1
|
Williams AL, Scorzo AV, Strawbridge RR, Davis SC, Niedre M. Two-color diffuse in vivo flow cytometer. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:065003. [PMID: 38818515 PMCID: PMC11138342 DOI: 10.1117/1.jbo.29.6.065003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Significance Hematogenous metastasis is mediated by circulating tumor cells (CTCs) and CTC clusters (CTCCs). We recently developed "diffuse in vivo flow cytometry" (DiFC) to detect fluorescent protein (FP) expressing CTCs in small animals. Extending DiFC to allow detection of two FPs simultaneously would allow concurrent study of different CTC sub-populations or heterogeneous CTCCs in the same animal. Aim The goal of this work was to develop and validate a two-color DiFC system capable of non-invasively detecting circulating cells expressing two distinct FPs. Approach A DiFC instrument was designed and built to detect cells expressing either green FP (GFP) or tdTomato. We tested the instrument in tissue-mimicking flow phantoms in vitro and in multiple myeloma bearing mice in vivo. Results In phantoms, we could accurately differentiate GFP+ and tdTomato+ CTCs and CTCCs. In tumor-bearing mice, CTC numbers expressing both FPs increased during disease. Most CTCCs (86.5%) expressed single FPs with the remainder both FPs. These data were supported by whole-body hyperspectral fluorescence cryo-imaging of the mice. Conclusions We showed that two-color DiFC can detect two populations of CTCs and CTCCs concurrently. This instrument could allow study of tumor development and response to therapies for different sub-populations in the same animal.
Collapse
Affiliation(s)
- Amber L. Williams
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Augustino V. Scorzo
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | | | - Scott C. Davis
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Mark Niedre
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Montal E, Lumaquin D, Ma Y, Suresh S, White RM. Modeling the effects of genetic- and diet-induced obesity on melanoma progression in zebrafish. Dis Model Mech 2023; 16:285858. [PMID: 36472402 PMCID: PMC9884122 DOI: 10.1242/dmm.049671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is a rising concern and associated with an increase in numerous cancers, often in a sex-specific manner. Preclinical models are needed to deconvolute the intersection between obesity, sex and melanoma. Here, we generated a zebrafish system that can be used as a platform for studying these factors. We studied how germline overexpression of Agrp along with a high-fat diet affects melanomas dependent on BRAFV600E and loss of p53. This revealed an increase in tumor incidence and area in male, but not female, obese fish, consistent with the clinical literature. We then determined whether this was further affected by additional somatic mutations in the clinically relevant genes rb1 or ptena/b. We found that the male obesogenic effect on melanoma was present with tumors generated with BRAF;p53;Rb1 but not BRAF;p53;Pten. These data indicate that both germline (Agrp) and somatic (BRAF, Rb1) mutations contribute to obesity-related effects in melanoma. Given the rapid genetic tools available in the zebrafish, this provides a high-throughput system to dissect the interactions of genetics, diet, sex and host factors in obesity-related cancers.
Collapse
Affiliation(s)
- Emily Montal
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dianne Lumaquin
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Yilun Ma
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Shruthy Suresh
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard M. White
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Author for correspondence ()
| |
Collapse
|
3
|
Roustaei M, In Baek K, Wang Z, Cavallero S, Satta S, Lai A, O'Donnell R, Vedula V, Ding Y, Marsden AL, Hsiai TK. Computational simulations of the 4D micro-circulatory network in zebrafish tail amputation and regeneration. J R Soc Interface 2022; 19:20210898. [PMID: 35167770 PMCID: PMC8848759 DOI: 10.1098/rsif.2021.0898] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
Wall shear stress (WSS) contributes to the mechanotransduction underlying microvascular development and regeneration. Using computational fluid dynamics, we elucidated the interplay between WSS and vascular remodelling in a zebrafish model of tail amputation and regeneration. The transgenic Tg (fli1:eGFP; Gata1:ds-red) zebrafish line was used to track the three-dimensional fluorescently labelled vascular endothelium for post-image segmentation and reconstruction of the fluid domain. Particle image velocimetry was used to validate the blood flow. Following amputation to the dorsal aorta and posterior cardinal vein (PCV), vasoconstriction developed in the dorsal longitudinal anastomotic vessel (DLAV) along with increased WSS in the proximal segmental vessels (SVs) from amputation. Angiogenesis ensued at the tips of the amputated DLAV and PCV where WSS was minimal. At 2 days post amputation (dpa), vasodilation occurred in a pair of SVs proximal to amputation, followed by increased blood flow and WSS; however, in the SVs distal to amputation, WSS normalized to the baseline. At 3 dpa, the blood flow increased in the arterial SV proximal to amputation and through anastomosis with DLAV formed a loop with PCV. Thus, our in silico modelling revealed the interplay between WSS and microvascular adaptation to changes in WSS and blood flow to restore microcirculation following tail amputation.
