1
|
Liechti T, Lelios I, Schroeder A, Decman V, Gonneau C, Groves C, Green C, Alcaide EG. Potential and challenges of clinical high-dimensional flow cytometry: A call to action. Cytometry A 2024. [PMID: 39444224 DOI: 10.1002/cyto.a.24902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Clinical biomarker strategies increasingly integrate translational research to gain new insights into disease mechanisms or to define better biomarkers in clinical trials. High-dimensional flow cytometry (HDFCM) holds the promise to enhance the exploratory potential beyond traditional, targeted biomarker strategies. However, the increased complexity of HDFCM poses several challenges, which need to be addressed in order to fully leverage its potential and to align with current regulatory requirements in clinical flow cytometry. These challenges include among others extended timelines for assay development and validation, the necessity for extensive knowledge in HDFCM, and sophisticated data analysis strategies. However, no guidelines exist on how to manage such challenges in adopting clinical HDFCM. Our CYTO 2024 workshop "Potential and challenges of clinical high-dimensional flow cytometry" aimed to find consensus across the pharmaceutical industry and broader scientific community on the overall benefits and most urgent challenges of HDFCM in clinical trials. Here, we summarize the insights we gained from our workshop. While this report does not provide a blueprint, it is a first step in defining and summarizing the most pressing challenges in implementing HDFCM in clinical trials. Furthermore, we compile current efforts with the goal to overcome some of these challenges. As such we bring the scientific community and health authorities together to build solutions, which will accelerate and simplify the full adoption of HDFCM in clinical trials.
Collapse
Affiliation(s)
- Thomas Liechti
- Translational Medicine, Genentech, San Francisco, California, USA
| | - Iva Lelios
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Aaron Schroeder
- Translational Medicine, Genentech, San Francisco, California, USA
| | - Vilma Decman
- Cellular Biomarkers, GSK, Collegeville, Pennsylvania, USA
| | | | - Christopher Groves
- Translational Science and Innovation Laboratory, Q2 Solutions, Durham, North Carolina, USA
| | - Cherie Green
- Translational Science, Ozette, Seattle, Washington, USA
| | - Enrique Gomez Alcaide
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
2
|
Dinalankara W, Ng DP, Marchionni L, Simonson PD. Comparison of three machine learning algorithms for classification of B-cell neoplasms using clinical flow cytometry data. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:282-293. [PMID: 38721890 DOI: 10.1002/cyto.b.22177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
Multiparameter flow cytometry data is visually inspected by expert personnel as part of standard clinical disease diagnosis practice. This is a demanding and costly process, and recent research has demonstrated that it is possible to utilize artificial intelligence (AI) algorithms to assist in the interpretive process. Here we report our examination of three previously published machine learning methods for classification of flow cytometry data and apply these to a B-cell neoplasm dataset to obtain predicted disease subtypes. Each of the examined methods classifies samples according to specific disease categories using ungated flow cytometry data. We compare and contrast the three algorithms with respect to their architectures, and we report the multiclass classification accuracies and relative required computation times. Despite different architectures, two of the methods, flowCat and EnsembleCNN, had similarly good accuracies with relatively fast computational times. We note a speed advantage for EnsembleCNN, particularly in the case of addition of training data and retraining of the classifier.
Collapse
Affiliation(s)
- Wikum Dinalankara
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - David P Ng
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Paul D Simonson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
3
|
Parisi B, Sünnen M, Chippalkatti R, Abankwa DK. A flow-cytometry-based pipeline for the rapid quantification of C2C12 cell differentiation. STAR Protoc 2023; 4:102637. [PMID: 37819762 PMCID: PMC10568640 DOI: 10.1016/j.xpro.2023.102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
The C2C12 cell line represents a simple in vitro model for cell differentiation. Here, we present a flow-cytometry-based pipeline to quantitate C2C12 cell differentiation based on myosin heavy-chain marker expression. We describe steps for cell seeding, transfection, drug treatment, differentiation, and labeling. We then detail procedures for flow cytometry acquisition and introduce the R script FlowFate for automated analysis, including the study of dose-dependent effects of GFP-tagged genes on differentiation. For complete details on the use and execution of this protocol, please refer to Chippalkatti et al. (2023).1.
Collapse
Affiliation(s)
- Bianca Parisi
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Maxime Sünnen
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Rohan Chippalkatti
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg.
| | - Daniel Kwaku Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
4
|
Robinson JP, Ostafe R, Iyengar SN, Rajwa B, Fischer R. Flow Cytometry: The Next Revolution. Cells 2023; 12:1875. [PMID: 37508539 PMCID: PMC10378642 DOI: 10.3390/cells12141875] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Unmasking the subtleties of the immune system requires both a comprehensive knowledge base and the ability to interrogate that system with intimate sensitivity. That task, to a considerable extent, has been handled by an iterative expansion in flow cytometry methods, both in technological capability and also in accompanying advances in informatics. As the field of fluorescence-based cytomics matured, it reached a technological barrier at around 30 parameter analyses, which stalled the field until spectral flow cytometry created a fundamental transformation that will likely lead to the potential of 100 simultaneous parameter analyses within a few years. The simultaneous advance in informatics has now become a watershed moment for the field as it competes with mature systematic approaches such as genomics and proteomics, allowing cytomics to take a seat at the multi-omics table. In addition, recent technological advances try to combine the speed of flow systems with other detection methods, in addition to fluorescence alone, which will make flow-based instruments even more indispensable in any biological laboratory. This paper outlines current approaches in cell analysis and detection methods, discusses traditional and microfluidic sorting approaches as well as next-generation instruments, and provides an early look at future opportunities that are likely to arise.
Collapse
Affiliation(s)
- J Paul Robinson
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Raluca Ostafe
- Molecular Evolution, Protein Engineering and Production Facility (PI4D), Purdue University, West Lafayette, IN 47907, USA
| | | | - Bartek Rajwa
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Rainer Fischer
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Porwit A, Béné MC, Duetz C, Matarraz S, Oelschlaegel U, Westers TM, Wagner-Ballon O, Kordasti S, Valent P, Preijers F, Alhan C, Bellos F, Bettelheim P, Burbury K, Chapuis N, Cremers E, Della Porta MG, Dunlop A, Eidenschink-Brodersen L, Font P, Fontenay M, Hobo W, Ireland R, Johansson U, Loken MR, Ogata K, Orfao A, Psarra K, Saft L, Subira D, Te Marvelde J, Wells DA, van der Velden VHJ, Kern W, van de Loosdrecht AA. Multiparameter flow cytometry in the evaluation of myelodysplasia: Analytical issues: Recommendations from the European LeukemiaNet/International Myelodysplastic Syndrome Flow Cytometry Working Group. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:27-50. [PMID: 36537621 PMCID: PMC10107708 DOI: 10.1002/cyto.b.22108] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 01/18/2023]
Abstract
Multiparameter flow cytometry (MFC) is one of the essential ancillary methods in bone marrow (BM) investigation of patients with cytopenia and suspected myelodysplastic syndrome (MDS). MFC can also be applied in the follow-up of MDS patients undergoing treatment. This document summarizes recommendations from the International/European Leukemia Net Working Group for Flow Cytometry in Myelodysplastic Syndromes (ELN iMDS Flow) on the analytical issues in MFC for the diagnostic work-up of MDS. Recommendations for the analysis of several BM cell subsets such as myeloid precursors, maturing granulocytic and monocytic components and erythropoiesis are given. A core set of 17 markers identified as independently related to a cytomorphologic diagnosis of myelodysplasia is suggested as mandatory for MFC evaluation of BM in a patient with cytopenia. A myeloid precursor cell (CD34+ CD19- ) count >3% should be considered immunophenotypically indicative of myelodysplasia. However, MFC results should always be evaluated as part of an integrated hematopathology work-up. Looking forward, several machine-learning-based analytical tools of interest should be applied in parallel to conventional analytical methods to investigate their usefulness in integrated diagnostics, risk stratification, and potentially even in the evaluation of response to therapy, based on MFC data. In addition, compiling large uniform datasets is desirable, as most of the machine-learning-based methods tend to perform better with larger numbers of investigated samples, especially in such a heterogeneous disease as MDS.
