1
|
Russell AJC, Weir JA, Nadaf NM, Shabet M, Kumar V, Kambhampati S, Raichur R, Marrero GJ, Liu S, Balderrama KS, Vanderburg CR, Shanmugam V, Tian L, Iorgulescu JB, Yoon CH, Wu CJ, Macosko EZ, Chen F. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics. Nature 2024; 625:101-109. [PMID: 38093010 PMCID: PMC10764288 DOI: 10.1038/s41586-023-06837-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023]
Abstract
Recent technological innovations have enabled the high-throughput quantification of gene expression and epigenetic regulation within individual cells, transforming our understanding of how complex tissues are constructed1-6. However, missing from these measurements is the ability to routinely and easily spatially localize these profiled cells. We developed a strategy, Slide-tags, in which single nuclei within an intact tissue section are tagged with spatial barcode oligonucleotides derived from DNA-barcoded beads with known positions. These tagged nuclei can then be used as an input into a wide variety of single-nucleus profiling assays. Application of Slide-tags to the mouse hippocampus positioned nuclei at less than 10 μm spatial resolution and delivered whole-transcriptome data that are indistinguishable in quality from ordinary single-nucleus RNA-sequencing data. To demonstrate that Slide-tags can be applied to a wide variety of human tissues, we performed the assay on brain, tonsil and melanoma. We revealed cell-type-specific spatially varying gene expression across cortical layers and spatially contextualized receptor-ligand interactions driving B cell maturation in lymphoid tissue. A major benefit of Slide-tags is that it is easily adaptable to almost any single-cell measurement technology. As a proof of principle, we performed multiomic measurements of open chromatin, RNA and T cell receptor (TCR) sequences in the same cells from metastatic melanoma, identifying transcription factor motifs driving cancer cell state transitions in spatially distinct microenvironments. Slide-tags offers a universal platform for importing the compendium of established single-cell measurements into the spatial genomics repertoire.
Collapse
Affiliation(s)
- Andrew J C Russell
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jackson A Weir
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA, USA
| | - Naeem M Nadaf
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Vipin Kumar
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Sandeep Kambhampati
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard University, Boston, MA, USA
| | - Ruth Raichur
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Sophia Liu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Biophysics Program, Harvard University, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Vignesh Shanmugam
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luyi Tian
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Guangzhou Laboratory, Guangdong, China
| | - J Bryan Iorgulescu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Stem Cell Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Boston, MA, USA
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles H Yoon
- Department of Surgical Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Catherine J Wu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Stem Cell Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Russell AJC, Weir JA, Nadaf NM, Shabet M, Kumar V, Kambhampati S, Raichur R, Marrero GJ, Liu S, Balderrama KS, Vanderburg CR, Shanmugam V, Tian L, Wu CJ, Yoon CH, Macosko EZ, Chen F. Slide-tags: scalable, single-nucleus barcoding for multi-modal spatial genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.535228. [PMID: 37066158 PMCID: PMC10103946 DOI: 10.1101/2023.04.01.535228] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recent technological innovations have enabled the high-throughput quantification of gene expression and epigenetic regulation within individual cells, transforming our understanding of how complex tissues are constructed. Missing from these measurements, however, is the ability to routinely and easily spatially localise these profiled cells. We developed a strategy, Slide-tags, in which single nuclei within an intact tissue section are 'tagged' with spatial barcode oligonucleotides derived from DNA-barcoded beads with known positions. These tagged nuclei can then be used as input into a wide variety of single-nucleus profiling assays. Application of Slide-tags to the mouse hippocampus positioned nuclei at less than 10 micron spatial resolution, and delivered whole-transcriptome data that was indistinguishable in quality from ordinary snRNA-seq. To demonstrate that Slide-tags can be applied to a wide variety of human tissues, we performed the assay on brain, tonsil, and melanoma. We revealed cell-type-specific spatially varying gene expression across cortical layers and spatially contextualised receptor-ligand interactions driving B-cell maturation in lymphoid tissue. A major benefit of Slide-tags is that it is easily adaptable to virtually any single-cell measurement technology. As proof of principle, we performed multiomic measurements of open chromatin, RNA, and T-cell receptor sequences in the same cells from metastatic melanoma. We identified spatially distinct tumour subpopulations to be differentially infiltrated by an expanded T-cell clone and undergoing cell state transition driven by spatially clustered accessible transcription factor motifs. Slide-tags offers a universal platform for importing the compendium of established single-cell measurements into the spatial genomics repertoire.
Collapse
|
3
|
Andea AA. Molecular testing in melanoma for the surgical pathologist. Pathology 2023; 55:245-257. [PMID: 36653236 DOI: 10.1016/j.pathol.2022.12.343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
The diagnostic work-up of melanocytic tumours has undergone significant changes in the last years following the exponential growth of molecular assays. For the practising pathologist it is often difficult to sort through the multitude of different tests that are currently available for clinical use. The molecular tests used in melanocytic pathology can be broadly divided into four categories: (1) tests that predict response to systemic therapy in melanoma; (2) tests that predict prognosis in melanoma; (3) tests useful in determining the type or class of melanocytic tumour; and (4) tests useful in the differential diagnosis of naevus versus melanoma (primarily used as an aid in the diagnosis of histologically ambiguous melanocytic lesions). This review will present an updated synopsis of major molecular ancillary tests used in clinical practice.
Collapse
Affiliation(s)
- Aleodor A Andea
- Departments of Pathology and Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Geiersbach KB, Gliem TJ, Jenkins SM, Gaitatzes AG, Brodersen PR, Negro ME, Clees MJ, Swanson KE, Boeckman RM, Natrop TJ, Sukov WR, Shah KK, Greipp PT, Rowsey RA, Flotte TJ, Erickson LA, Guo R. Single-Nucleotide Polymorphism Array for Histologically Ambiguous Melanocytic Tumors: Knowns and Unknowns. J Mol Diagn 2022; 24:1160-1170. [PMID: 36115511 DOI: 10.1016/j.jmoldx.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Accepted: 08/11/2022] [Indexed: 10/14/2022] Open
Abstract
Genome-wide copy number profiling by single-nucleotide polymorphism (SNP) array is increasingly employed in the clinical diagnostic workup of melanocytic tumors. We present our SNP array results on 675 melanocytic tumors, including 615 histologically ambiguous tumors evaluated by our institution's dermatopathology consultation service and a separate validation cohort of 26 known benign nevi and 34 known malignant melanomas. The total number of somatic copy number abnormalities, sub-chromosomal copy number abnormalities, regions of homozygosity, and abnormalities at disease-associated regions was significantly associated with a diagnosis of malignancy across disease categories. In our study, the number of copy number abnormalities was the factor that best discriminated between benign versus malignant diagnoses, confirming recent published research. Histologically ambiguous tumors had a range and spectrum of abnormalities, including recurrent 11p gains, copy state transitions over kinase genes, and 3p deletions overlapping BAP1 in neoplasms with spitzoid morphology. Our data suggest that histologically ambiguous melanocytic neoplasms and early primary melanomas have a range of abnormalities that is intermediate between unambiguous benign or malignant melanocytic neoplasms. Careful technical review and an integrated diagnostic approach are essential for the accurate interpretation of SNP array results on histologically ambiguous melanocytic tumors.
Collapse
Affiliation(s)
| | - Troy J Gliem
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sarah M Jenkins
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | | | - Pamela R Brodersen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Megan E Negro
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Megan J Clees
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kirsten E Swanson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Riley M Boeckman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Travis J Natrop
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - William R Sukov
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kabeer K Shah
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; SSM Health St. Mary's Hospital, Madison, Wisconsin
| | - Patricia T Greipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ross A Rowsey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Thomas J Flotte
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ruifeng Guo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
Andea AA. Molecular testing for melanocytic tumors: a practical update. Histopathology 2021; 80:150-165. [DOI: 10.1111/his.14570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Aleodor A Andea
- Departments of Pathology and Dermatology Michigan Medicine University of Michigan Ann Arbor MI USA
| |
Collapse
|
6
|
Gala K, Khattar E. Long non-coding RNAs at work on telomeres: Functions and implications in cancer therapy. Cancer Lett 2021; 502:120-132. [PMID: 33450357 DOI: 10.1016/j.canlet.2020.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/13/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022]
Abstract
Long non-coding RNAs (lncRNAs) are known to regulate various biological processes including cancer. Cancer cells possess limitless replicative potential which is attained by telomere length maintenance while normal somatic cells have a limited lifespan because their telomeres shorten with every cell division ultimately triggering replicative senescence. Two lncRNAs have been observed to play a key role in telomere length maintenance. First is the lncRNA TERC (telomerase RNA component) which functions as a template for telomeric DNA synthesis in association with telomerase reverse transcriptase (TERT) which serves as the catalytic component. Together they constitute the telomerase complex which functions as a reverse transcriptase to elongate telomeres. Second lncRNA that helps in regulating telomere length is the telomeric repeat-containing RNA (TERRA) which is transcribed from the subtelomeric region and extends to the telomeric region. TERC and TERRA exhibit important functions in cancer with implications in precision oncology. In this review, we discuss various aspects of these important lncRNAs in humans and their role in cancer along with recent advancements in their anticancer therapeutic application.