Collapse
Affiliation(s)
- Mehrdad Roustaei
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kyung In Baek
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zhaoqiang Wang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Susana Cavallero
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sandro Satta
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Angela Lai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ryan O'Donnell
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Vijay Vedula
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Yichen Ding
- Department of Bioengineering, University of Texas Dallas, Dallas, TX, USA
| | | | - Tzung K. Hsiai
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
4
|
Roustaei M, In Baek K, Wang Z, Cavallero S, Satta S, Lai A, O'Donnell R, Vedula V, Ding Y, Marsden AL, Hsiai TK. Computational simulations of the 4D micro-circulatory network in zebrafish tail amputation and regeneration. J R Soc Interface 2022. [PMID: 35167770 DOI: 10.1101/2021.02.10.430654v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Wall shear stress (WSS) contributes to the mechanotransduction underlying microvascular development and regeneration. Using computational fluid dynamics, we elucidated the interplay between WSS and vascular remodelling in a zebrafish model of tail amputation and regeneration. The transgenic Tg (fli1:eGFP; Gata1:ds-red) zebrafish line was used to track the three-dimensional fluorescently labelled vascular endothelium for post-image segmentation and reconstruction of the fluid domain. Particle image velocimetry was used to validate the blood flow. Following amputation to the dorsal aorta and posterior cardinal vein (PCV), vasoconstriction developed in the dorsal longitudinal anastomotic vessel (DLAV) along with increased WSS in the proximal segmental vessels (SVs) from amputation. Angiogenesis ensued at the tips of the amputated DLAV and PCV where WSS was minimal. At 2 days post amputation (dpa), vasodilation occurred in a pair of SVs proximal to amputation, followed by increased blood flow and WSS; however, in the SVs distal to amputation, WSS normalized to the baseline. At 3 dpa, the blood flow increased in the arterial SV proximal to amputation and through anastomosis with DLAV formed a loop with PCV. Thus, our in silico modelling revealed the interplay between WSS and microvascular adaptation to changes in WSS and blood flow to restore microcirculation following tail amputation.
Collapse
Affiliation(s)
- Mehrdad Roustaei
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kyung In Baek
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zhaoqiang Wang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Susana Cavallero
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sandro Satta
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Angela Lai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ryan O'Donnell
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Vijay Vedula
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Yichen Ding
- Department of Bioengineering, University of Texas Dallas, Dallas, TX, USA
| | | | - Tzung K Hsiai
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
5
|
Suo Y, Gu Z, Wei X. Advances of In Vivo Flow Cytometry on Cancer Studies. Cytometry A 2019; 97:15-23. [DOI: 10.1002/cyto.a.23851] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/27/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yuanzhen Suo
- Biomedical Pioneering Innovation CenterPeking University Beijing China
- School of Life SciencesPeking University Beijing China
| | - Zhenqin Gu
- Department of Urology, Xinhua HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Xunbin Wei
- Med‐X Research Institute and School of Biomedical EngineeringShanghai Jiao Tong University Shanghai China
- School of PhysicsFoshan University Foshan 52800 China
| |
Collapse
|
6
|
Grech A, Tebby C, Brochot C, Bois FY, Bado-Nilles A, Dorne JL, Quignot N, Beaudouin R. Generic physiologically-based toxicokinetic modelling for fish: Integration of environmental factors and species variability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:516-531. [PMID: 30243171 DOI: 10.1016/j.scitotenv.2018.09.163] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 05/21/2023]
Abstract
One of the goals of environmental risk assessment is to protect the whole ecosystem from adverse effects resulting from exposure to chemicals. Many research efforts have aimed to improve the quantification of dose-response relationships through the integration of toxicokinetics. For this purpose, physiologically-based toxicokinetic (PBTK) models have been developed to estimate internal doses from external doses in a time-dependent manner. In this study, a generic PBTK model was developed and adapted for rainbow trout (Onchorhynchus mykiss), zebrafish (Danio rerio), fathead minnow (Pimephales promelas), and three-spined stickleback (Gasterosteus aculeatus). New mechanistic approaches were proposed for including the effects of growth and temperature in the model. Physiological parameters and their inter-individual variability were estimated based on the results of extensive literature searches or specific experimental data. The PBTK model was implemented for nine environmental contaminants (with log kow from -0.9 to 6.8) to predict whole-body concentrations and concentrations in various fish's organs. Sensitivity analyses were performed for a lipophilic and a hydrophilic compound to identify which parameters have most impact on the model's outputs. Model predictions were compared with experimental data according to dataset-specific exposure scenarios and were accurate: 50% of predictions were within a 3-fold factor for six out of nine chemicals and 75% of predictions were within a 3-fold factor for three of the most lipophilic compounds studied. Our model can be used to assess the influence of physiological and environmental factors on the toxicokinetics of chemicals and provide guidance for assessing the effect of those critical factors in environmental risk assessment.