Collapse
Affiliation(s)
- Anna Porwit
- Division of Oncology and Pathology, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Marie C Béné
- Hematology Biology, Nantes University Hospital, CRCINA Inserm 1232, Nantes, France
| | - Carolien Duetz
- Department of Hematology, Amsterdam UMC, VU University Medical Center Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sergio Matarraz
- Cancer Research Center (IBMCC-USAL/CSIC), Department of Medicine and Cytometry Service, Institute for Biomedical Research of Salamanca (IBSAL) and CIBERONC, University of Salamanca, Salamanca, Spain
| | - Uta Oelschlaegel
- Department of Internal Medicine, University Hospital Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| | - Theresia M Westers
- Department of Hematology, Amsterdam UMC, VU University Medical Center Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Orianne Wagner-Ballon
- Department of Hematology and Immunology, Assistance Publique-Hôpitaux de Paris, University Hospital Henri Mondor, Créteil, France
- Inserm U955, Université Paris-Est Créteil, Créteil, France
| | | | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology and Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Frank Preijers
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Canan Alhan
- Department of Hematology, Amsterdam UMC, VU University Medical Center Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Peter Bettelheim
- Department of Hematology, Ordensklinikum Linz, Elisabethinen, Linz, Austria
| | - Kate Burbury
- Department of Haematology, Peter MacCallum Cancer Centre, & University of Melbourne, Melbourne, Australia
| | - Nicolas Chapuis
- Laboratory of Hematology, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Cochin Hospital, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR, Université de Paris, Paris, France
| | - Eline Cremers
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Matteo G Della Porta
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Alan Dunlop
- Department of Haemato-Oncology, Royal Marsden Hospital, London, UK
| | | | - Patricia Font
- Department of Hematology, Hospital General Universitario Gregorio Marañon-IiSGM, Madrid, Spain
| | - Michaela Fontenay
- Laboratory of Hematology, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Cochin Hospital, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR, Université de Paris, Paris, France
| | - Willemijn Hobo
- Department of Internal Medicine I, Division of Hematology & Hemostaseology and Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Robin Ireland
- Department of Haematology and SE-HMDS, King's College Hospital NHS Foundation Trust, London, UK
| | - Ulrika Johansson
- Laboratory Medicine, SI-HMDS, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | - Kiyoyuki Ogata
- Metropolitan Research and Treatment Centre for Blood Disorders (MRTC Japan), Tokyo, Japan
| | - Alberto Orfao
- Cancer Research Center (IBMCC-USAL/CSIC), Department of Medicine and Cytometry Service, Institute for Biomedical Research of Salamanca (IBSAL) and CIBERONC, University of Salamanca, Salamanca, Spain
| | - Katherina Psarra
- Department of Immunology - Histocompatibility, Evangelismos Hospital, Athens, Greece
| | - Leonie Saft
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital and Institute Solna, Stockholm, Sweden
| | - Dolores Subira
- Department of Hematology, Flow Cytometry Unit, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | - Jeroen Te Marvelde
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Vincent H J van der Velden
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam UMC, VU University Medical Center Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Pedersen CB, Dam SH, Barnkob MB, Leipold MD, Purroy N, Rassenti LZ, Kipps TJ, Nguyen J, Lederer JA, Gohil SH, Wu CJ, Olsen LR. cyCombine allows for robust integration of single-cell cytometry datasets within and across technologies. Nat Commun 2022; 13:1698. [PMID: 35361793 PMCID: PMC8971492 DOI: 10.1038/s41467-022-29383-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/14/2022] [Indexed: 12/21/2022] Open
Abstract
Combining single-cell cytometry datasets increases the analytical flexibility and the statistical power of data analyses. However, in many cases the full potential of co-analyses is not reached due to technical variance between data from different experimental batches. Here, we present cyCombine, a method to robustly integrate cytometry data from different batches, experiments, or even different experimental techniques, such as CITE-seq, flow cytometry, and mass cytometry. We demonstrate that cyCombine maintains the biological variance and the structure of the data, while minimizing the technical variance between datasets. cyCombine does not require technical replicates across datasets, and computation time scales linearly with the number of cells, allowing for integration of massive datasets. Robust, accurate, and scalable integration of cytometry data enables integration of multiple datasets for primary data analyses and the validation of results using public datasets.
Collapse
Affiliation(s)
- Christina Bligaard Pedersen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- Center for Genomic Medicine, Rigshospitalet-Copenhagen University Hospital, Copenhagen, Denmark
| | - Søren Helweg Dam
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mike Bogetofte Barnkob
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Department of Clinical Immunology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Michael D Leipold
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Noelia Purroy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- AstraZeneca, Waltham, MA, USA
| | - Laura Z Rassenti
- Division of Hematology-Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Thomas J Kipps
- Division of Hematology-Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer Nguyen
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James Arthur Lederer
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Satyen Harish Gohil
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Academic Haematology, University College London, London, UK
- Department of Haematology, University College London Hospitals NHS Trust, London, UK
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lars Rønn Olsen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
7
|
Quintelier K, Couckuyt A, Emmaneel A, Aerts J, Saeys Y, Van Gassen S. Analyzing high-dimensional cytometry data using FlowSOM. Nat Protoc 2021; 16:3775-3801. [PMID: 34172973 DOI: 10.1038/s41596-021-00550-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes insufficient. The field is therefore slowly moving toward more automated approaches, and in this paper we describe the protocol for analyzing high-dimensional cytometry data using FlowSOM, a clustering and visualization algorithm based on a self-organizing map. FlowSOM is used to distinguish cell populations from cytometry data in an unsupervised way and can help to gain deeper insights in fields such as immunology and oncology. Since the original FlowSOM publication (2015), we have validated the tool on a wide variety of datasets, and to write this protocol, we made use of this experience to improve the user-friendliness of the package (e.g., comprehensive functions replacing commonly required scripts). Where the original paper focused mainly on the algorithm description, this protocol offers user guidelines on how to implement the procedure, detailed parameter descriptions and troubleshooting recommendations. The protocol provides clearly annotated R code, and is therefore relevant for all scientists interested in computational high-dimensional analyses without requiring a strong bioinformatics background. We demonstrate the complete workflow, starting from data preparation (such as compensation, transformation and quality control), including detailed discussion of the different FlowSOM parameters and visualization options, and concluding with how the results can be further used to answer biological questions, such as statistical comparison between groups of interest. An average FlowSOM analysis takes 1-3 h to complete, though quality issues can increase this time considerably.
Collapse
Affiliation(s)
- Katrien Quintelier
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Artuur Couckuyt
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium
| | - Annelies Emmaneel
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium
| | - Joachim Aerts
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Yvan Saeys
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium
| | - Sofie Van Gassen
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium. .,Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
8
|
Novakova M. Finding a treasure in the rear-view mirror? Cytometry A 2021; 99:965-966. [PMID: 34173321 DOI: 10.1002/cyto.a.24478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Michaela Novakova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Paediatric Haematology and Oncology, University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
9
|
Burton RJ, Ahmed R, Cuff SM, Baker S, Artemiou A, Eberl M. CytoPy: An autonomous cytometry analysis framework. PLoS Comput Biol 2021; 17:e1009071. [PMID: 34101722 PMCID: PMC8213167 DOI: 10.1371/journal.pcbi.1009071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/18/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Cytometry analysis has seen a considerable expansion in recent years in the maximum number of parameters that can be acquired in a single experiment. In response to this technological advance there has been an increased effort to develop new computational methodologies for handling high-dimensional single cell data acquired by flow or mass cytometry. Despite the success of numerous algorithms and published packages to replicate and outperform traditional manual analysis, widespread adoption of these techniques has yet to be realised in the field of immunology. Here we present CytoPy, a Python framework for automated analysis of cytometry data that integrates a document-based database for a data-centric and iterative analytical environment. In addition, our algorithm-agnostic design provides a platform for open-source cytometry bioinformatics in the Python ecosystem. We demonstrate the ability of CytoPy to phenotype T cell subsets in whole blood samples even in the presence of significant batch effects due to technical and user variation. The complete analytical pipeline was then used to immunophenotype the local inflammatory infiltrate in individuals with and without acute bacterial infection. CytoPy is open-source and licensed under the MIT license. CytoPy is available at https://github.com/burtonrj/CytoPy, with notebooks accompanying this manuscript (https://github.com/burtonrj/CytoPyManuscript) and software documentation at https://cytopy.readthedocs.io/.