Collapse
Affiliation(s)
- Kavita Gala
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, 400056, Maharashtra, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
7
|
Through the looking glass and what you find there: making sense of comparative genomic hybridization and fluorescence in situ hybridization for melanoma diagnosis. Mod Pathol 2020; 33:1318-1330. [PMID: 32066861 DOI: 10.1038/s41379-020-0490-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022]
Abstract
Melanoma is the leading cause of death among cutaneous neoplasms. Best outcome relies on early detection and accurate pathologic diagnosis. For the great majority of melanocytic tumors, histopathologic examination can reliably distinguish nevi from melanomas. However, there is a subset of melanocytic tumors that cannot be definitively classified as benign or malignant using histopathological criteria alone. These tumors are usually diagnosed using terms that imply various degrees of uncertainty in regards to their malignant potential and create the possibility for over or undertreatment. For such tumors, additional ancillary tests would be beneficial in adjudicating a more definitive diagnosis. In recent years, DNA-based molecular ancillary tests, specifically comparative genomic hybridization and fluorescence in situ hybridization, have been developed to help guide the diagnosis of ambiguous melanocytic proliferations. This study will present an updated overview of these two major ancillary tests, which are currently being used in clinical practice to assist in the diagnosis of challenging melanocytic neoplasms.
Collapse
|
8
|
|
9
|
Leick KM, Obeid JM, Bekiranov S, Slingluff CL. Systems analysis of barrier molecule and ARNT-related gene expression regulation in melanoma. Oncoimmunology 2019; 8:e1665978. [PMID: 31741768 PMCID: PMC6844300 DOI: 10.1080/2162402x.2019.1665978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
Background: We have identified, in melanomas, a set of genes encoding proteins that mediate mechanical barrier function in normal skin (barrier molecule genes, BMGs) and whose overexpression is associated with decreased immune signatures and shorter patient survival. The most overexpressed of these, filaggrin (FLG), is expressed on chromosome 1q21.3, which also encodes genes of the epidermal differentiation complex (EDC). EDC genes may be regulated by the transcription factors (TFs) AHR and ARNT. We hypothesized that ARNT-related genes would be expressed concordantly with BMG and EDC genes, inversely associated with immune signatures, and enhanced by 1q21.3 copy gain. Methods: Gene expression data from human melanomas in the Cancer Genome Atlas (TCGA), and a validation GEO dataset were evaluated, with copy number profiles from TCGA. Expression of Th1 immune genes and BMG/EDCs at 1q21.3 was visualized using clustered copy number and mRNA profiles. Associations of clusters and 1q21.3 copy number with patient survival and mRNA expression were assessed using Kaplan Meier curves, log-rank tests, and Wilcoxon rank sum tests. Results: BMGs are concordantly expressed with EDC genes. Clustering divided tumors into 4 categories: (1) ImmuneHI, (2) BMG/EDCHI, (3) ARNTHI, (4) Mixed. Both ARNTHI and BMG/EDCHI tumors had low immune signatures and significantly shortened survival. KLF4 and FOXF2 are putative TFs that may regulate these genes. Conclusions: ARNTHI tumors may represent another subset of tumors, in addition to BMG/EDCHI tumors, with barriers to immune infiltrates, likely with different mechanisms. These genes have prognostic significance and may be relevant targets for future therapy.
Collapse
Affiliation(s)
- Katie M Leick
- Division of Surgical Oncology, Department of Surgery, University of Virginia, Charlottesville, VA, USA.,Department of Surgery, University of Iowa, Iowa City, IA, USA.,Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
| | - Joseph M Obeid
- Division of Surgical Oncology, Department of Surgery, University of Virginia, Charlottesville, VA, USA.,Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Craig L Slingluff
- Division of Surgical Oncology, Department of Surgery, University of Virginia, Charlottesville, VA, USA.,Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
10
|
Whole genome sequencing puts forward hypotheses on metastasis evolution and therapy in colorectal cancer. Nat Commun 2018; 9:4782. [PMID: 30429477 PMCID: PMC6235880 DOI: 10.1038/s41467-018-07041-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
Incomplete understanding of the metastatic process hinders personalized therapy. Here we report the most comprehensive whole-genome study of colorectal metastases vs. matched primary tumors. 65% of somatic mutations originate from a common progenitor, with 15% being tumor- and 19% metastasis-specific, implicating a higher mutation rate in metastases. Tumor- and metastasis-specific mutations harbor elevated levels of BRCAness. We confirm multistage progression with new components ARHGEF7/ARHGEF33. Recurrently mutated non-coding elements include ncRNAs RP11-594N15.3, AC010091, SNHG14, 3’ UTRs of FOXP2, DACH2, TRPM3, XKR4, ANO5, CBL, CBLB, the latter four potentially dual protagonists in metastasis and efferocytosis-/PD-L1 mediated immunosuppression. Actionable metastasis-specific lesions include FAT1, FGF1, BRCA2, KDR, and AKT2-, AKT3-, and PDGFRA-3’ UTRs. Metastasis specific mutations are enriched in PI3K-Akt signaling, cell adhesion, ECM and hepatic stellate activation genes, suggesting genetic programs for site-specific colonization. Our results put forward hypotheses on tumor and metastasis evolution, and evidence for metastasis-specific events relevant for personalized therapy. The evolution and genetic nature of metastatic lesions is not completely characterized. Here the authors perform a comprehensive whole-genome study of colorectal metastases in comparison to matched primary tumors and define a multistage progression model and metastasis-specific changes that, in part, are therapeutically actionable.
Collapse
|
11
|
Abstract
A large variety of molecular pathways in melanoma progression suggests that no individual molecular alteration is crucial in itself. Our aim was to define the molecular alterations underlying metastasis formation. Gene expression profiling was performed using microarray and qRT-PCR to define alterations between matched primary and metastatic melanoma cell lines. These data were integrated with publicly available unmatched tissue data. The invasiveness of cell lines was determined by Matrigel invasion assays and invasive clones from primary melanoma-derived cell lines were also selected. Two metastatic cell line models were created: the regional lymph node WM983A-WM983A-WM983B and the distant lung WM793B-WM793B-1205Lu metastatic models. The majority of metastasis genes were downregulated and enriched in adhesion and ITGA6-B4 pathways. Upregulation of immune pathways was characteristic of distant metastases, whereas increased Rap1 signaling was specific for regional (sub)cutaneous metastases. qRT-PCR analysis of selected integrins (A2, A3, A4, A9, B5, B8, A6, B1, and B3) highlighted the possible importance of ITGA3/4 and B8 in the metastatic process, distinguishing regional and distant metastases. We identified functionally relevant gene clusters that influenced metastasis formation. Our data provide further evidence that integrin expression patterns may be important in distant metastasis formation.
Collapse
|
12
|
Sipos E, Hegyi K, Treszl A, Steiber Z, Mehes G, Dobos N, Fodor K, Olah G, Szekvolgyi L, Schally AV, Halmos G. Concurrence of chromosome 3 and 4 aberrations in human uveal melanoma. Oncol Rep 2017; 37:1927-1934. [PMID: 28350068 PMCID: PMC5367339 DOI: 10.3892/or.2017.5496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy with a very poor prognosis. The most frequent chromosome aberration in UM is the monosomy of chromosome 3. Previously, we demonstrated that ~50% of UMs express type-I receptor for luteinizing hormone‑releasing hormone (LH-RH-R). The gene encoding LH-RH-R is located in chromosome 4 (location: 4q21.2); however, the occurrence of numerical aberrations of chromosome 4 have never been studied in UM. In the present study, we investigated the abnormalities of chromosome 3 and 4, and the possible correlation between them, as well as with LH-RH-R expression. Forty-six specimens of UM were obtained after enucleation. Numerical aberrations of chromosome 3 and 4 were studied by fluorescence in situ hybridization (FISH). Chromosome 4 was detected in normal biparental disomy only in 14 (30%) samples; however, 32 cases (70%) showed more than 2 signals/nucleus. Monosomy of chromosome 3 could be found in 16 (35%) samples. In 6 specimens (13%), more than 2 copies of chromosome 3 were found, while normal biparental disomy was detected in 24 (52%) samples. Statistical analysis indicated a statistically significant (p<0.05) correlation between the copy number of chromosome 3 and 4. Moreover, moderate difference was revealed in the survival rate of the UM patients with various pathological profiles. No correlation was found between chromosome aberrations and LH-RH-R expression. Our results clearly demonstrate abnormalities in chromosome 3 and 4 and the incidence of the monosomy of chromosome 3 in human UM. In summary, our results provide new incite concerning the genetic background of this tumor. Our findings could contribute to a more precise determination of the prognosis of human UM and to the development of new therapeutic approaches to this malignancy.