Collapse
Affiliation(s)
- Audrey Grech
- Institut National de l'Environnement Industriel et des Risques (INERIS), Models for Ecotoxicology and Toxicology Unit, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France; Analytica Laser, 3 rue de l'arrivée, 75015 Paris, France; Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France
| | - Cleo Tebby
- Institut National de l'Environnement Industriel et des Risques (INERIS), Models for Ecotoxicology and Toxicology Unit, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France
| | - Céline Brochot
- Institut National de l'Environnement Industriel et des Risques (INERIS), Models for Ecotoxicology and Toxicology Unit, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France
| | - Frédéric Y Bois
- Institut National de l'Environnement Industriel et des Risques (INERIS), Models for Ecotoxicology and Toxicology Unit, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France
| | - Jean-Lou Dorne
- European Food Safety Authority (EFSA), Scientific Committee and Emerging Risks Unit, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Nadia Quignot
- Analytica Laser, 3 rue de l'arrivée, 75015 Paris, France
| | - Rémy Beaudouin
- Institut National de l'Environnement Industriel et des Risques (INERIS), Models for Ecotoxicology and Toxicology Unit, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France; Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
7
|
Letrado P, de Miguel I, Lamberto I, Díez-Martínez R, Oyarzabal J. Zebrafish: Speeding Up the Cancer Drug Discovery Process. Cancer Res 2018; 78:6048-6058. [PMID: 30327381 DOI: 10.1158/0008-5472.can-18-1029] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/29/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) is an ideal in vivo model to study a wide variety of human cancer types. In this review, we provide a comprehensive overview of zebrafish in the cancer drug discovery process, from (i) approaches to induce malignant tumors, (ii) techniques to monitor cancer progression, and (iii) strategies for compound administration to (iv) a compilation of the 355 existing case studies showing the impact of zebrafish models on cancer drug discovery, which cover a broad scope of scenarios. Finally, based on the current state-of-the-art analysis, this review presents some highlights about future directions using zebrafish in cancer drug discovery and the potential of this model as a prognostic tool in prospective clinical studies. Cancer Res; 78(21); 6048-58. ©2018 AACR.
Collapse
Affiliation(s)
- Patricia Letrado
- Ikan Biotech SL, The Zebrafish Lab Department, Centro Europeo de Empresas e Innovación de Navarra (CEIN), Noain, Spain.,Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Irene de Miguel
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Iranzu Lamberto
- Ikan Biotech SL, The Zebrafish Lab Department, Centro Europeo de Empresas e Innovación de Navarra (CEIN), Noain, Spain
| | - Roberto Díez-Martínez
- Ikan Biotech SL, The Zebrafish Lab Department, Centro Europeo de Empresas e Innovación de Navarra (CEIN), Noain, Spain.