Collapse
Affiliation(s)
- Ross J. Burton
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Raya Ahmed
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Simone M. Cuff
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sarah Baker
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Andreas Artemiou
- School of Mathematics, Cardiff University, Cardiff, United Kingdom
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
10
|
Zielinski JM, Luke JJ, Guglietta S, Krieg C. High Throughput Multi-Omics Approaches for Clinical Trial Evaluation and Drug Discovery. Front Immunol 2021; 12:590742. [PMID: 33868223 PMCID: PMC8044891 DOI: 10.3389/fimmu.2021.590742] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
High throughput single cell multi-omics platforms, such as mass cytometry (cytometry by time-of-flight; CyTOF), high dimensional imaging (>6 marker; Hyperion, MIBIscope, CODEX, MACSima) and the recently evolved genomic cytometry (Citeseq or REAPseq) have enabled unprecedented insights into many biological and clinical questions, such as hematopoiesis, transplantation, cancer, and autoimmunity. In synergy with constantly adapting new single-cell analysis approaches and subsequent accumulating big data collections from these platforms, whole atlases of cell types and cellular and sub-cellular interaction networks are created. These atlases build an ideal scientific discovery environment for reference and data mining approaches, which often times reveals new cellular disease networks. In this review we will discuss how combinations and fusions of different -omic workflows on a single cell level can be used to examine cellular phenotypes, immune effector functions, and even dynamic changes, such as metabolomic state of different cells in a sample or even in a defined tissue location. We will touch on how pre-print platforms help in optimization and reproducibility of workflows, as well as community outreach. We will also shortly discuss how leveraging single cell multi-omic approaches can be used to accelerate cellular biomarker discovery during clinical trials to predict response to therapy, follow responsive cell types, and define novel druggable target pathways. Single cell proteome approaches already have changed how we explore cellular mechanism in disease and during therapy. Current challenges in the field are how we share these disruptive technologies to the scientific communities while still including new approaches, such as genomic cytometry and single cell metabolomics.
Collapse
Affiliation(s)
- Jessica M. Zielinski
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Jason J. Luke
- Hillman Cancer Center, Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Silvia Guglietta
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Carsten Krieg
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC, United States
| |
Collapse
|
11
|
Freff J, Schwarte K, Bröker L, Bühlmeier J, Kraft I, Öztürk D, Hinney A, Arolt V, Dannlowski U, Romer G, Baune BT, Hebebrand J, Föcker M, Alferink J. Alterations in B cell subsets correlate with body composition parameters in female adolescents with anorexia nervosa. Sci Rep 2021; 11:1125. [PMID: 33441933 PMCID: PMC7806719 DOI: 10.1038/s41598-020-80693-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Anorexia nervosa (AN) is a severe eating disorder and often associated with altered humoral immune responses. However, distinct B cell maturation stages in peripheral blood in adolescents with AN have not been characterized. Treatment effects and the relationship between clinical and B cell parameters are also not fully understood. Here we investigated the phenotype of circulating B cell subsets and the relationship with body composition in adolescents with AN before (T0, n = 24) and after 6 weeks (T1, n = 20) of treatment. Using multi-parameter flow cytometry, we found increased percentages of antigen-experienced B cells and plasmablasts in patients with AN compared to healthy controls (n = 20). In contrast, percentages of CD1d+CD5+ B cells and transitional B cells with immunoregulatory roles were reduced at T0 and T1. These B cell frequencies correlated positively with fat mass, fat mass index (FMI), free fat mass index, and body mass index standard deviation score. In addition, scavenger-like receptor CD5 expression levels were downregulated on transitional B cells and correlated with fat mass and FMI in AN. Our findings that regulatory B cell subgroups were reduced in AN and their strong relationship with body composition parameters point toward an impact of immunoregulatory B cells in the pathogenesis of AN.
Collapse
Affiliation(s)
- Jana Freff
- Department of Mental Health, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.,Cells in Motion Interfaculty Cluster, University of Münster, 48149, Münster, Germany
| | - Kathrin Schwarte
- Department of Mental Health, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Lisa Bröker
- Department of Mental Health, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.,Cells in Motion Interfaculty Cluster, University of Münster, 48149, Münster, Germany
| | - Judith Bühlmeier
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Isabelle Kraft
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Dana Öztürk
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Volker Arolt
- Department of Mental Health, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Udo Dannlowski
- Department of Mental Health, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Georg Romer
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Münster, 48149, Münster, Germany
| | - Bernhard T Baune
- Department of Mental Health, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, 3010, Australia.,Department of Psychiatry, The University of Melbourne, Melbourne, 3010, Australia
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Manuel Föcker
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.,Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Münster, 48149, Münster, Germany
| | - Judith Alferink
- Department of Mental Health, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany. .,Cells in Motion Interfaculty Cluster, University of Münster, 48149, Münster, Germany.
| |
Collapse
|
12
|
He Z, Chen Z, Tan M, Elingarami S, Liu Y, Li T, Deng Y, He N, Li S, Fu J, Li W. A review on methods for diagnosis of breast cancer cells and tissues. Cell Prolif 2020; 53:e12822. [PMID: 32530560 PMCID: PMC7377933 DOI: 10.1111/cpr.12822] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer has seriously been threatening physical and mental health of women in the world, and its morbidity and mortality also show clearly upward trend in China over time. Through inquiry, we find that survival rate of patients with early‐stage breast cancer is significantly higher than those with middle‐ and late‐stage breast cancer, hence, it is essential to conduct research to quickly diagnose breast cancer. Until now, many methods for diagnosing breast cancer have been developed, mainly based on imaging and molecular biotechnology examination. These methods have great contributions in screening and confirmation of breast cancer. In this review article, we introduce and elaborate the advances of these methods, and then conclude some gold standard diagnostic methods for certain breast cancer patients. We lastly discuss how to choose the most suitable diagnostic methods for breast cancer patients. In general, this article not only summarizes application and development of these diagnostic methods, but also provides the guidance for researchers who work on diagnosis of breast cancer.