Collapse
Affiliation(s)
- Eva Sipos
- Department of Biopharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Kata Hegyi
- Department of Pathology, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrea Treszl
- Department of Biopharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Zita Steiber
- Department of Ophthalmology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabor Mehes
- Department of Pathology, University of Debrecen, 4032 Debrecen, Hungary
| | - Nikoletta Dobos
- Department of Biopharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Klara Fodor
- Department of Biopharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabor Olah
- Department of Biopharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Lorant Szekvolgyi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine; Department of Biochemistry and Molecular Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrew V. Schally
- Endocrine, Polypeptide and Cancer Institute and South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL 33125, USA
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Department of Medicine, Divisions of Hematology-Oncology and Endocrinology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Gabor Halmos
- Department of Biopharmacy, University of Debrecen, 4032 Debrecen, Hungary
- Endocrine, Polypeptide and Cancer Institute and South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL 33125, USA
| |
Collapse
|
13
|
Mahas A, Potluri K, Kent MN, Naik S, Markey M. Copy number variation in archival melanoma biopsies versus benign melanocytic lesions. Cancer Biomark 2017; 16:575-97. [PMID: 27002761 DOI: 10.3233/cbm-160600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Skin melanocytes can give rise to benign and malignant neoplasms. Discrimination of an early melanoma from an unusual/atypical benign nevus can represent a significant challenge. However, previous studies have shown that in contrast to benign nevi, melanoma demonstrates pervasive chromosomal aberrations. OBJECTIVE This substantial difference between melanoma and benign nevi can be exploited to discriminate between melanoma and benign nevi. METHODS Array-comparative genomic hybridization (aCGH) is an approach that can be used on DNA extracted from formalin-fixed paraffin-embedded (FFPE) tissues to assess the entire genome for the presence of changes in DNA copy number. In this study, high resolution, genome-wide single-nucleotide polymorphism (SNP) arrays were utilized to perform comprehensive and detailed analyses of recurrent copy number aberrations in 41 melanoma samples in comparison with 21 benign nevi. RESULTS We found statistically significant copy number gains and losses within melanoma samples. Some of the identified aberrations are previously implicated in melanoma. Moreover, novel regions of copy number alterations were identified, revealing new candidate genes potentially involved in melanoma pathogenesis. CONCLUSIONS Taken together, these findings can help improve melanoma diagnosis and introduce novel melanoma therapeutic targets.
Collapse
Affiliation(s)
- Ahmed Mahas
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Keerti Potluri
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Michael N Kent
- Department of Dermatology, Wright State University Boonshoft School of Medicine, Dayton, OH, USA.,Dermatopathology Laboratory of Central States, Dayton, OH, USA
| | - Sameep Naik
- Dermatopathology Laboratory of Central States, Dayton, OH, USA
| | - Michael Markey
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
14
|
Use of New Techniques in Addition to IHC Applied to the Diagnosis of Melanocytic Lesions, With Emphasis on CGH, FISH, and Mass Spectrometry. ACTAS DERMO-SIFILIOGRAFICAS 2017; 108:17-30. [DOI: 10.1016/j.ad.2016.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 02/08/2023] Open
|
15
|
Nagarajan P, Tetzlaff M, Curry J, Prieto V. Use of New Techniques in Addition to IHC Applied to the Diagnosis of Melanocytic Lesions, With Emphasis on CGH, FISH, and Mass Spectrometry. ACTAS DERMO-SIFILIOGRAFICAS 2017. [DOI: 10.1016/j.adengl.2016.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
16
|
Kadioglu O, Cao J, Kosyakova N, Mrasek K, Liehr T, Efferth T. Genomic and transcriptomic profiling of resistant CEM/ADR-5000 and sensitive CCRF-CEM leukaemia cells for unravelling the full complexity of multi-factorial multidrug resistance. Sci Rep 2016; 6:36754. [PMID: 27824156 PMCID: PMC5099876 DOI: 10.1038/srep36754] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
We systematically characterised multifactorial multidrug resistance (MDR) in CEM/ADR5000 cells, a doxorubicin-resistant sub-line derived from drug-sensitive, parental CCRF-CEM cells developed in vitro. RNA sequencing and network analyses (Ingenuity Pathway Analysis) were performed. Chromosomal aberrations were identified by array-comparative genomic hybridisation (aCGH) and multicolour fluorescence in situ hybridisation (mFISH). Fifteen ATP-binding cassette transporters and numerous new genes were overexpressed in CEM/ADR5000 cells. The basic karyotype in CCRF-CEM cells consisted of 47, XX, der(5)t(5;14) (q35.33;q32.3), del(9) (p14.1), +20. CEM/ADR5000 cells acquired additional aberrations, including X-chromosome loss, 4q and 14q deletion, chromosome 7 inversion, balanced and unbalanced two and three way translocations: t(3;10), der(3)t(3;13), der(5)t(18;5;14), t(10;16), der(18)t(7;18), der(18)t(21;18;5), der(21;21;18;5) and der(22)t(9;22). CCRF-CEM consisted of two and CEM/ADR5000 of five major sub-clones, indicating genetic tumor heterogeneity. Loss of 3q27.1 in CEM/ADR5000 caused down-regulation of ABCC5 and ABCF3 expression, Xq28 loss down-regulated ABCD1 expression. ABCB1, the most well-known MDR gene, was 448-fold up-regulated due to 7q21.12 amplification. In addition to well-known drug resistance genes, numerous novel genes and genomic aberrations were identified. Transcriptomics and genetics in CEM/AD5000 cells unravelled a range of MDR mechanisms, which is much more complex than estimated thus far. This may have important implications for future treatment strategies.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Jingming Cao
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Kristin Mrasek
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
17
|
Moss ML, Miller MA, Vujanovic N, Yoneyama T, Rasmussen FH. Fluorescent substrates for ADAM15 useful for assaying and high throughput screening. Anal Biochem 2016; 514:42-47. [PMID: 27637923 DOI: 10.1016/j.ab.2016.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/29/2016] [Accepted: 09/12/2016] [Indexed: 11/17/2022]
Abstract
A disintegrin and metalloproteinase 15 (ADAM15), also known as metargidin, plays important roles in regulating inflammation, wound healing, neovascularization, and is an attractive drug target. Fluorescence resonance energy transfer (FRET)-based peptide substrates were tested to identify candidate reagents for high throughput screening and detection of ADAM15 in biological samples. ADAM15 exhibits a unique and diverse activity profile compared to other metalloproteinases. Two FRET substrates, Dabcyl-Gly-Pro-Leu-Gly-Met-Arg-Gly-Lys(FAM)-NH2 (PEPDAB011) and Dabcyl-Ala-Pro-Arg-Trp-Ile-Gln-Asp-Lys(FAM)-NH2 (PEPDAB017), which also detect activities of several matrix metalloproteinases (MMPs -2, -9, and -13), were efficiently cleaved by ADAM15 with specificity constants of 5800 M-1 s-1 and 4300 M-1 s-1, respectively. Additionally, ADAM15 efficiently processed Dabcyl-Leu-Arg-Glu-Gln-Gln-Arg-Leu-Lys-Ser-Lys(FAM)-NH2 (PEPDAB022), which is based on a physiological CD23 cleavage site, with a specificity constant (kcat/Km) of 5200 M-1 s-1. PEPDAB022 was used to screen the ability of known metalloproteinase inhibitors including TAPI-2, marimastat, GI-254023, and the Tissue Inhibitor of Metalloproteinases(TIMPs) 1 and 3 to block ADAM15 activity. Even though ADAM15 exhibits similar substrate preferences to other metalloproteinases, many broad spectrum inhibitors failed to block ADAM15 activity at concentrations as high as 50 μM. Thus, a clear need exists to develop potent and selective ADAM15 inhibitors, and the FRET substrates described herein should aid future research efforts towards this aim.
Collapse
Affiliation(s)
- Marcia L Moss
- BioZyme Inc, 1513 Old White Oak Church Rd., Apex, NC 27523, USA.
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nikola Vujanovic
- University of Pittsburgh Cancer Institute, Departments of Pathology, VA Healthcare System, Pittsburgh, PA, USA
| | - Toshie Yoneyama
- University of Pittsburgh Cancer Institute, Departments of Pathology, VA Healthcare System, Pittsburgh, PA, USA
| | | |
Collapse
|
18
|
Jiang MC. CAS (CSE1L) signaling pathway in tumor progression and its potential as a biomarker and target for targeted therapy. Tumour Biol 2016; 37:13077-13090. [PMID: 27596143 DOI: 10.1007/s13277-016-5301-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
CSE1L (chromosome segregation 1-like protein), also named as CAS (cellular apoptosis susceptibility protein), is highly expressed in most cancer types. CSE1L/CAS is a multiple functional protein that plays roles in apoptosis, cell survival, chromosome assembly, nucleocytoplasmic transport, microvesicle formation, and cancer metastasis; some of the functions are explicitly correlated. CSE1L is also a cancer serum biomarker. The phosphorylation of CAS is regulated by the extracellular signal-regulated kinase (ERK). The RAS/RAF/MAPK/ERK signaling pathways are the essential targets of most targeted cancer drugs, thus serum phosphorylated CSE1L may be a potential biomarker for monitoring drug resistance in targeted therapy. CSE1L can regulate Ras-induced ERK phosphorylation. CSE1L also regulates the expression and phosphorylation of CREB (cAMP response element binding protein) and MITF (microphthalmia-associated transcription factor) and is thus involved in the melanogenesis and progression of melanoma. CAS is an exosome/microvesicle membrane protein. Tumor cells consistently secrete microvesicles and tumor-derived microvesicles may be accumulated around tumors. Therefore, microvesicle membrane CSE1L may be a potential target for the development of high-efficacy antibody-drug conjugates (ADCs) for cancer therapy. This review will focus on CSE1L expression in cancers, its relationship to Ras/ERK and cAMP/PKA signaling pathways in melanoma development, its potential for the development of ADCs and tumor imaging reagents, and secretory phosphorylated CSE1L for monitoring the emergence of drug resistance in targeted cancer therapy.