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
| |
Collapse
|
8
|
Lee J, Chou TC, Kang D, Kang H, Chen J, Baek KI, Wang W, Ding Y, Carlo DD, Tai YC, Hsiai TK. A Rapid Capillary-Pressure Driven Micro-Channel to Demonstrate Newtonian Fluid Behavior of Zebrafish Blood at High Shear Rates. Sci Rep 2017; 7:1980. [PMID: 28512313 PMCID: PMC5434032 DOI: 10.1038/s41598-017-02253-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/07/2017] [Indexed: 12/16/2022] Open
Abstract
Blood viscosity provides the rheological basis to elucidate shear stress underlying developmental cardiac mechanics and physiology. Zebrafish is a high throughput model for developmental biology, forward-genetics, and drug discovery. The micro-scale posed an experimental challenge to measure blood viscosity. To address this challenge, a microfluidic viscometer driven by surface tension was developed to reduce the sample volume required (3μL) for rapid (<2 min) and continuous viscosity measurement. By fitting the power-law fluid model to the travel distance of blood through the micro-channel as a function of time and channel configuration, the experimentally acquired blood viscosity was compared with a vacuum-driven capillary viscometer at high shear rates (>500 s−1), at which the power law exponent (n) of zebrafish blood was nearly 1 behaving as a Newtonian fluid. The measured values of whole blood from the micro-channel (4.17cP) and the vacuum method (4.22cP) at 500 s−1 were closely correlated at 27 °C. A calibration curve was established for viscosity as a function of hematocrits to predict a rise and fall in viscosity during embryonic development. Thus, our rapid capillary pressure-driven micro-channel revealed the Newtonian fluid behavior of zebrafish blood at high shear rates and the dynamic viscosity during development.
Collapse
Affiliation(s)
- Juhyun Lee
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Tzu-Chieh Chou
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Dongyang Kang
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Hanul Kang
- Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, 90073, USA
| | - Junjie Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kyung In Baek
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Wei Wang
- Department of Electrical Engineering, Peking University, Beijing, 100871, China
| | - Yichen Ding
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA.,California NanoSystem Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yu-Chong Tai
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Tzung K Hsiai
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA. .,Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA. .,Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, 90073, USA. .,California NanoSystem Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA. .,Department of Medicine (Cardiology), School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
9
|
Zebrafish Models of Human Leukemia: Technological Advances and Mechanistic Insights. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:335-69. [PMID: 27165361 DOI: 10.1007/978-3-319-30654-4_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insights concerning leukemic pathophysiology have been acquired in various animal models and further efforts to understand the mechanisms underlying leukemic treatment resistance and disease relapse promise to improve therapeutic strategies. The zebrafish (Danio rerio) is a vertebrate organism with a conserved hematopoietic program and unique experimental strengths suiting it for the investigation of human leukemia. Recent technological advances in zebrafish research including efficient transgenesis, precise genome editing, and straightforward transplantation techniques have led to the generation of a number of leukemia models. The transparency of the zebrafish when coupled with improved lineage-tracing and imaging techniques has revealed exquisite details of leukemic initiation, progression, and regression. With these advantages, the zebrafish represents a unique experimental system for leukemic research and additionally, advances in zebrafish-based high-throughput drug screening promise to hasten the discovery of novel leukemia therapeutics. To date, investigators have accumulated knowledge of the genetic underpinnings critical to leukemic transformation and treatment resistance and without doubt, zebrafish are rapidly expanding our understanding of disease mechanisms and helping to shape therapeutic strategies for improved outcomes in leukemic patients.
Collapse
|
10
|
Abstract
Zebrafish represents a powerful model for cancer research. Particularly, the xenotransplantation of human cancer cells into zebrafish has enormous potential for further evaluation of cancer progression and drug discovery. Various cancer models have been established in adults, juveniles and embryos of zebrafish. This xenotransplantation zebrafish model provides a unique opportunity to monitor cancer proliferation, tumor angiogenesis, metastasis, self-renewal of cancer stem cells, and drug response in real time in vivo. This review summarizes the use of zebrafish as a model for cancer xenotransplantation, and highlights its advantages and disadvantages.
Collapse
|
11
|
Dray N, Bedu S, Vuillemin N, Alunni A, Coolen M, Krecsmarik M, Supatto W, Beaurepaire E, Bally-Cuif L. Large-scale live imaging of adult neural stem cells in their endogenous niche. Development 2015; 142:3592-600. [PMID: 26395477 PMCID: PMC4631764 DOI: 10.1242/dev.123018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 08/20/2015] [Indexed: 12/30/2022]
Abstract
Live imaging of adult neural stem cells (aNSCs) in vivo is a technical challenge in the vertebrate brain. Here, we achieve long-term imaging of the adult zebrafish telencephalic neurogenic niche and track a population of >1000 aNSCs over weeks, by taking advantage of fish transparency at near-infrared wavelengths and of intrinsic multiphoton landmarks. This methodology enables us to describe the frequency, distribution and modes of aNSCs divisions across the entire germinal zone of the adult pallium, and to highlight regional differences in these parameters.