Collapse
Affiliation(s)
- Ziyu He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.,State Key Laboratory of Bioelectronics, School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Miduo Tan
- Surgery Department of Galactophore, Central Hospital of Zhuzhou City, Zhuzhou, China
| | - Sauli Elingarami
- School of Life Sciences and Bioengineering (LiSBE), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Yuan Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.,State Key Laboratory of Bioelectronics, School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Taotao Li
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.,State Key Laboratory of Bioelectronics, School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Juan Fu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Wen Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
13
|
SwiftReg cluster registration automatically reduces flow cytometry data variability including batch effects. Commun Biol 2020; 3:218. [PMID: 32382076 PMCID: PMC7205614 DOI: 10.1038/s42003-020-0938-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/10/2020] [Indexed: 01/29/2023] Open
Abstract
Biological differences of interest in large, high-dimensional flow cytometry datasets are often obscured by undesired variations caused by differences in cytometers, reagents, or operators. Each variation type requires a different correction strategy, and their unknown contributions to overall variability hinder automated correction. We now describe swiftReg, an automated method that reduces undesired sources of variability between samples and particularly between batches. A high-resolution cluster map representing the multidimensional data is generated using the SWIFT algorithm, and shifts in cluster positions between samples are measured. Subpopulations are aligned between samples by displacing cell parameter values according to registration vectors derived from independent or locally-averaged cluster shifts. Batch variation is addressed by registering batch control or consensus samples, and applying the resulting shifts to individual samples. swiftReg selectively reduces batch variation, enhancing detection of biological differences. swiftReg outputs registered datasets as standard .FCS files to facilitate further analysis by other tools. Rebhahn et al. develop swiftReg that automatically corrects undesired sources of variability of flow cytometry data. To identify batch variation, this method registers an internal standard or consensus sample from each batch and applies the resulting registration shifts to individual samples, reducing the batch variation while preserving biological differences.
Collapse
|
14
|
Rybakowska P, Alarcón-Riquelme ME, Marañón C. Key steps and methods in the experimental design and data analysis of highly multi-parametric flow and mass cytometry. Comput Struct Biotechnol J 2020; 18:874-886. [PMID: 32322369 PMCID: PMC7163213 DOI: 10.1016/j.csbj.2020.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 01/05/2023] Open
Abstract
High-dimensional, single-cell cell technologies revolutionized the way to study biological systems, and polychromatic flow cytometry (FC) and mass cytometry (MC) are two of the drivers of this revolution. As up to 30-50 dimensions respectively can be measured per single-cell, they allow deep phenotyping combined with cellular functions studies, like cytokine production or protein phosphorylation. In parallel, the bioinformatics field develops algorithms that are able to process incoming data and extract the most useful and meaningful biological information. However, the success of automated analysis tools depends on the generation of high-quality data. In this review we present the most recent FC and MC computational approaches that are used to prepare, process and interpret high-content cytometry data. We also underscore proper experimental design as a key step for obtaining good quality data.
Collapse
Affiliation(s)
- Paulina Rybakowska
- GENYO, Centre for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Spain
| | - Marta E. Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Spain
- Institute for Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Concepción Marañón
- GENYO, Centre for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Spain
| |
Collapse
|
15
|
Van Gassen S, Gaudilliere B, Angst MS, Saeys Y, Aghaeepour N. CytoNorm: A Normalization Algorithm for Cytometry Data. Cytometry A 2019; 97:268-278. [PMID: 31633883 PMCID: PMC7078957 DOI: 10.1002/cyto.a.23904] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 11/09/2022]
Abstract
High‐dimensional flow cytometry has matured to a level that enables deep phenotyping of cellular systems at a clinical scale. The resulting high‐content data sets allow characterizing the human immune system at unprecedented single cell resolution. However, the results are highly dependent on sample preparation and measurements might drift over time. While various controls exist for assessment and improvement of data quality in a single sample, the challenges of cross‐sample normalization attempts have been limited to aligning marker distributions across subjects. These approaches, inspired by bulk genomics and proteomics assays, ignore the single‐cell nature of the data and risk the removal of biologically relevant signals. This work proposes CytoNorm, a normalization algorithm to ensure internal consistency between clinical samples based on shared controls across various study batches. Data from the shared controls is used to learn the appropriate transformations for each batch (e.g., each analysis day). Importantly, some sources of technical variation are strongly influenced by the amount of protein expressed on specific cell types, requiring several population‐specific transformations to normalize cells from a heterogeneous sample. To address this, our approach first identifies the overall cellular distribution using a clustering step, and calculates subset‐specific transformations on the control samples by computing their quantile distributions and aligning them with splines. These transformations are then applied to all other clinical samples in the batch to remove the batch‐specific variations. We evaluated the algorithm on a customized data set with two shared controls across batches. One control sample was used for calculation of the normalization transformations and the second control was used as a blinded test set and evaluated with Earth Mover's distance. Additional results are provided using two real‐world clinical data sets. Overall, our method compared favorably to standard normalization procedures. The algorithm is implemented in the R package “CytoNorm” and available via the following link: http://www.github.com/saeyslab/CytoNorm © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Sofie Van Gassen
- Department of Applied MathematicsComputer Science and Statistics, Ghent UniversityGhentBelgium
- Data Mining and Modeling for BiomedicineVIB Center for Inflammation ResearchGhentBelgium
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain MedicineStanford University School of MedicineStanfordCalifornia
| | - Martin S. Angst
- Department of Anesthesiology, Perioperative and Pain MedicineStanford University School of MedicineStanfordCalifornia
| | - Yvan Saeys
- Department of Applied MathematicsComputer Science and Statistics, Ghent UniversityGhentBelgium
- Data Mining and Modeling for BiomedicineVIB Center for Inflammation ResearchGhentBelgium
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain MedicineStanford University School of MedicineStanfordCalifornia
- Department of Biomedical Data SciencesStanford University School of MedicineStanfordCalifornia
| |
Collapse
|
16
|
Cossarizza A, Chang HD, Radbruch A, Acs A, Adam D, Adam-Klages S, Agace WW, Aghaeepour N, Akdis M, Allez M, Almeida LN, Alvisi G, Anderson G, Andrä I, Annunziato F, Anselmo A, Bacher P, Baldari CT, Bari S, Barnaba V, Barros-Martins J, Battistini L, Bauer W, Baumgart S, Baumgarth N, Baumjohann D, Baying B, Bebawy M, Becher B, Beisker W, Benes V, Beyaert R, Blanco A, Boardman DA, Bogdan C, Borger JG, Borsellino G, Boulais PE, Bradford JA, Brenner D, Brinkman RR, Brooks AES, Busch DH, Büscher M, Bushnell TP, Calzetti F, Cameron G, Cammarata I, Cao X, Cardell SL, Casola S, Cassatella MA, Cavani A, Celada A, Chatenoud L, Chattopadhyay PK, Chow S, Christakou E, Čičin-Šain L, Clerici M, Colombo FS, Cook L, Cooke A, Cooper AM, Corbett AJ, Cosma A, Cosmi L, Coulie PG, Cumano A, Cvetkovic L, Dang VD, Dang-Heine C, Davey MS, Davies D, De Biasi S, Del Zotto G, Cruz GVD, Delacher M, Bella SD, Dellabona P, Deniz G, Dessing M, Di Santo JP, Diefenbach A, Dieli F, Dolf A, Dörner T, Dress RJ, Dudziak D, Dustin M, Dutertre CA, Ebner F, Eckle SBG, Edinger M, Eede P, Ehrhardt GR, Eich M, Engel P, Engelhardt B, Erdei A, Esser C, Everts B, Evrard M, Falk CS, Fehniger TA, Felipo-Benavent M, Ferry H, Feuerer M, Filby A, Filkor K, Fillatreau S, Follo M, Förster I, Foster J, Foulds GA, Frehse B, Frenette PS, Frischbutter S, Fritzsche W, Galbraith DW, Gangaev A, Garbi N, Gaudilliere B, Gazzinelli RT, Geginat J, Gerner W, Gherardin NA, Ghoreschi K, Gibellini L, Ginhoux F, Goda K, Godfrey DI, Goettlinger C, González-Navajas JM, Goodyear CS, Gori A, Grogan JL, Grummitt D, Grützkau A, Haftmann C, Hahn J, Hammad H, Hämmerling G, Hansmann L, Hansson G, Harpur CM, Hartmann S, Hauser A, Hauser AE, Haviland DL, Hedley D, Hernández DC, Herrera G, Herrmann M, Hess C, Höfer T, Hoffmann P, Hogquist K, Holland T, Höllt T, Holmdahl R, Hombrink P, Houston JP, Hoyer BF, Huang B, Huang FP, Huber JE, Huehn J, Hundemer M, Hunter CA, Hwang WYK, Iannone A, Ingelfinger F, Ivison SM, Jäck HM, Jani PK, Jávega B, Jonjic S, Kaiser T, Kalina T, Kamradt T, Kaufmann SHE, Keller B, Ketelaars SLC, Khalilnezhad A, Khan S, Kisielow J, Klenerman P, Knopf J, Koay HF, Kobow K, Kolls JK, Kong WT, Kopf M, Korn T, Kriegsmann K, Kristyanto H, Kroneis T, Krueger A, Kühne J, Kukat C, Kunkel D, Kunze-Schumacher H, Kurosaki T, Kurts C, Kvistborg P, Kwok I, Landry J, Lantz O, Lanuti P, LaRosa F, Lehuen A, LeibundGut-Landmann S, Leipold MD, Leung LY, Levings MK, Lino AC, Liotta F, Litwin V, Liu Y, Ljunggren HG, Lohoff M, Lombardi G, Lopez L, López-Botet M, Lovett-Racke AE, Lubberts E, Luche H, Ludewig B, Lugli E, Lunemann S, Maecker HT, Maggi L, Maguire O, Mair F, Mair KH, Mantovani A, Manz RA, Marshall AJ, Martínez-Romero A, Martrus G, Marventano I, Maslinski W, Matarese G, Mattioli AV, Maueröder C, Mazzoni A, McCluskey J, McGrath M, McGuire HM, McInnes IB, Mei HE, Melchers F, Melzer S, Mielenz D, Miller SD, Mills KH, Minderman H, Mjösberg J, Moore J, Moran B, Moretta L, Mosmann TR, Müller S, Multhoff G, Muñoz LE, Münz C, Nakayama T, Nasi M, Neumann