Yam, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong 999077, China. ORCID: https://orcid.org/0000-0002-5637-121X. Tel: +852-22552681, Fax: +852-22185212, E-mail:
| |
Collapse
|
19
|
Wang X, Han X, Powell CA. Lipids and genes: Regulatory roles of lipids in RNA expression. Clin Transl Med 2022; 12:e863. [PMID: 35588460 PMCID: PMC9119606 DOI: 10.1002/ctm2.863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/11/2022] Open
Abstract
Nuclear lipid metabolism and metabolites play important roles in regulation of lipid-lipid, lipid-gene, lipid-chromatin, lipid-membrane and lipid-protein interactions to maintain the nuclear microenvironment, three-dimensional chromatin architecture, gene expression and transcription and biological function. This Editorial highlights the value of lipid-gene interaction in the identification and development of biomarkers and targets and emphasizes the significance of inter-regulation between lipids and genes in innovation and application of precise therapies for patients. Regulatory functions of nuclear lipid dynamics and biophysics modify transcriptomic expression, and modification (lipotranscriptome) can be a new approach for discovery and development of disease-specific diagnoses and therapies, although there are several challenges to be overcome. Better understanding of how lipid-based changes of nuclear functions and transcriptomic profiles modify clinical phenomes will provide new insights to understand molecular mechanisms of diseases and to develop spatiotemporal molecular medicine diagnostics and therapeutics.
Collapse
Affiliation(s)
- Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Xianlin Han
- Department of Medicine ‐ DiabetesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Charles A. Powell
- Division of PulmonaryCritical Care and Sleep MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
20
|
Ni H, Kwan-wai Chan B, Cheng Q, Chen K, Xie M, Wang H, Wai-chi Chan E, Chen S. A novel clinical therapy to combat infections caused by Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae. J Infect 2022; 85:174-211. [DOI: 10.1016/j.jinf.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
|