Collapse
Affiliation(s)
- Nicolas Dray
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| | - Sébastien Bedu
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| | - Nelly Vuillemin
- Laboratory for Optics and Biosciences, École Polytechnique, Centre National de la Recherche Scientifique (UMR 7645) and Institut National de la Santé et de la Recherche Médicale (U1182), Palaiseau 91128, France
| | - Alessandro Alunni
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| | - Marion Coolen
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| | - Monika Krecsmarik
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| | - Willy Supatto
- Laboratory for Optics and Biosciences, École Polytechnique, Centre National de la Recherche Scientifique (UMR 7645) and Institut National de la Santé et de la Recherche Médicale (U1182), Palaiseau 91128, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, École Polytechnique, Centre National de la Recherche Scientifique (UMR 7645) and Institut National de la Santé et de la Recherche Médicale (U1182), Palaiseau 91128, France
| | - Laure Bally-Cuif
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| |
Collapse
|
12
|
Feng Y, Martin P. Imaging innate immune responses at tumour initiation: new insights from fish and flies. Nat Rev Cancer 2015; 15:556-62. [PMID: 26289312 DOI: 10.1038/nrc3979] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent imaging studies in genetically tractable and translucent zebrafish and Drosophila melanogaster models have opened a window on the earliest stages of tumorigenesis, when pre-neoplastic cells first arise in tissues before they progress into full-blown cancers. Innate immune cells often find these cells soon after they develop, but this efficient surveillance is not always good for the host because although immune cells have phagocytic capacity, they can also nurture the growing clones of pre-neoplastic cells. We describe these newly observed early interactions between immune cells and cancer cells and speculate on their potential clinical implications.
Collapse
Affiliation(s)
- Yi Feng
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Paul Martin
- School of Biochemistry, University of Bristol; and the School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
13
|
Heilmann S, Ratnakumar K, Langdon E, Kansler E, Kim I, Campbell NR, Perry E, McMahon A, Kaufman C, van Rooijen E, Lee W, Iacobuzio-Donahue C, Hynes R, Zon L, Xavier J, White R. A Quantitative System for Studying Metastasis Using Transparent Zebrafish. Cancer Res 2015; 75:4272-4282. [PMID: 26282170 DOI: 10.1158/0008-5472.can-14-3319] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 07/13/2015] [Indexed: 11/16/2022]
Abstract
Metastasis is the defining feature of advanced malignancy, yet remains challenging to study in laboratory environments. Here, we describe a high-throughput zebrafish system for comprehensive, in vivo assessment of metastatic biology. First, we generated several stable cell lines from melanomas of transgenic mitfa-BRAF(V600E);p53(-/-) fish. We then transplanted the melanoma cells into the transparent casper strain to enable highly quantitative measurement of the metastatic process at single-cell resolution. Using computational image analysis of the resulting metastases, we generated a metastasis score, μ, that can be applied to quantitative comparison of metastatic capacity between experimental conditions. Furthermore, image analysis also provided estimates of the frequency of metastasis-initiating cells (∼1/120,000 cells). Finally, we determined that the degree of pigmentation is a key feature defining cells with metastatic capability. The small size and rapid generation of progeny combined with superior imaging tools make zebrafish ideal for unbiased high-throughput investigations of cell-intrinsic or microenvironmental modifiers of metastasis. The approaches described here are readily applicable to other tumor types and thus serve to complement studies also employing murine and human cell culture systems.