K, Ng LG, Niedobitek A, Nourshargh S, Núñez G, O’Connor JE, Ochel A, Oja A, Ordonez D, Orfao A, Orlowski-Oliver E, Ouyang W, Oxenius A, Palankar R, Panse I, Pattanapanyasat K, Paulsen M, Pavlinic D, Penter L, Peterson P, Peth C, Petriz J, Piancone F, Pickl WF, Piconese S, Pinti M, Pockley AG, Podolska MJ, Poon Z, Pracht K, Prinz I, Pucillo CEM, Quataert SA, Quatrini L, Quinn KM, Radbruch H, Radstake TRDJ, Rahmig S, Rahn HP, Rajwa B, Ravichandran G, Raz Y, Rebhahn JA, Recktenwald D, Reimer D, e Sousa CR, Remmerswaal EB, Richter L, Rico LG, Riddell A, Rieger AM, Robinson JP, Romagnani C, Rubartelli A, Ruland J, Saalmüller A, Saeys Y, Saito T, Sakaguchi S, de-Oyanguren FS, Samstag Y, Sanderson S, Sandrock I, Santoni A, Sanz RB, Saresella M, Sautes-Fridman C, Sawitzki B, Schadt L, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schimisky E, Schlitzer A, Schlosser J, Schmid S, Schmitt S, Schober K, Schraivogel D, Schuh W, Schüler T, Schulte R, Schulz AR, Schulz SR, Scottá C, Scott-Algara D, Sester DP, Shankey TV, Silva-Santos B, Simon AK, Sitnik KM, Sozzani S, Speiser DE, Spidlen J, Stahlberg A, Stall AM, Stanley N, Stark R, Stehle C, Steinmetz T, Stockinger H, Takahama Y, Takeda K, Tan L, Tárnok A, Tiegs G, Toldi G, Tornack J, Traggiai E, Trebak M, Tree TI, Trotter J, Trowsdale J, Tsoumakidou M, Ulrich H, Urbanczyk S, van de Veen W, van den Broek M, van der Pol E, Van Gassen S, Van Isterdael G, van Lier RA, Veldhoen M, Vento-Asturias S, Vieira P, Voehringer D, Volk HD, von Borstel A, von Volkmann K, Waisman A, Walker RV, Wallace PK, Wang SA, Wang XM, Ward MD, Ward-Hartstonge KA, Warnatz K, Warnes G, Warth S, Waskow C, Watson JV, Watzl C, Wegener L, Weisenburger T, Wiedemann A, Wienands J, Wilharm A, Wilkinson RJ, Willimsky G, Wing JB, Winkelmann R, Winkler TH, Wirz OF, Wong A, Wurst P, Yang JHM, Yang J, Yazdanbakhsh M, Yu L, Yue A, Zhang H, Zhao Y, Ziegler SM, Zielinski C, Zimmermann J, Zychlinsky A. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol 2019; 49:1457-1973. [PMID: 31633216 PMCID: PMC7350392 DOI: 10.1002/eji.201970107] [Citation(s) in RCA: 710] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, Univ. of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andreas Acs
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Sabine Adam-Klages
- Institut für Transfusionsmedizin, Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - William W. Agace
- Mucosal Immunology group, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Immunology Section, Lund University, Lund, Sweden
| | - Nima Aghaeepour
- Departments of Anesthesiology, Pain and Perioperative Medicine; Biomedical Data Sciences; and Pediatrics, Stanford University, Stanford, CA, USA
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Matthieu Allez
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U1160, and Gastroenterology Department, Hôpital Saint-Louis – APHP, Paris, France
| | | | - Giorgia Alvisi
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Achille Anselmo
- Flow Cytometry Core, Humanitas Clinical and Research Center, Milan, Italy
| | - Petra Bacher
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Institut für Klinische Molekularbiologie, Christian-Albrechts Universität zu Kiel, Germany
| | | | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | | | - Wolfgang Bauer
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sabine Baumgart
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Nicole Baumgarth
- Center for Comparative Medicine & Dept. Pathology, Microbiology & Immunology, University of California, Davis, CA, USA
| | - Dirk Baumjohann
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Bianka Baying
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, NSW, Australia
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Wolfgang Beisker
- Flow Cytometry Laboratory, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Center for Inflammation Research, Ghent University - VIB, Ghent, Belgium
| | - Alfonso Blanco
- Flow Cytometry Core Technologies, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Medical Immunology Campus Erlangen, Erlangen, Germany
| | - Jessica G. Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Giovanna Borsellino
- Neuroimmunology and Flow Cytometry Units, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Philip E. Boulais
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, New York, USA
| | | | - Dirk Brenner
- Luxembourg Institute of Health, Department of Infection and Immunity, Experimental and Molecular Immunology, Esch-sur-Alzette, Luxembourg
- Odense University Hospital, Odense Research Center for Anaphylaxis, University of Southern Denmark, Department of Dermatology and Allergy Center, Odense, Denmark
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Ryan R. Brinkman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| | - Anna E. S. Brooks
- University of Auckland, School of Biological Sciences, Maurice Wilkins Center, Auckland, New Zealand
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Martin Büscher
- Biophysics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Timothy P. Bushnell
- Department of Pediatrics and Shared Resource Laboratories, University of Rochester Medical Center, Rochester, NY, USA
| | - Federica Calzetti
- University of Verona, Department of Medicine, Section of General Pathology, Verona, Italy
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology, Nankai University, Tianjin, China
| | - Susanna L. Cardell
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Casola
- The FIRC Institute of Molecular Oncology (FOM), Milan, Italy
| | - Marco A. Cassatella
- University of Verona, Department of Medicine, Section of General Pathology, Verona, Italy
| | - Andrea Cavani
- National Institute for Health, Migration and Poverty (INMP), Rome, Italy
| | - Antonio Celada
- Macrophage Biology Group, School of Biology, University of Barcelona, Barcelona, Spain
| | - Lucienne Chatenoud
- Université Paris Descartes, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | | - Sue Chow
- Divsion of Medical Oncology and Hematology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Eleni Christakou
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institutes of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service, Foundation Trust and King’s College London, UK
| | - Luka Čičin-Šain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Physiopathology and Transplants, University of Milan, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Andrea M. Cooper
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Antonio Cosma
- National Cytometry Platform, Luxembourg Institute of Health, Department of Infection and Immunity, Esch-sur-Alzette, Luxembourg
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pierre G. Coulie
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Ana Cumano
- Unit Lymphopoiesis, Department of Immunology, Institut Pasteur, Paris, France
| | - Ljiljana Cvetkovic
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Van Duc Dang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Chantip Dang-Heine
- Clinical Research Unit, Berlin Institute of Health (BIH), Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Martin S. Davey
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Derek Davies
- Flow Cytometry Scientific Technology Platform, The Francis Crick Institute, London, UK
| | - Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | | | - Gelo Victoriano Dela Cruz
- Novo Nordisk Foundation Center for Stem Cell Biology – DanStem, University of Copenhagen, Copenhagen, Denmark
| | - Michael Delacher
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Germany
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Paolo Dellabona
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Günnur Deniz
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey
| | | | - James P. Di Santo
- Innate Immunty Unit, Department of Immunology, Institut Pasteur, Paris, France
- Institut Pasteur, Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Francesco Dieli
- University of Palermo, Central Laboratory of Advanced Diagnosis and Biomedical Research, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Palermo, Italy
| | - Andreas Dolf
- Flow Cytometry Core Facility, Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Dept. Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Regine J. Dress
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Michael Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Charles-Antoine Dutertre
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Friederike Ebner
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Matthias Edinger
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Germany
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Germany
| | | | - Marcus Eich
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Pablo Engel
- University of Barcelona, Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Barcelona, Spain
| | | | - Anna Erdei
- Department of Immunology, University L. Eotvos, Budapest, Hungary
| | - Charlotte Esser
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Todd A. Fehniger
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mar Felipo-Benavent
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Principe Felipe Research Center, Valencia, Spain
| | - Helen Ferry
- Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Germany
| | - Andrew Filby
- The Flow Cytometry Core Facility, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Simon Fillatreau
- Institut Necker-Enfants Malades, Université Paris Descartes Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Marie Follo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Universitaetsklinikum FreiburgLighthouse Core Facility, Zentrum für Translationale Zellforschung, Klinik für Innere Medizin I, Freiburg, Germany
| | - Irmgard Förster
- Immunology and Environment, LIMES Institute, University of Bonn, Bonn, Germany
| | | | - Gemma A. Foulds
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Britta Frehse
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Paul S. Frenette
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stefan Frischbutter
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology
| | - Wolfgang Fritzsche
- Nanobiophotonics Department, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - David W. Galbraith
- School of Plant Sciences and Bio5 Institute, University of Arizona, Tucson, USA
- Honorary Dean of Life Sciences, Henan University, Kaifeng, China
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Experimental Immunology, University of Bonn, Germany
| | - Brice Gaudilliere
- Stanford Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, CA, USA
| | - Ricardo T. Gazzinelli