Collapse
Affiliation(s)
- Ming-Chung Jiang
- Targetrust Biotech. Ltd., No. 510 Zhongzheng Rd, Xinzhuang Dist, New Taipei City, 24205, Taiwan.
| |
Collapse
|
19
|
Idriss MH, Rizwan L, Sferuzza A, Wasserman E, Kazlouskaya V, Elston DM. Nevoid melanoma: A study of 43 cases with emphasis on growth pattern. J Am Acad Dermatol 2015; 73:836-42. [DOI: 10.1016/j.jaad.2015.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 11/24/2022]
|
20
|
Garritano S, Romanel A, Ciribilli Y, Bisio A, Gavoci A, Inga A, Demichelis F. In-silico identification and functional validation of allele-dependent AR enhancers. Oncotarget 2015; 6:4816-28. [PMID: 25693204 PMCID: PMC4467117 DOI: 10.18632/oncotarget.3019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/30/2014] [Indexed: 12/13/2022] Open
Abstract
Androgen Receptor (AR) and Estrogen Receptors (ERs) are key nuclear receptors that can cooperate in orchestrating gene expression programs in multiple tissues and diseases, targeting binding elements in promoters and distant enhancers. We report the unbiased identification of enhancer elements bound by AR and ER-α whose activity can be allele-specific depending on the status of nearby Single Nucleotide Polymorphisms (SNP). ENCODE data were computationally mined to nominate genomic loci with: (i) chromatin signature of enhancer activity from activation histone marks, (ii) binding evidence by AR and ER-α, (iii) presence of a SNP. Forty-one loci were identified and two, on 1q21.3 and 13q34, selected for characterization by gene reporter, Chromatin immunoprecipitation (ChIP) and RT-qPCR assays in breast (MCF7) and prostate (PC-3) cancer-derived cell lines. We observed allele-specific enhancer activity, responsiveness to ligand-bound AR, and potentially influence on the transcription of closely located genes (RAB20, ING1, ARHGEF7, ADAM15). The 1q21.3 variant, rs2242193, showed impact on AR binding in MCF7 cells that are heterozygous for the SNP. Our unbiased genome-wide search proved to be an efficient methodology to discover new functional polymorphic regulatory regions (PRR) potentially acting as risk modifiers in hormone-driven cancers and overall nominated SNPs in PRR across 136 transcription factors.
Collapse
MESH Headings
- Alleles
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Chromatin Immunoprecipitation
- Computer Simulation
- Enhancer Elements, Genetic/genetics
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Genome, Human
- Humans
- Male
- Polymorphism, Single Nucleotide/genetics
- Promoter Regions, Genetic/genetics
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Sonia Garritano
- Laboratory of Computational Oncology, CIBIO, Centre for Integrative Biology, University of Trento, Italy
| | - Alessandro Romanel
- Laboratory of Computational Oncology, CIBIO, Centre for Integrative Biology, University of Trento, Italy
| | - Yari Ciribilli
- Laboratory of Transcriptional Networks, CIBIO, Centre for Integrative Biology, University of Trento, Italy
| | - Alessandra Bisio
- Laboratory of Transcriptional Networks, CIBIO, Centre for Integrative Biology, University of Trento, Italy
| | - Antoneta Gavoci
- Laboratory of Computational Oncology, CIBIO, Centre for Integrative Biology, University of Trento, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, CIBIO, Centre for Integrative Biology, University of Trento, Italy
| | - Francesca Demichelis
- Laboratory of Computational Oncology, CIBIO, Centre for Integrative Biology, University of Trento, Italy
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, NY, USA
- Institute for Precision Medicine, Weill Medical College of Cornell University and New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
21
|
Romanel A, Lago S, Prandi D, Sboner A, Demichelis F. ASEQ: fast allele-specific studies from next-generation sequencing data. BMC Med Genomics 2015; 8:9. [PMID: 25889339 PMCID: PMC4363342 DOI: 10.1186/s12920-015-0084-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/12/2015] [Indexed: 11/17/2022] Open
Abstract
Background Single base level information from next-generation sequencing (NGS) allows for the quantitative assessment of biological phenomena such as mosaicism or allele-specific features in healthy and diseased cells. Such studies often present with computationally challenging burdens that hinder genome-wide investigations across large datasets that are now becoming available through the 1,000 Genomes Project and The Cancer Genome Atlas (TCGA) initiatives. Results We present ASEQ, a tool to perform gene-level allele-specific expression (ASE) analysis from paired genomic and transcriptomic NGS data without requiring paternal and maternal genome data. ASEQ offers an easy-to-use set of modes that transparently to the user takes full advantage of a built-in fast computational engine. We report its performances on a set of 20 individuals from the 1,000 Genomes Project and show its detection power on imprinted genes. Next we demonstrate high level of ASE calls concordance when comparing it to AlleleSeq and MBASED tools. Finally, using a prostate cancer dataset we report on a higher fraction of ASE genes with respect to healthy individuals and show allele-specific events nominated by ASEQ in genes that are implicated in the disease. Conclusions ASEQ can be used to rapidly and reliably screen large NGS datasets for the identification of allele specific features. It can be integrated in any NGS pipeline and runs on computer systems with multiple CPUs, CPUs with multiple cores or across clusters of machines. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0084-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandro Romanel
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Sara Lago
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Davide Prandi
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, USA. .,Institute for Computational Biomedicine, Weill Cornell Medical College, New York, USA. .,Institute for Precision Medicine, Weill Cornell Medical College & New York Presbyterian Hospital, New York, USA.
| | - Francesca Demichelis
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy. .,Institute for Computational Biomedicine, Weill Cornell Medical College, New York, USA. .,Institute for Precision Medicine, Weill Cornell Medical College & New York Presbyterian Hospital, New York, USA.
| |
Collapse
|
22
|
Boi S, Tebaldi T, Re A, Cantaloni C, Adami V, Barbareschi M, Cristofolini M, Pasini L, Quattrone A. Increased frequency of minimal homozygous deletions is associated with poor prognosis in primary malignant melanoma patients. Genes Chromosomes Cancer 2014; 53:487-96. [PMID: 24615732 DOI: 10.1002/gcc.22160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/09/2014] [Indexed: 12/30/2022] Open
Abstract
Identification of prognostic melanoma-associated copy number alterations (CNAs) is still an area of active research. Here, we investigated by high-resolution array comparative genomic hybridization (aCGH) a cohort of 31 paraffin-preserved primary malignant melanomas (MMs), whose prognosis was not predictable on the basis of conventional histopathological parameters. Although we identified a variety of highly recurrent sites of genomic lesions, the total number of CNAs per patient was not a discriminator of MM outcome. Furthermore, validation of aCGH by quantitative PCR on an extended population of 65 MM samples confirmed the absence of predictive value for the most recurrent CNA loci. Instead, our analysis revealed specific prognostic potential of the frequency of homozygous deletions (representing less than 3% of the total CNAs on average per sample), which was strongly associated with sentinel lymph node (SLN) invasion (P = 0.003), and distant metastasis (P = 0.003). Increased number of homozygous deletions was also indicative of poor patient survival (P = 0.01), both in our samples and in an independent validation of public dataset of primary and metastatic MMs. Moreover, we identified 77 hotspots of minimal common homozygous deletions, enriched in genes involved in cell adhesion processes and cell-communication functions, which preferentially accumulated in primary MMs showing the most severe outcome. Therefore, specific loss of gene loci in regions of minimal homozygous deletion may represent a pivotal type of genomic alteration accumulating during MM progression with potential prognostic implication.
Collapse
Affiliation(s)
- Sebastiana Boi
- Department of Pathology, Santa Chiara Hospital, Trento, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
KPNA7, a nuclear transport receptor, promotes malignant properties of pancreatic cancer cells in vitro. Exp Cell Res 2014; 322:159-67. [DOI: 10.1016/j.yexcr.2013.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 12/26/2022]
|
24
|
Argenziano G, Zalaudek I. Do we detect a new spectrum of biologically benign melanomas in the dermoscopy era? ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.1.3.361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Abstract
The majority of melanocytic neoplasms can be correctly diagnosed using routine histopathologic analysis. However, a significant minority of tumors have ambiguous histopathologic attributes that overlap between melanocytic nevi and melanoma. Ancillary tests that assist in distinguishing potentially lethal melanomas from benign melanocytic nevi with atypical histopathologic features are available, but still need refining.Most melanomas have chromosomal copy number aberrations, frequently involving multiple chromosomes. With rare exceptions, such anomalies are not found in melanocytic nevi. This difference formed the basis to develop assays that can help distinguish melanoma from nevi by fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH). FISH can detect chromosomal copy number changes of a limited number of loci within individual cells. By contrast, CGH assesses copy number across the entire genome, but typically is performed on bulk cell populations so that copy number changes in individual cells or subpopulations of cells can go undetected. Both FISH and CGH have been used to provide genomic information in histopathologically ambiguous melanocytic tumors that can assist pathologists make correct diagnoses.