Collapse
Affiliation(s)
- Silja Heilmann
- Memorial Sloan Kettering Cancer Center, Computational Biology
| | - Kajan Ratnakumar
- Memorial Sloan Kettering Cancer Center, Cancer Biology & Genetics
| | - Erin Langdon
- Memorial Sloan Kettering Cancer Center, Cancer Biology & Genetics
| | - Emily Kansler
- Memorial Sloan Kettering Cancer Center, Cancer Biology & Genetics
| | - Isabella Kim
- Memorial Sloan Kettering Cancer Center, Cancer Biology & Genetics
| | | | - Elizabeth Perry
- Memorial Sloan Kettering Cancer Center, Cancer Biology & Genetics
| | - Amy McMahon
- Massachusetts Institute of Technology, David Koch Institute for Integrated Cancer Biology.,Howard Hughes Medical Institute
| | - Charles Kaufman
- Children's Hospital Boston.,Harvard Medical School.,Dana Farber Cancer Institute.,Howard Hughes Medical Institute
| | - Ellen van Rooijen
- Children's Hospital Boston.,Harvard Medical School.,Howard Hughes Medical Institute
| | - William Lee
- Memorial Sloan Kettering Cancer Center, Computational Biology
| | | | - Richard Hynes
- Massachusetts Institute of Technology, David Koch Institute for Integrated Cancer Biology.,Howard Hughes Medical Institute
| | - Leonard Zon
- Children's Hospital Boston.,Harvard Medical School.,Dana Farber Cancer Institute.,Howard Hughes Medical Institute
| | - Joao Xavier
- Memorial Sloan Kettering Cancer Center, Computational Biology
| | - Richard White
- Memorial Sloan Kettering Cancer Center, Cancer Biology & Genetics.,Weill Cornell Medical College
| |
Collapse
|
14
|
Suo Y, Liu T, Xie C, Wei D, Tan X, Wu L, Wang X, He H, Shi G, Wei X, Shi C. Near infrared in vivo flow cytometry for tracking fluorescent circulating cells. Cytometry A 2015; 87:878-84. [DOI: 10.1002/cyto.a.22711] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 05/27/2015] [Accepted: 06/04/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Yuanzhen Suo
- Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai 200030 China
| | - Tao Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University; Chongqing 400038 China
| | - Chengying Xie
- Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai 200030 China
| | - Dan Wei
- Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai 200030 China
| | - Xu Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University; Chongqing 400038 China
| | - Liao Wu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University; Chongqing 400038 China
| | - Xiaoling Wang
- Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai 200030 China
| | - Hao He
- Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai 200030 China
| | - Guohua Shi
- Chinese Academy of Sciences, The Key Laboratory on Adaptive Optics; Chengdu 610209 China
- Chinese Academy of Sciences Institute of Optics and Electronics, The Laboratory on Adaptive Optics; Chengdu 610209 China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai 200030 China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University; Chongqing 400038 China
| |
Collapse
|
15
|
Huarng MC, Shavit JA. Simple and rapid quantification of thrombocytes in zebrafish larvae. Zebrafish 2015; 12:238-42. [PMID: 25790244 DOI: 10.1089/zeb.2014.1079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Platelets are a critical component of hemostasis, with disorders of number or function resulting in coagulation disturbances. Insights into these processes have primarily been realized through studies using mammalian models or tissues. Increasingly, zebrafish embryos and larvae have been used to study the protein and cellular components of hemostasis and thrombosis, including the thrombocyte, a nucleated platelet analog. However, investigations of thrombocytes have been somewhat limited due to lack of a robust and simple methodology for quantitation, an important component of platelet studies in mammals. Using video capture, we have devised an assay that produces a rapid, reproducible, and precise measurement of thrombocyte number in zebrafish larvae by counting fluorescently tagged cells. Averaging 1000 frames, we were able to subtract background fluorescence, thus limiting assessment to circulating thrombocytes. This method facilitated rapid assessment of relative thrombocyte counts in a population of 372 zebrafish larvae by a single operator in less than 3 days. This technique requires basic microscopy equipment and rudimentary programming, lends itself to high throughput analysis, and will enhance future studies of thrombopoiesis in the zebrafish.
Collapse
Affiliation(s)
- Michael C Huarng
- Department of Pediatrics and Communicable Diseases, University of Michigan , Ann Arbor, Michigan
| | | |
Collapse
|
16
|
Developing zebrafish models relevant to PTSD and other trauma- and stressor-related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:67-79. [PMID: 25138994 DOI: 10.1016/j.pnpbp.2014.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 11/20/2022]
Abstract
While post-traumatic stress disorder (PTSD) and other trauma- and stress-related disorders (TSRDs) represent a serious societal and public health concern, their pathogenesis is largely unknown. Given the clinical complexity of TSRD development and susceptibility, greater investigation into candidate biomarkers and specific genetic pathways implicated in both risk and resilience to trauma becomes critical. In line with this, numerous animal models have been extensively used to better understand the pathogenic mechanisms of PTSD and related TSRD. Here, we discuss the rapidly increasing potential of zebrafish as models of these disorders, and how their use may aid researchers in uncovering novel treatments and therapies in this field.