- Fundação Oswaldo Cruz - Minas, Laboratory of Immunopatology, Belo Horizonte, MG, Brazil
- Department of Mecicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jens Geginat
- INGM - Fondazione Istituto Nazionale di Genetica Molecolare “Ronmeo ed Enrica Invernizzi”, Milan, Italy
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keisuke Goda
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Chemistry, University of Tokyo, Tokyo, Japan
- Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | | | - Jose M. González-Navajas
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Carl S. Goodyear
- Institute of Infection Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, Glasgow, UK
| | - Andrea Gori
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan
| | - Jane L. Grogan
- Cancer Immunology Research, Genentech, South San Francisco, CA, USA
| | | | - Andreas Grützkau
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jonas Hahn
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Hamida Hammad
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Zwijnaarde, Belgium
| | | | - Leo Hansmann
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Berlin, Germany
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Goran Hansson
- Department of Medicine and Center for Molecular Medicine at Karolinska University Hospital, Solna, Sweden
| | | | - Susanne Hartmann
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Andrea Hauser
- Department of Internal Medicine III, University Hospital Regensburg, Germany
| | - Anja E. Hauser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin
- Department of Rheumatology and Clinical Immunology, Berlin Institute of Health, Berlin, Germany
| | - David L. Haviland
- Flow Cytometry, Houston Methodist Hospital Research Institute, Houston, TX, USA
| | - David Hedley
- Divsion of Medical Oncology and Hematology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Daniela C. Hernández
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Medical Department I, Division of Gastroenterology, Infectiology and Rheumatology, Berlin, Germany
| | - Guadalupe Herrera
- Cytometry Service, Incliva Foundation. Clinic Hospital and Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Thomas Höfer
- German Cancer Research Center (DKFZ), Division of Theoretical Systems Biology, Heidelberg, Germany
| | - Petra Hoffmann
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Germany
| | - Kristin Hogquist
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Tristan Holland
- Institute of Experimental Immunology, University of Bonn, Germany
| | - Thomas Höllt
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- Computer Graphics and Visualization, Department of Intelligent Systems, TU Delft, Delft, The Netherlands
| | | | - Pleun Hombrink
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jessica P. Houston
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM, USA
| | - Bimba F. Hoyer
- Rheumatologie/Klinische Immunologie, Klinik für Innere Medizin I und Exzellenzzentrum Entzündungsmedizin, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Fang-Ping Huang
- Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, China
| | - Johanna E. Huber
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William Y. K. Hwang
- Department of Hematology, Singapore General Hospital, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Anna Iannone
- Department of Diagnostic Medicine, Clinical and Public Health, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sabine M Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Peter K. Jani
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Beatriz Jávega
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Stipan Jonjic
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Toralf Kaiser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Thomas Kamradt
- Jena University Hospital, Institute of Immunology, Jena, Germany
| | | | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steven L. C. Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ahad Khalilnezhad
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Srijit Khan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jan Kisielow
- Institute of Molecular Health Sciences, ETH Zurich, Zürich, Switzerland
| | - Paul Klenerman
- Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Jay K. Kolls
- John W Deming Endowed Chair in Internal Medicine, Center for Translational Research in Infection and Inflammation Tulane School of Medicine, New Orleans, LA, USA
| | - Wan Ting Kong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zurich, Zürich, Switzerland
| | - Thomas Korn
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Hendy Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Kroneis
- Division of Cell Biology, Histology & Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny Kühne
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Christian Kukat
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Désirée Kunkel
- Flow & Mass Cytometry Core Facility, Charité - Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
- BCRT Flow Cytometry Lab, Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Tomohiro Kurosaki
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Christian Kurts
- Institute of Experimental Immunology, University of Bonn, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jonathan Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, Paris, France
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Francesca LaRosa
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Agnès Lehuen
- Institut Cochin, CNRS8104, INSERM1016, Department of Endocrinology, Metabolism and Diabetes, Université de Paris, Paris, France
| | | | - Michael D. Leipold
- The Human Immune Monitoring Center (HIMC), Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, CA, USA
| | - Leslie Y.T. Leung
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Dept. Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Yanling Liu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, ANA Futura, Karolinska Institutet, Stockholm, Sweden
| | - Michael Lohoff
- Inst. f. Med. Mikrobiology and Hospital Hygiene, University of Marburg, Germany
| | - Giovanna Lombardi
- King’s College London, “Peter Gorer” Department of Immunobiology, London, UK
| | | | - Miguel López-Botet
- IMIM(Hospital de Mar Medical Research Institute), University Pompeu Fabra, Barcelona, Spain
| | - Amy E. Lovett-Racke
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Herve Luche
- Centre d’Immunophénomique - CIPHE (PHENOMIN), Aix Marseille Université (UMS3367), Inserm (US012), CNRS (UMS3367), Marseille, France
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
- Flow Cytometry Core, Humanitas Clinical and Research Center, Milan, Italy
| | - Sebastian Lunemann
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Holden T. Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Orla Maguire
- Flow and Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Florian Mair
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Kerstin H. Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Alberto Mantovani
- Istituto Clinico Humanitas IRCCS and Humanitas University, Pieve Emanuele, Milan, Italy
- William Harvey Research Institute, Queen Mary University, London, United Kingdom
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Aaron J. Marshall
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Glòria Martrus
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ivana Marventano
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Wlodzimierz Maslinski
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Department of Pathophysiology and Immunology, Warsaw, Poland
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecologie Mediche, Università di Napoli Federico II and Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Anna Vittoria Mattioli
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
- Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Christian Maueröder
- Cell Clearance in Health and Disease Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Mairi McGrath
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Helen M. McGuire
- Ramaciotti Facility for Human Systems Biology, and Discipline of Pathology, The University of Sydney, Camperdown, Australia
| | - Iain B. McInnes
- Institute of Infection Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, Glasgow, UK
| | - Henrik E. Mei
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, University Leipzig, Leipzig, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stephen D. Miller
- Interdepartmental Immunobiology Center, Dept. of Microbiology-Immunology, Northwestern Univ. Medical School, Chicago, IL, USA
| | - Kingston H.G. Mills
- Trinity College Dublin, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Hans Minderman
- Flow and Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, ANA Futura, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical and Experimental Medine, Linköping University, Linköping, Sweden
| | - Jonni Moore
- Abramson Cancer Center Flow Cytometry and Cell Sorting Shared Resource, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Barry Moran
- Trinity College Dublin, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesu Children’s Hospital, Rome, Italy
| | - Tim R. Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Susann Müller
- Centre for Environmental Research - UFZ, Department Environmental Microbiology, Leipzig, Germany
| | - Gabriele Multhoff
- Institute for Innovative Radiotherapy (iRT), Experimental Immune Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Christian Münz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba city, Chiba, Japan
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- Discipline of Dermatology, University of Sydney, Sydney, New South Wales, Australia
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Antonia Niedobitek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Sussan Nourshargh
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, the University of Michigan, Ann Arbor, Michigan, USA
| | - José-Enrique O’Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Aaron Ochel
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Oja
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Diana Ordonez
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Alberto Orfao
- Department of Medicine, Cancer Research Centre (IBMCC-CSIC/USAL), Cytometry Service, University of Salamanca, CIBERONC and Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Eva Orlowski-Oliver
- Burnet Institute, AMREP Flow Cytometry Core Facility, Melbourne, Victoria, Australia
| | - Wenjun Ouyang
- Inflammation and Oncology, Research, Amgen Inc, South San Francisco, USA