Collapse
Affiliation(s)
- Jeffrey P North
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
26
|
The surgical management of Spitz naevi and atypical spitzoid neoplasms: A review of the literature. Surgeon 2013; 11:205-9. [DOI: 10.1016/j.surge.2013.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/17/2012] [Accepted: 01/01/2013] [Indexed: 11/21/2022]
|
27
|
Wilkerson PM, Reis-Filho JS. the 11q13-q14 amplicon: Clinicopathological correlations and potential drivers. Genes Chromosomes Cancer 2012; 52:333-55. [DOI: 10.1002/gcc.22037] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 11/01/2012] [Indexed: 01/04/2023] Open
|
28
|
Marked genetic differences between BRAF and NRAS mutated primary melanomas as revealed by array comparative genomic hybridization. Melanoma Res 2012; 22:202-14. [PMID: 22456166 DOI: 10.1097/cmr.0b013e328352dbc8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Somatic mutations of BRAF and NRAS oncogenes are thought to be among the first steps in melanoma initiation, but these mutations alone are insufficient to cause tumor progression. Our group studied the distinct genomic imbalances of primary melanomas harboring different BRAF or NRAS genotypes. We also aimed to highlight regions of change commonly seen together in different melanoma subgroups. Array comparative genomic hybridization was performed to assess copy number changes in 47 primary melanomas. BRAF and NRAS were screened for mutations by melting curve analysis. Reverse transcription PCR and fluorescence in-situ hybridization were performed to confirm the array comparative genomic hybridization results. Pairwise comparisons revealed distinct genomic profiles between melanomas harboring different mutations. Primary melanomas with the BRAF mutation exhibited more frequent losses on 10q23-q26 and gains on chromosome 7 and 1q23-q25 compared with melanomas with the NRAS mutation. Loss on the 11q23-q25 sequence was found mainly in conjunction with the NRAS mutation. Primary melanomas without the BRAF or the NRAS mutation showed frequent alterations in chromosomes 17 and 4. Correlation analysis revealed chromosomal alterations that coexist more often in these tumor subgroups. To find classifiers for BRAF mutation, random forest analysis was used. Fifteen candidates emerged with 87% prediction accuracy. Signaling interactions between the EGF/MAPK-JAK pathways were observed to be extensively altered in melanomas with the BRAF mutation. We found marked differences in the genetic pattern of the BRAF and NRAS mutated melanoma subgroups that might suggest that these mutations contribute to malignant melanoma in conjunction with distinct cooperating oncogenic events.
Collapse
|
29
|
Superficial spreading and nodular melanoma are distinct biological entities: a challenge to the linear progression model. Melanoma Res 2012; 22:1-8. [PMID: 22108608 DOI: 10.1097/cmr.0b013e32834e6aa0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The classification of melanoma subtypes into prognostically relevant and therapeutically insightful categories has been a challenge since the first description of melanoma in the 1800s. One limitation has been the assumption that the two most common histological subtypes of melanoma, superficial spreading and nodular, evolve according to a linear model of progression, as malignant melanocytes spread radially and then invade vertically. However, recent clinical, pathological, and molecular data indicate that these two histological subtypes might evolve as distinct entities. Here, we review the published data that support distinct molecular characterization of superficial spreading and nodular melanoma, the clinical significance of this distinction including prognostic relevance and the therapeutic implications.
Collapse
|
30
|
Abstract
Malignant melanoma is sometimes difficult to distinguish from benign nevus, and ancillary confirmatory studies would be of value in selected cases. To accurately differentiate melanoma from benign nevus, we investigated the utility of chromosomal anomalies in skin biopsy specimens using multitargeted fluorescence in-situ hybridization (FISH). Skin biopsy specimens were retrospectively collected from 63 patients diagnosed with benign compound nevus (n=32) or malignant melanoma (n=31); each diagnosis was independently confirmed before study by a second dermatopathologist. Unstained tissue sections were hybridized for 30 min using fluorescence-labeled oligo-DNA probes for chromosomes 6, 7, 11, and 20. Fluorescent signals for each chromosome were enumerated in 30 cells per case. Numeric chromosomal anomalies were found in 0% (0 of 32) of normal epidermis, 6% (two of 32) of compound nevi, and 94% (29 of 31) of melanomas (nevus vs. melanoma, P<0.0001). The mean number of cells with chromosomal changes was 23 in melanoma specimens, significantly higher than that in compound nevi (P<0.0001). The most frequent chromosomal anomaly in melanoma was gain of chromosome 11, followed consecutively by gains of chromosomes 7, 20, and 6. Chromosomal anomalies detected by FISH had an overall sensitivity of 94% and specificity of 94% in the separation of nevus and melanoma. With the use of oligo-DNA probes, multitargeted FISH directed against chromosomes 6, 7, 11, and 20 is highly sensitive and specific for separation of nevus and melanoma. Unlike other traditional FISH probes, oligo-DNA probes required shorter hybridization time, allowing faster diagnostic evaluation.
Collapse
|
31
|
Senetta R, Paglierani M, Massi D. Fluorescence in-situ hybridization analysis for melanoma diagnosis. Histopathology 2011; 60:706-14. [PMID: 22007736 DOI: 10.1111/j.1365-2559.2011.03984.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Melanocytic proliferation constitutes a heterogeneous group of lesions with remarkable differences in their biology and clinical outcome. Thus, accurate histological diagnosis of these cases is mandatory to establish the most appropriate surgical treatment and follow-up. Although histological examination alone is usually sufficient to identify melanomas among the greater number of nevi, the definition of the benign or malignant nature of a subset of melanocytic tumours, exhibiting atypical features, is a challenging task. Novel techniques that may assist in the histopathological diagnosis in difficult cases have been extensively researched over recent years. Fluorescence in-situ hybridization (FISH), performed with a panel of four probes, including three locus-specific identifier (RREB1, MYB, and CCND1) genes, seems to represent a sensitive and specific molecular tool for the diagnosis of non-ambiguous melanocytic lesions. Some studies have agreed that FISH may be an ancillary diagnostic instrument, but cannot replace light microscopy, to distinguish benign nevi from malignant melanomas in daily practice. However, in the context of ambiguous melanocytic tumours, results are still controversial, and additional and substantial work is needed to develop reliable probes that may identify, with high sensitivity, specific subsets of ambiguous melanocytic lesions, including spitzoid proliferation.
Collapse
Affiliation(s)
- Rebecca Senetta
- Department of Biomedical Sciences and Human Oncology, University of Turin, Italy
| | | | | |
Collapse
|
32
|
IL-10 expression by primary tumor cells correlates with melanoma progression from radial to vertical growth phase and development of metastatic competence. Mod Pathol 2011; 24:801-9. [PMID: 21317876 PMCID: PMC3106125 DOI: 10.1038/modpathol.2011.5] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Downregulation of the immune system facilitates tumor progression at different stages of cutaneous melanoma. Sentinel nodes, the first lymph nodes on lymphatics draining directly from a primary melanoma, are immune downregulated by tumor-generated immunosuppressive cytokines, including interleukin-10 (IL-10). To better understand the kinetics of sentinel node suppression, we investigated IL-10 expression by melanoma cells and tumor-associated macrophages and lymphocytes at different stages of primary melanoma evolution. We used reverse-transcriptase in situ PCR to identify the cellular sources of IL-10 mRNA in 39 melanomas. IL-10 mRNA was identified in tumor cells of 2 of 6 melanomas in situ (33%), of 17 of 21 invasive melanomas (81%) and of 11 of 12 metastatic melanomas (92%). Higher IL-10 expression correlates with tumor progression, with differences between melanoma in situ, invasive melanoma and metastatic melanoma. In primary melanomas, the IL-10 mRNA content of tumor cells correlates with Clark's level. There was significantly more IL-10 mRNA in vertical growth-phase melanoma cells than in radial growth-phase cells. In a logistic regression model, moderate-to-high IL-10 mRNA expression by tumor cells was significantly associated with vertical growth-phase melanoma. IL-10 mRNA was detected in melanoma-associated macrophages and lymphocytes. In invasive melanomas, IL-10 mRNA reactivity of macrophages decreased as Clark's level increased. Alterations of immunity by IL-10 derived from melanoma cells and melanoma-associated macrophages and lymphocytes potentially facilitate evolution of the primary melanoma and render regional lymph nodes susceptible to metastases.