Collapse
|
17
|
Ulrich H, Bocsi J, Glaser T, Tárnok A. Cytometry in the brain: studying differentiation to diagnostic applications in brain disease and regeneration therapy. Cell Prolif 2014; 47:12-9. [PMID: 24450810 DOI: 10.1111/cpr.12087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/02/2013] [Indexed: 12/30/2022] Open
Abstract
During brain development, a population of uniform embryonic cells migrates and differentiates into a large number of neural phenotypes - origin of the enormous complexity of the adult nervous system. Processes of cell proliferation, differentiation and programmed death of no longer required cells, do not occur only during embryogenesis, but are also maintained during adulthood and are affected in neurodegenerative and neuropsychiatric disease states. As neurogenesis is an endogenous response to brain injury, visible as proliferation (of to this moment silent stem or progenitor cells), its further stimulation can present a treatment strategy in addition to stem cell transfer for cell regeneration therapy. Concise techniques for studying such events in vitro and in vivo permit understanding of underlying mechanisms. Detection of subtle physiological alterations in brain cell proliferation and neurogenesis can be explored, that occur during environmental stimulation, exercise and ageing. Here, we have collected achievements in the field of basic research on applications of cytometry, including automated imaging for quantification of morphological or fluorescence-based parameters in cell cultures, towards imaging of three-dimensional brain architecture together with DNA content and proliferation data. Multi-parameter and more recently in vivo flow cytometry procedures, have been developed for quantification of phenotypic diversity and cell processes that occur during brain development as well as in adulthood, with importance for therapeutic approaches.
Collapse
Affiliation(s)
- H Ulrich
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, São Paulo, S.P 05508-900, Brazil
| | | | | | | |
Collapse
|
18
|
Tobia C, Gariano G, De Sena G, Presta M. Zebrafish embryo as a tool to study tumor/endothelial cell cross-talk. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1371-7. [DOI: 10.1016/j.bbadis.2013.01.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 01/20/2023]
|
19
|
Kulesa PM, Morrison JA, Bailey CM. The neural crest and cancer: a developmental spin on melanoma. Cells Tissues Organs 2013; 198:12-21. [PMID: 23774755 DOI: 10.1159/000348418] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2012] [Indexed: 12/19/2022] Open
Abstract
Neural crest (NC) cells undergo an epithelial to mesenchymal transition (EMT) in order to exit from the dorsal neural tube. Similarly, ancestrally related melanoma cells employ an EMT-like event during the initial stages of metastasis to dissociate from surrounding keratinocytes. Whether or not the molecular pathogenesis and cellular dynamics of melanoma metastasis resemble the embryonic NC invasion program is unclear. Here, we highlight advances in our understanding of tumor cell behaviors and plasticity, focusing on the relationship between melanoma and the NC invasion programs. We summarize recent discoveries of NC cell guidance and emerging in vivo imaging strategies that permit single cell resolution of fluorescently labeled tumor cells, with a focus on our recently developed in vivo chick embryo transplant model. Crucial to the molecular pathogenesis of metastasis, we highlight advances in gene profiling of small cell numbers, including our novel ability to gather gene expression information during distinct stages of melanoma invasion. Lastly, we present preliminary details of a comparison of specific genetic pathways associated with the early phases of melanoma invasion and known NC induction and migration signals. Our results suggest that malignant melanoma cells hijack portions of the NC program to promote plasticity and facilitate metastasis. In summary, there is considerable power in combining an in vivo model system with molecular analysis of gene expression, within the context of established developmental signaling pathways, to identify and study the molecular mechanisms of metastasis.
Collapse
Affiliation(s)
- Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, Mo. 64110, USA.