| | | | - Raghavendra Palankar
- Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Isabel Panse
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Kovit Pattanapanyasat
- Center of Excellence for Flow Cytometry, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Malte Paulsen
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Christian Peth
- Biophysics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Jordi Petriz
- Functional Cytomics Group, Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, UAB, Badalona, Spain
| | - Federica Piancone
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Silvia Piconese
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
- Chromocyte Limited, Electric Works, Sheffield, UK
| | - Malgorzata Justyna Podolska
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
- Department for Internal Medicine 3, Institute for Rheumatology and Immunology, AG Munoz, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zhiyong Poon
- Department of Hematology, Singapore General Hospital, Singapore
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Sally A. Quataert
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesu Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Germany
| | - Tim R. D. J. Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Susann Rahmig
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany
| | - Hans-Peter Rahn
- Preparative Flow Cytometry, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Bartek Rajwa
- Bindley Biosciences Center, Purdue University, West Lafayette, IN, USA
| | - Gevitha Ravichandran
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yotam Raz
- Department of Internal Medicine, Groene Hart Hospital, Gouda, The Netherlands
| | - Jonathan A. Rebhahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Dorothea Reimer
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Ester B.M. Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa Richter
- Core Facility Flow Cytometry, Biomedical Center, Ludwig-Maximilians-University Munich, Germany
| | - Laura G. Rico
- Functional Cytomics Group, Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, UAB, Badalona, Spain
| | - Andy Riddell
- Flow Cytometry Scientific Technology Platform, The Francis Crick Institute, London, UK
| | - Aja M. Rieger
- Department of Medical Microbiology and Immunology, University of Alberta, Alberta, Canada
| | - J. Paul Robinson
- Purdue University Cytometry Laboratories, Purdue University, West Lafayette, IN, USA
| | - Chiara Romagnani
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Medical Department I, Division of Gastroenterology, Infectiology and Rheumatology, Berlin, Germany
| | - Anna Rubartelli
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Fakultät für Medizin, Technische Universität München, München, Germany
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Takashi Saito
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shimon Sakaguchi
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Francisco Sala de-Oyanguren
- Flow Cytometry Facility, Ludwig Cancer Institute, Faculty of Medicine and Biology, University of Lausanne, Epalinges, Switzerland
| | - Yvonne Samstag
- Heidelberg University, Institute of Immunology, Section of Molecular Immunology, Heidelberg, Germany
| | - Sharon Sanderson
- Translational Immunology Laboratory, NIHR BRC, University of Oxford, Kennedy Institute of Rheumatology, Oxford, UK
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, IRCCS, Neuromed, Pozzilli, Italy
| | - Ramon Bellmàs Sanz
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | | - Birgit Sawitzki
- Charité – Universitätsmedizin Berlin, and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - Linda Schadt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Alexander Scheffold
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Andreas Schlitzer
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Josephine Schlosser
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Stephan Schmid
- Internal Medicine I, University Hospital Regensburg, Germany
| | - Steffen Schmitt
- Flow Cytometry Core Facility, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Daniel Schraivogel
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Reiner Schulte
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Axel Ronald Schulz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Sebastian R. Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Cristiano Scottá
- King’s College London, “Peter Gorer” Department of Immunobiology, London, UK
| | - Daniel Scott-Algara
- Institut Pasteur, Cellular Lymphocytes Biology, Immunology Departement, Paris, France
| | - David P. Sester
- TRI Flow Cytometry Suite (TRI.fcs), Translational Research Institute, Wooloongabba, QLD, Australia
| | | | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | - Katarzyna M. Sitnik
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Silvano Sozzani
- Dept. Molecular Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniel E. Speiser
- Department of Oncology, University of Lausanne and CHUV, Epalinges, Switzerland
| | | | - Anders Stahlberg
- Lundberg Laboratory for Cancer, Department of Pathology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | - Natalie Stanley
- Departments of Anesthesiology, Pain and Perioperative Medicine; Biomedical Data Sciences; and Pediatrics, Stanford University, Stanford, CA, USA
| | - Regina Stark
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Christina Stehle
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Medical Department I, Division of Gastroenterology, Infectiology and Rheumatology, Berlin, Germany
| | - Tobit Steinmetz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Kiyoshi Takeda
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Leonard Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Attila Tárnok
- Departement for Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Julia Tornack
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- BioGenes GmbH, Berlin, Germany
| | - Elisabetta Traggiai
- Novartis Biologics Center, Mechanistic Immunology Unit, Novartis Institute for Biomedical Research, NIBR, Basel, Switzerland
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, PA, United States
| | - Timothy I.M. Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institutes of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service, Foundation Trust and King’s College London, UK
| | | | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Sophia Urbanczyk
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Maries van den Broek
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Edwin van der Pol
- Vesicle Observation Center; Biomedical Engineering & Physics; Laboratory Experimental Clinical Chemistry; Amsterdam University Medical Centers, Location AMC, The Netherlands
| | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | | | - René A.W. van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc Veldhoen
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | - Paulo Vieira
- Unit Lymphopoiesis, Department of Immunology, Institut Pasteur, Paris, France
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin and Berlin Institute of Health, Core Unit ImmunoCheck
| | - Anouk von Borstel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | | | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | - Paul K. Wallace
- Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, USA
| | - Sa A. Wang
- Dept of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin M. Wang
- The Scientific Platforms, the Westmead Institute for Medical Research, the Westmead Research Hub, Westmead, New South Wales, Australia
| | | | | | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gary Warnes
- Flow Cytometry Core Facility, Blizard Institute, Queen Mary London University, London, UK
| | - Sarah Warth
- BCRT Flow Cytometry Lab, Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin
| | - Claudia Waskow
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | | | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Leonie Wegener
- Biophysics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Thomas Weisenburger
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Annika Wiedemann
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Dept. Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Jürgen Wienands
- Institute for Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Robert John Wilkinson
- Department of Infectious Disease, Imperial College London, UK
- Wellcome Centre for Infectious Diseases Research in Africa and Department of Medicine, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa
- Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Gerald Willimsky
- Cooperation Unit for Experimental and Translational Cancer Immunology, Institute of Immunology (Charité - Universitätsmedizin Berlin) and German Cancer Research Center (DKFZ), Berlin, Germany
| | - James B. Wing
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Rieke Winkelmann
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Thomas H. Winkler
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Oliver F. Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Alicia Wong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Peter Wurst
- University Bonn, Medical Faculty, Bonn, Germany
| | - Jennie H. M. Yang
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institutes of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service, Foundation Trust and King’s College London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Alice Yue
- School of Computing Science, Simon Fraser University, Burnaby, Canada
| | - Hanlin Zhang
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Susanne Maria Ziegler
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Christina Zielinski
- German Center for Infection Research (DZIF), Munich, Germany
- Institute of Virology, Technical University of Munich, Munich, Germany
- TranslaTUM, Technical University of Munich, Munich, Germany
| | - Jakob Zimmermann
- Maurice Müller Laboratories (Department of Biomedical Research), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | | |
Collapse
|
17
|
Abstract
CITRUS is a supervised machine learning algorithm designed to analyze single cell data, identify cell populations, and identify changes in the frequencies or functional marker expression patterns of those populations that are significantly associated with an outcome. The algorithm is a black box that includes steps to cluster cell populations, characterize these populations, and identify the significant characteristics. This chapter describes how to optimize the use of CITRUS by combining it with upstream and downstream data analysis and visualization tools.