Collapse
|
33
|
ERCC5 p.Asp1104His and ERCC2 p.Lys751Gln polymorphisms are independent prognostic factors for the clinical course of melanoma. J Invest Dermatol 2011; 131:1280-90. [PMID: 21390047 DOI: 10.1038/jid.2011.35] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genetic variants in DNA repair enzymes contribute to the susceptibility to cutaneous melanoma; consequently, we analyzed whether common nonsynonymous single-nucleotide polymorphisms in DNA repair enzyme genes might also influence the course of disease. To this end, we determined eight polymorphisms of seven different DNA repair enzymes in 742 patients with cutaneous melanoma, and correlated these with overall survival. Univariate Cox proportional hazards model analyses revealed that ERCC5 (XPG) 1104 His/His was significantly associated with impaired survival. Indeed, the univariate hazard ratio (HR) was 2.8 times higher for patients with ERCC5 1104 His/His (P<0.001) compared with ERCC5 1104 Asp/Asp. Accordingly, the 5-year survival rate was 55% (95% confidence interval 43-71) for patients with ERCC5 1104 His/His, whereas 82% (95% confidence interval 78-86) of patients with ERCC5 1104 Asp/Asp were still alive at this time. Importantly, adjusted Cox regression analysis not only confirmed ERCC5 1104 His/His as an independent prognostic factor (multivariate HR=4.5; P<0.001), but also revealed the significant impact of ERCC2 (XPD) 751 Gln/Gln on prognosis, with a 2.2-fold increased HR compared with ERCC2 751 Lys/Lys (P=0.009). Thus, ERCC5 codon 1104 and ERCC2 codon 751 polymorphisms are independent prognostic factors in patients with cutaneous melanoma.
Collapse
|
34
|
Scolyer RA, Murali R, McCarthy SW, Thompson JF. Histologically ambiguous ("borderline") primary cutaneous melanocytic tumors: approaches to patient management including the roles of molecular testing and sentinel lymph node biopsy. Arch Pathol Lab Med 2011; 134:1770-7. [PMID: 21128774 DOI: 10.5858/2009-0612-rar.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is well recognized that the pathologic diagnosis of melanocytic tumors can sometimes be difficult. For some atypical melanocytic tumors that do not display clear-cut features of malignancy, it may be difficult or impossible to exclude a diagnosis of melanoma; this includes those showing some resemblance to Spitz nevi, blue nevi, deep penetrating nevi, and possible nevoid melanomas. When there is uncertainty about whether a primary melanocytic tumor is a nevus or a melanoma, we recommend that a second opinion be sought from one or more experienced colleagues. If diagnostic uncertainty persists, the evidence for or against the various differential diagnostic considerations should be presented in the pathology report and a "most likely" or "favored" diagnosis given. Molecular testing of the primary tumor by using techniques such as comparative genomic hybridization or fluorescence in situ hybridization may assist in establishing a diagnosis of melanoma if multiple chromosomal aberrations are identified. However, these tests require further independent validation and are not widely available at present. Complete excision of the lesion is probably mandatory, but plans for further management should be formulated on a case-by-case basis. While the safest course of action will usually be to manage the tumor as if it were a melanoma (taking into account the tumor's thickness and other prognostic variables), this may not always be appropriate, particularly if it is located in a cosmetically sensitive site such as the face. In some cases, it may be appropriate for the surgical oncologist to convey the diagnostic uncertainty to patients and to present them with management choices so that they can decide whether they wish to be managed aggressively (as for a melanoma) or conservatively. While a sentinel lymph node biopsy may be recommended on the basis of the primary tumor characteristics, the clinical significance of lymph node involvement for these tumors is not yet clear, and it may not have the same prognostic implications as nodal involvement from an unequivocal "conventional" melanoma.
Collapse
|
35
|
Multiple metastases from cutaneous malignant melanoma patients may display heterogeneous genomic and epigenomic patterns. Melanoma Res 2010. [DOI: 10.1097/cmr.0b013e32833b7c7c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Cytogenetic abnormalities and clinical features in a patient cohort affected by three or more synchronous or metachronous primitive malignancies. ACTA ACUST UNITED AC 2010; 200:1-7. [PMID: 20513527 DOI: 10.1016/j.cancergencyto.2009.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/06/2009] [Accepted: 10/10/2009] [Indexed: 12/25/2022]
Abstract
The multiple cancers (MC) phenotype represents an intriguing entity from both the clinical and the biomolecular points of view. Multiple cancers can arise in a patient either synchronously or metachronously and are frequently detected in hereditary disorders. Here we report the clinical and cytogenetic characterization of 48 patients developing at least three malignancies outside the context of a known genetic condition and 30 control individuals. Medical and pathology reports were registered, blood was collected for cytogenetic studies, and the standard G-banding technique was used for chromosomal analysis of the lymphocyte cultures. Chromosomal analysis of the peripheral blood cultures revealed high cytogenetic instability in 83% of patients' karyotypes that displayed structural rearrangements most often involving chromosomes X, 1, 6, and 7. Peculiar telomeric associations and marker chromosomes were detected in patients with a suspected cancer family history. The MC condition can be observed over a wide clinical range, which includes either apparently sporadic cases or families with a strong history of tumors. These findings indicate that Xq, 6p, and 7q are likely to harbor genes of importance in cancer development, and the present cytogenetic mapping may be crucial for further molecular genetic investigations to recognize a predictive cytogenetic signature useful to detect patients with a high risk of multiple malignancies.
Collapse
|
37
|
Bedin V, Adam RL, de Sá BC, Landman G, Metze K. Fractal dimension of chromatin is an independent prognostic factor for survival in melanoma. BMC Cancer 2010; 10:260. [PMID: 20525386 PMCID: PMC2902442 DOI: 10.1186/1471-2407-10-260] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 06/05/2010] [Indexed: 12/21/2022] Open
Abstract
Background Prognostic factors in malignant melanoma are currently based on clinical data and morphologic examination. Other prognostic features, however, which are not yet used in daily practice, might add important information and thus improve prognosis, treatment, and survival. Therefore a search for new markers is desirable. Previous studies have demonstrated that fractal characteristics of nuclear chromatin are of prognostic importance in neoplasias. We have therefore investigated whether the fractal dimension of nuclear chromatin measured in routine histological preparations of malignant melanomas could be a prognostic factor for survival. Methods We examined 71 primary superficial spreading cutaneous melanoma specimens (thickness ≥ 1 mm) from patients with a minimum follow up of 5 years. Nuclear area, form factor and fractal dimension of chromatin texture were obtained from digitalized images of hematoxylin-eosin stained tissue micro array sections. Clark's level, tumor thickness and mitotic rate were also determined. Results The median follow-up was 104 months. Tumor thickness, Clark's level, mitotic rate, nuclear area and fractal dimension were significant risk factors in univariate Cox regressions. In the multivariate Cox regression, stratified for the presence or absence of metastases at diagnosis, only the Clark level and fractal dimension of the nuclear chromatin were included as independent prognostic factors in the final regression model. Conclusion In general, a more aggressive behaviour is usually found in genetically unstable neoplasias with a higher number of genetic or epigenetic changes, which on the other hand, provoke a more complex chromatin rearrangement. The increased nuclear fractal dimension found in the more aggressive melanomas is the mathematical equivalent of a higher complexity of the chromatin architecture. So, there is strong evidence that the fractal dimension of the nuclear chromatin texture is a new and promising variable in prognostic models of malignant melanomas.
Collapse
Affiliation(s)
- Valcinir Bedin
- Department of Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil.
| | | | | | | | | |
Collapse
|
38
|
Degenhardt Y, Huang J, Greshock J, Horiates G, Nathanson K, Yang X, Herlyn M, Weber B. Distinct MHC gene expression patterns during progression of melanoma. Genes Chromosomes Cancer 2010; 49:144-54. [PMID: 19862823 DOI: 10.1002/gcc.20728] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abnormal expression of major histocompatibility complex (MHC) molecules in melanoma has been reported previously. However, the MHC molecule expression patterns in different growth phases of melanoma and the underlying mechanisms are not well understood. Here, we demonstrate that in vertical growth phase (VGP) melanomas, MHC genes are subject to increased rates of DNA copy number gains, accompanied by increased expression, in comparison to normal melanocytes. In contrast, MHC expression in metastatic melanomas drastically decreased compared to VGP melanomas, despite still prevalent DNA copy number gains. Subsequent investigations found that the master transactivator of MHC genes, CIITA, was also significantly downregulated in metastatic melanomas when compared to VGP melanomas. This could be one of the mechanisms accounting for the discrepancy between DNA copy number and expression level in metastatic melanomas, a potentially separate mechanism of gene regulation. These results infer a dynamic role of MHC function in melanoma progression. We propose potential mechanisms for the overexpression of MHC molecules in earlier stages of melanoma as well as for its downregulation in metastatic melanomas.