| | | | | |
Collapse
|
20
|
Nedosekin DA, Sarimollaoglu M, Galanzha EI, Sawant R, Torchilin VP, Verkhusha VV, Ma J, Frank MH, Biris AS, Zharov VP. Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts. JOURNAL OF BIOPHOTONICS 2013; 6:425-34. [PMID: 22903924 PMCID: PMC3521072 DOI: 10.1002/jbio.201200047] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/06/2012] [Accepted: 07/17/2012] [Indexed: 05/03/2023]
Abstract
In vivo photoacoustic (PA) and fluorescence flow cytometry were previously applied separately using pulsed and continuous wave lasers respectively, and positive contrast detection mode only. This paper introduces a real-time integration of both techniques with positive and negative contrast modes using only pulsed lasers. Various applications of this new tool are summarized, including detection of liposomes loaded with Alexa-660 dye, red blood cells labeled with Indocyanine Green, B16F10 melanoma cells co-expressing melanin and green fluorescent protein (GFP), C8161-GFP melanoma cells targeted by magnetic nanoparticles, MTLn3 adenocarcinoma cells expressing novel near-infrared iRFP protein, and quantum dot-carbon nanotube conjugates. Negative contrast flow cytometry provided label-free detection of low absorbing or weakly fluorescent cells in blood absorption and autofluorescence background, respectively. The use of pulsed laser for time-resolved discrimination of objects with long fluorescence lifetime (e.g., quantum dots) from shorter autofluorescence background (e.g., blood plasma) is also highlighted in this paper. The supplementary nature of PA and fluorescence detection increased the versatility of the integrated method for simultaneous detection of probes and cells having various absorbing and fluorescent properties, and provided verification of PA data using a more established fluorescence based technique.
Collapse
Affiliation(s)
- Dmitry A Nedosekin
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mimeault M, Batra SK. Emergence of zebrafish models in oncology for validating novel anticancer drug targets and nanomaterials. Drug Discov Today 2013; 18:128-40. [PMID: 22903142 PMCID: PMC3562372 DOI: 10.1016/j.drudis.2012.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/04/2012] [Accepted: 08/03/2012] [Indexed: 12/16/2022]
Abstract
The in vivo zebrafish models have recently attracted great attention in molecular oncology to investigate multiple genetic alterations associated with the development of human cancers and validate novel anticancer drug targets. Particularly, the transparent zebrafish models can be used as a xenotransplantation system to rapidly assess the tumorigenicity and metastatic behavior of cancer stem and/or progenitor cells and their progenies. Moreover, the zebrafish models have emerged as powerful tools for an in vivo testing of novel anticancer agents and nanomaterials for counteracting tumor formation and metastases and improving the efficacy of current radiation and chemotherapeutic treatments against aggressive, metastatic and lethal cancers.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | |
Collapse
|
22
|
Through the looking glass: visualizing leukemia growth, migration, and engraftment using fluorescent transgenic zebrafish. Adv Hematol 2012; 2012:478164. [PMID: 22829834 PMCID: PMC3399386 DOI: 10.1155/2012/478164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/23/2012] [Indexed: 01/29/2023] Open
Abstract
Zebrafish have emerged as a powerful model of development and cancer. Human, mouse, and zebrafish malignancies exhibit striking histopathologic and molecular similarities, underscoring the remarkable conservation of genetic pathways required to induce cancer. Zebrafish are uniquely suited for large-scale studies in which hundreds of animals can be used to investigate cancer processes. Moreover, zebrafish are small in size, optically clear during development, and amenable to genetic manipulation. Facile transgenic approaches and new technologies in gene inactivation have provided much needed genomic resources to interrogate the function of specific oncogenic and tumor suppressor pathways in cancer. This manuscript focuses on the unique attribute of labeling leukemia cells with fluorescent proteins and directly visualizing cancer processes in vivo including tumor growth, dissemination, and intravasation into the vasculature. We will also discuss the use of fluorescent transgenic approaches and cell transplantation to assess leukemia-propagating cell frequency and response to chemotherapy.
Collapse
|
23
|
Patton EE. Live imaging in zebrafish reveals neu(trophil) insight into the metastatic niche. J Pathol 2012; 227:381-4. [PMID: 22611003 DOI: 10.1002/path.4051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 04/11/2012] [Accepted: 05/11/2012] [Indexed: 12/16/2022]
Abstract
Non-cancerous immune cells can significantly contribute to tumour progression and metastases. Neutrophils associated with tumours can both promote and inhibit tumour progression, but less is known about how non-associated immune cells contribute to cancer biology. In a recent issue of the Journal of Pathology, He and colleagues use non-invasive, high-resolution imaging of the whole living animal to provide a compelling glimpse at how physiological migration of neutrophils can prepare a metastatic niche and how their activities can be altered by the unintended consequences of targeted therapeutics.
Collapse
Affiliation(s)
- E Elizabeth Patton
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit, Edinburgh, UK.
| |
Collapse
|