Collapse
Affiliation(s)
- Yan Degenhardt
- Cancer Metabolism DPU, Oncology, GlaxoSmithKline, King of Prussia, PA 19406, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lázár V, Ecsedi S, Szöllosi AG, Tóth R, Vízkeleti L, Rákosy Z, Bégány A, Adány R, Balázs M. Characterization of candidate gene copy number alterations in the 11q13 region along with BRAF and NRAS mutations in human melanoma. Mod Pathol 2009; 22:1367-78. [PMID: 19633643 DOI: 10.1038/modpathol.2009.109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Amplification of the 11q13 chromosomal region is a common event in primary melanomas. Several candidate genes are localized at this sequence; however, their role in melanoma has not been clearly defined. The aim of this study was to develop an accurate method for determining the amplification pattern of six candidate genes that map to this amplicon core and to elucidate the possible relationship between BRAF, NRAS mutations and CCND1 copy number alterations, all of which are key components of the MAP kinase pathway. Characterization of gene copy numbers was performed by quantitative PCR and, as an alternative method, fluorescence in situ hybridization was used to define the CCND1 amplification pattern at the single cell level. Samples with amplified CCND1 (32%) were further analyzed for copy number alterations for the TAOS1, FGF3, FGF19, FGF4 and EMS1 genes. Co-amplification of the CCND1 and TAOS1 was present in 15% of tumors and was more frequent in ulcerated lesions (P=0.017). Furthermore, 56% of primary melanomas had either BRAF or NRAS mutations, but these two mutations were not present in any of the lesions analyzed. Of these cases, 34% also had CCND1 amplification. There was a significant relationship between NRAS activating mutations and UV exposure (P=0.005). We did not find correlations between CCND1 gene amplification status and any of the patients' clinicopathological parameters. However, CCND1 amplification simultaneously with either BRAF or NRAS activation mutations was observed mainly in primary tumors with ulcerated surfaces (P=0.028). We assume that co-amplification of these candidate genes in the 11q13 region or CCND1 gene alterations along with either BRAF or NRAS mutations might be more important for prognosis than the presence of these alterations alone.
Collapse
Affiliation(s)
- Viktória Lázár
- Department of Preventive Medicine, Faculty of Public Health, Medical and Health Science Center, University of Debrecen, Kassai str. 26, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Morey AL, Murali R, McCarthy SW, Mann GJ, Scolyer RA. Diagnosis of cutaneous melanocytic tumours by four-colour fluorescence in situ hybridisation. Pathology 2009; 41:383-7. [PMID: 19404853 DOI: 10.1080/00313020902915875] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Accurate classification of primary melanocytic tumours as benign or malignant is crucial for prognostic prediction and appropriate patient management. Several chromosomal aberrations have been frequently identified in melanomas, but are absent in melanocytic naevi. We performed four-colour fluorescence in situ hybridisation (FISH) analysis of melanocytic tumours to determine the accuracy of the technique in classifying melanocytic tumours as benign or malignant. METHODS FISH was performed on paraffin-embedded tissue from 40 histologically unequivocal melanocytic tumours (10 metastatic melanomas, 10 primary melanomas and 20 benign melanocytic naevi) using the product Vysis LSI RREB1/LSI MYB/LSI CCND1/CEP 6 probes (Abbott Molecular Laboratories, USA), which is designed to detect the copy number of the RREB1 (6p25), MYB (6q23), and CCND1 (11q13) genes and FISH positivity is defined by means of a scoring algorithm. RESULTS FISH distinguished the melanomas and the naevi with a sensitivity of 90% (10/10 primary melanoma cases and 8/10 metastatic melanoma cases, respectively), and a specificity of 95%. The most common abnormalities in the melanomas were increased copies of 11q (70%) and 6p (70%), followed by 6q loss relative to cep6 (50%). Fifteen of the 18 positive melanomas were positive by more than one criterion. CONCLUSIONS The results of this study show that FISH, using a panel of four probes, is a sensitive and specific method of classifying benign and malignant melanocytic tumours. The four-colour FISH technique has the potential to assist in the stratification of the subgroup of melanocytic tumours which are difficult to classify using conventional histology.
Collapse
Affiliation(s)
- Adrienne L Morey
- Department of Anatomical Pathology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | | | | | | | | |
Collapse
|
41
|
Sabatino M, Stroncek DF, Klein H, Marincola FM, Wang E. Stem cells in melanoma development. Cancer Lett 2009; 279:119-25. [PMID: 19095348 PMCID: PMC3405359 DOI: 10.1016/j.canlet.2008.10.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/10/2008] [Accepted: 10/14/2008] [Indexed: 11/25/2022]
Abstract
Cutaneous melanoma is a significant health problem worldwide. Available treatments can induce objective tumor regression in a small percent of patients, but these responses are not always associated with improved long-term survival. The resistance of melanoma to therapy and its predestined recurrence are related to the genetic heterogeneity and genomic instability of the tumor. For many years these genetic alterations were thought to be linked to the accumulation of random mutations in functionally differentiated cells which transform them into malignant cells that have lost their ability to differentiate and have acquired drug resistance. In the last few years it has been largely demonstrated that melanoma as other solid tumors contains a subpopulation of cells (CSCs) considered the source of the primary tumor mass, of new tumor nodules and responsible for drug resistance and cancer recurrence. In this review, we provide an overview of findings and advances in CSCs research that are relevant to the initiation, natural history, and the response to treatment of malignant melanoma.
Collapse
Affiliation(s)
- Marianna Sabatino
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10 Room 1C711, Bethesda, MD 20892, United States
| | | | | | | | | |
Collapse
|
42
|
Lucas N, Day ML. The role of the disintegrin metalloproteinase ADAM15 in prostate cancer progression. J Cell Biochem 2009; 106:967-74. [DOI: 10.1002/jcb.22087] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Laurila E, Savinainen K, Kuuselo R, Karhu R, Kallioniemi A. Characterization of the 7q21-q22 amplicon identifies ARPC1A, a subunit of the Arp2/3 complex, as a regulator of cell migration and invasion in pancreatic cancer. Genes Chromosomes Cancer 2009; 48:330-9. [PMID: 19145645 DOI: 10.1002/gcc.20643] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer is a highly aggressive malignancy and one of the leading causes of cancer deaths, mainly due to the lack of methods for early diagnosis and the lack of effective therapies. Recent CGH microarray studies have revealed several regions that are recurrently amplified in pancreatic cancer; these are thus likely to contain genes that contribute to cancer pathogenesis and thereby could serve as novel diagnostic and therapeutic targets. Here, we performed a detailed characterization of the 7q21-q22 amplicon in pancreatic cancer to identify putative amplification target genes. Fluorescence in situ hybridization analyses in 16 pancreatic cancer cell lines and 29 primary pancreatic tumors revealed an increased copy number in approximately 25% of cases in both sample groups, and the cell line data also allowed us to identify a 0.77 Mb amplicon core region containing ten transcripts. Gene expression analyses by qRT-PCR highlighted the ARPC1A gene as having the statistically most significant correlation between amplification and elevated expression (P = 0.004). Silencing of ARPC1A by RNA interference in AsPC-1 cells having high level amplification and expression resulted in a slight decrease in cell proliferation, but a massive reduction in cell migration and invasion. ARPC1A codes for the p41 subunit of the Arp2/3 protein complex, which is a key player in actin polymerization and thus regulates cell mobility. Taken together, our data implicate ARPC1A as a novel target for the 7q21-q22 amplification and a regulator of cell migration and invasion in pancreatic cancer, thus making it an interesting target for antimetastasis therapy.
Collapse
Affiliation(s)
- Eeva Laurila
- Laboratory of Cancer Genetics, Institute of Medical Technology, University of Tampere and Tampere University Hospital, Finland
| | | | | | | | | |
Collapse
|
44
|
Abstract
Cancer stem cells (CSC) have been identified in hematological malignancies and several solid cancers. Similar to physiological stem cells, CSC are capable of self-renewal and differentiation and have the potential for indefinite proliferation, a function through which they may cause tumor growth. Although conventional anti-cancer treatments might eradicate most malignant cells in a tumor, they are potentially ineffective against chemoresistant CSC, which may ultimately be responsible for recurrence and progression. Human malignant melanoma is a highly aggressive and drug-resistant cancer. Detection of tumor heterogeneity, undifferentiated molecular signatures, and increased tumorigenicity of melanoma subsets with embryonic-like differentiation plasticity strongly suggest the presence and involvement of malignant melanoma stem cells (MMSC) in the initiation and propagation of this malignancy. Here, we review these findings in the context of functional properties ascribed to melanocyte stem cells and CSC in other cancers. We discuss the association of deregulated signaling pathways, genomic instability, and vasculogenic mimicry phenomena observed in melanoma subpopulations in light of the CSC concept. We propose that a subset of MMSC may be responsible for melanoma therapy-resistance, tumor invasiveness, and neoplastic progression and that targeted abrogation of a MMSC compartment could therefore ultimately lead to stable remissions and perhaps cures of metastatic melanoma.
Collapse
Affiliation(s)
- Tobias Schatton
- Transplantation Research Center, Children's Hospital Boston & Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
45
|
Rákosy Z, Vízkeleti L, Ecsedi S, Bégány A, Emri G, Adány R, Balázs M. Characterization of 9p21 copy number alterations in human melanoma by fluorescence in situ hybridization. ACTA ACUST UNITED AC 2008; 182:116-21. [PMID: 18406873 DOI: 10.1016/j.cancergencyto.2008.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/16/2008] [Accepted: 01/24/2008] [Indexed: 12/23/2022]
Abstract
Alteration of the CDKN2A (alias p16) tumor suppressor gene, located on 9p21, occurs frequently in familial and sporadic melanomas. Beside CDKN2A, other genes (e.g., CDKN2B, and ARF/p14(ARF), long considered distinct from CDKN2A) on this locus are often deleted or mutated in a large number of tumors including glioma, bladder cancer, and lung cancer. The aim of this study was to evaluate the deletion pattern of the 9p21 locus on a cell-by-cell basis in a large number of melanoma samples using fluorescence in situ hybridization (FISH). In an analysis of 81 primary lesions targeting the 9p21 region and chromosome 9 centromere, high frequency of 9p21 loss (84%) was found. Deletion of 9p21 was present in both early- and late-stage melanomas with similar frequencies. Extra 9p21 copies were rarely seen; they were always associated with polysomy 9 and were observed only in advanced stage melanomas (6 tumors). This FISH study strengthens the hypothesis that the loss of 9p21 occurs frequently in primary melanoma, that the deletion is present in early and late stages of the disease with similar frequency, and that it affects a large extent of the locus.
Collapse
Affiliation(s)
- Zsuzsa Rákosy
- Department of Preventive Medicine, Faculty of Public Health, Medical and Health Science Center, University of Debrecen, Kassai str. 26/b, H-4028 Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
46
|
Najy AJ, Day KC, Day ML. The ectodomain shedding of E-cadherin by ADAM15 supports ErbB receptor activation. J Biol Chem 2008; 283:18393-401. [PMID: 18434311 DOI: 10.1074/jbc.m801329200] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zinc-dependent disintegrin metalloproteinases (a disintegrin and metalloproteinases (ADAMs) have been implicated in several disease processes, including human cancer. Previously, we demonstrated that the expression of a catalytically active member of the ADAM family, ADAM15, is associated with the progression of prostate and breast cancer. The accumulation of the soluble ectodomain of E-cadherin in human serum has also been associated with the progression of prostate and breast cancer and is thought to be mediated by metalloproteinase shedding. Utilizing two complementary models, overexpression and stable short hairpin RNA-mediated knockdown of ADAM15 in breast cancer cells, we demonstrated that ADAM15 cleaves E-cadherin in response to growth factor deprivation. We also demonstrated that the extracellular shedding of E-cadherin was abrogated by a metalloproteinase inhibitor and through the introduction of a catalytically inactive mutation in ADAM15. We have made the novel observation that this soluble E-cadherin fragment was found in complex with the HER2 and HER3 receptors in breast cancer cells. These interactions appeared to stabilize HER2 heterodimerization with HER3 and induced receptor activation and signaling through the Erk pathway, supporting both cell migration and proliferation. In this study, we provide evidence that ADAM15 catalyzes the cleavage of E-cadherin to generate a soluble fragment that in turn binds to and stimulates ErbB receptor signaling.
Collapse
Affiliation(s)
- Abdo J Najy
- Department of Urology and Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
47
|
Najy AJ, Day KC, Day ML. ADAM15 supports prostate cancer metastasis by modulating tumor cell-endothelial cell interaction. Cancer Res 2008; 68:1092-9. [PMID: 18281484 DOI: 10.1158/0008-5472.can-07-2432] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15 in the metastatic prostate cancer cell line, PC-3. ADAM15 down-regulation dramatically attenuated many of the malignant characteristics of PC-3 cells in vitro and prevented the s.c. growth of PC-3 cells in severe combined immunodeficient (SCID) mice. By inhibiting the expression of ADAM15 in PC-3 cells, we showed decreased cell migration and adhesion to specific extracellular matrix proteins. This was accompanied by a reduction in the cleavage of N-cadherin by ADAM15 at the cell surface. Fluorescence-activated cell sorting analysis revealed reduced cell surface expression of the metastasis-associated proteins alpha(v) integrin and CD44. Furthermore, matrix metalloproteinase 9 secretion and activity were abrogated in response to ADAM15 reduction. In an in vitro model of vascular invasion, loss of ADAM15 reduced PC-3 adhesion to, and migration through, vascular endothelial cell monolayers. Using an SCID mouse model of human prostate cancer metastasis, we found that the loss of ADAM15 significantly attenuated the metastatic spread of PC-3 cells to bone. Taken together, these data strongly support a functional role for ADAM15 in prostate tumor cell interaction with vascular endothelium and the metastatic progression of human prostate cancer.
Collapse
Affiliation(s)
- Abdo J Najy
- Department of Urology, Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109-0944, USA
| | | | | |
Collapse
|
48
|
Bauer J, Bastian BC. [DNA copy number changes in the diagnosis of melanocytic tumors]. DER PATHOLOGE 2008; 28:464-73. [PMID: 17882420 DOI: 10.1007/s00292-007-0944-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the case of many tumors, the development of cancer is associated with a loss of control over genomic integrity, resulting in alterations, determined by selection, of the genome of the cancer cells. Comparative genomic hybridization (CGH) is a method that can be used to assess the entire genome of tumor cells for the presence of changes in DNA copy number. CGH analysis has revealed that melanomas differ from melanocytic nevi in the presence of frequent chromosomal aberrations. CGH analysis of benign melanocytic tumors typically shows no clonally expanded chromosomal aberrations, while in the vast majority of melanomas gains and losses of particular chromosomes are found. As an exception, Spitz nevi show an increased copy number of chromosome 11p in about 20% of cases, something not found in melanoma. These marked differences between the aberration patterns of melanomas and melanocytic nevi can be exploited during differential diagnosis of melanocytic tumors in which histopathologic assessment yields equivocal results. In addition, it has also been shown with the aid of CGH and mutation analysis that melanomas are not a homogenous disease, but rather a group of genetically different tumors. A study checking for correlations between the chromosomal alterations in melanocytic tumors not classified at diagnosis and the course of illness in patients is currently under way.
Collapse
Affiliation(s)
- J Bauer
- Department of Dermatology, and Comprehensive Cancer Center, University of California, Box 0808, San Francisco, CA 94143-0808, USA
| | | |
Collapse
|
49
|
Sabatino M, Zhao Y, Voiculescu S, Monaco A, Robbins P, Karai L, Nickoloff BJ, Maio M, Selleri S, Marincola FM, Wang E. Conservation of genetic alterations in recurrent melanoma supports the melanoma stem cell hypothesis. Cancer Res 2008; 68:122-31. [PMID: 18172304 DOI: 10.1158/0008-5472.can-07-1939] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is generally accepted that human cancers derive from a mutated single cell. However, the genetic steps characterizing various stages of progression remain unclear. Studying a unique case of metastatic melanoma, we observed that cell lines derived from metachronous metastases arising over a decade retained a central core of genetic stability in spite of divergent phenotypes. In the present study, we expanded our previous observations comparing these autologous cell lines of clonal derivation with allogeneic ones and correlated array comparative genomic hybridization (aCGH) with gene expression profiling to determine their relative contribution to the dynamics of disease progression. aCGH and gene expression profiling were performed on autologous cell lines and allogeneic melanoma cell lines originating from other patients. A striking correlation existed between total extent of genetic imbalances, global transcriptional patterns, and cellular phenotypes. They did not follow a strict temporal progression but stemmed independently at various time points from a central core of genetic stability best explained according to the cancer stem cell hypothesis. Although their contribution was intertwined, genomic imbalances detectable by aCGH contributed only 25% of the transcriptional traits determining autologous tumor distinctiveness. Our study provides important insights about the dynamics of cancer progression and supports the development of targeted anticancer therapies aimed against stable genetic factors that are maintained throughout the end stage of disease.
Collapse
Affiliation(s)
- Marianna Sabatino
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, Biometrics Research Branch, National Cancer Institute, NIH, Bethesda, Maryland 20892-1184, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Koynova DK, Jordanova ES, Milev AD, Dijkman R, Kirov KS, Toncheva DI, Gruis NA. Gene-specific fluorescence in-situ hybridization analysis on tissue microarray to refine the region of chromosome 20q amplification in melanoma. Melanoma Res 2007; 17:37-41. [PMID: 17235240 DOI: 10.1097/cmr.0b013e3280141617] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Several comparative genomic hybridization studies provide evidence for overrepresentation of the long arm of chromosome 20 in malignant melanoma. These studies also suggest that chromosome 20q contains genes that may contribute to melanoma pathogenesis. To refine the region of 20q amplification and to identify potential candidate genes involved in melanoma or even in melanoma progression from these regions, we combined fluorescence in-situ hybridization with MYBL2, ZNF217, CYP24 and STK6 specific probes (chromosomal region 20q13.1-q13.2) with high-throughput tissue microarray consisting of 280 primary melanomas and melanoma metastases. Low-level amplification ranging from 0.5 to 2.0% was detected for the tumor-related genes of interest. Higher frequencies of gain when compared with amplification were detected for MYBL2, ZNF217, CYP24 and STK6. Aneusomy of centromere 20 was observed in 29.9% of the analyzed tumors. A significantly higher frequency of ZNF217, CYP24 and STK6 total copy-number increase, as well as aneusomy of centromere 20, was found in the group of metastases when compared with the group of primary melanomas. Despite the technological advantage of fluorescence in-situ hybridization on tissue microarray, which allows refining regions of amplification, we were not able to recognize any of the MYBL2, ZNF217, CYP24 and STK6 genes as a particular relevant gene for melanoma tumorigenesis.
Collapse
|