Collapse
|
18
|
Abstract
The emergence of flow and mass cytometry technologies capable of generating 40-dimensional data has spurred research into automated methodologies that address bottlenecks across the entire analysis process from quality checking, data transformation, and cell population identification, to biomarker identification and visualizations. We review these approaches in the context of the stepwise progression through the different steps, including normalization, automated gating, outlier detection, and graphical presentation of results.
Collapse
Affiliation(s)
- Sherrie Wang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Ryan R Brinkman
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.
| |
Collapse
|
19
|
Lohmann L, Janoschka C, Schulte-Mecklenbeck A, Klinsing S, Kirstein L, Hanning U, Wirth T, Schneider-Hohendorf T, Schwab N, Gross CC, Eveslage M, Meuth SG, Wiendl H, Klotz L. Immune Cell Profiling During Switching from Natalizumab to Fingolimod Reveals Differential Effects on Systemic Immune-Regulatory Networks and on Trafficking of Non-T Cell Populations into the Cerebrospinal Fluid-Results from the ToFingo Successor Study. Front Immunol 2018; 9:1560. [PMID: 30050529 PMCID: PMC6052886 DOI: 10.3389/fimmu.2018.01560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Leukocyte sequestration is an established therapeutic concept in multiple sclerosis (MS) as represented by the trafficking drugs natalizumab (NAT) and fingolimod (FTY). However, the precise consequences of targeting immune cell trafficking for immunoregulatory network functions are only incompletely understood. In the present study, we performed an in-depth longitudinal characterization of functional and phenotypic immune signatures in peripheral blood (PB) and cerebrospinal fluid (CSF) of 15 MS patients during switching from long-term NAT to FTY treatment after a defined 8-week washout period within a clinical trial (ToFingo successor study; ClinicalTrials.gov: NCT02325440). Unbiased visualization and analysis of high-dimensional single cell flow-cytometry data revealed that switching resulted in a profound alteration of more than 80% of investigated innate and adaptive immune cell subpopulations in the PB, revealing an unexpectedly broad effect of trafficking drugs on peripheral immune signatures. Longitudinal CSF analysis demonstrated that NAT and FTY both reduced T cell subset counts and proportions in the CSF of MS patients with equal potency; NAT however was superior with regard to sequestering non-T cell populations out of the CSF, including B cells, natural killer cells and inflammatory monocytes, suggesting that disease exacerbation in the context of switching might be driven by non-T cell populations. Finally, correlation of our immunological data with signs of disease exacerbation in this small cohort suggested that both (i) CD49d expression levels under NAT at the time of treatment cessation and (ii) swiftness of FTY-mediated effects on immune cell subsets in the PB together may predict stability during switching later on.
Collapse
Affiliation(s)
- Lisa Lohmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Muenster, Germany
| | - Claudia Janoschka
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Muenster, Germany
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Muenster, Germany
| | - Svenja Klinsing
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Muenster, Germany
| | - Lucienne Kirstein
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Muenster, Germany
| | - Uta Hanning
- Department of Radiology, University Hospital Münster, Muenster, Germany
| | - Timo Wirth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Muenster, Germany
| | - Tilman Schneider-Hohendorf
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Muenster, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Muenster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Muenster, Germany
| | - Maria Eveslage
- Institute of Biostatistics and Clinical Research, University of Münster, Muenster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Muenster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Muenster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Muenster, Germany
| |
Collapse
|
20
|
Cossarizza A, Chang HD, Radbruch A, Akdis M, Andrä I, Annunziato F, Bacher P, Barnaba V, Battistini L, Bauer WM, Baumgart S, Becher B, Beisker W, Berek C, Blanco A, Borsellino G, Boulais PE, Brinkman RR, Büscher M, Busch DH, Bushnell TP, Cao X, Cavani A, Chattopadhyay PK, Cheng Q, Chow S, Clerici M, Cooke A, Cosma A, Cosmi L, Cumano A, Dang VD, Davies D, De Biasi S, Del Zotto G, Della Bella S, Dellabona P, Deniz G, Dessing M, Diefenbach A, Di Santo J, Dieli F, Dolf A, Donnenberg VS, Dörner T, Ehrhardt GRA, Endl E, Engel P, Engelhardt B, Esser C, Everts B, Dreher A, Falk CS, Fehniger TA, Filby A, Fillatreau S, Follo M, Förster I, Foster J, Foulds GA, Frenette PS, Galbraith D, Garbi N, García-Godoy MD, Geginat J, Ghoreschi K, Gibellini L, Goettlinger C, Goodyear CS, Gori A, Grogan J, Gross M, Grützkau A, Grummitt D, Hahn J, Hammer Q, Hauser AE, Haviland DL, Hedley D, Herrera G, Herrmann M, Hiepe F, Holland T, Hombrink P, Houston JP, Hoyer BF, Huang B, Hunter CA, Iannone A, Jäck HM, Jávega B, Jonjic S, Juelke K, Jung S, Kaiser T, Kalina T, Keller B, Khan S, Kienhöfer D, Kroneis T, Kunkel D, Kurts C, Kvistborg P, Lannigan J, Lantz O, Larbi A, LeibundGut-Landmann S, Leipold MD, Levings MK, Litwin V, Liu Y, Lohoff M, Lombardi G, Lopez L, Lovett-Racke A, Lubberts E, Ludewig B, Lugli E, Maecker HT, Martrus G, Matarese G, Maueröder C, McGrath M, McInnes I, Mei HE, Melchers F, Melzer S, Mielenz D, Mills K, Mirrer D, Mjösberg J, Moore J, Moran B, Moretta A, Moretta L, Mosmann TR, Müller S, Müller W, Münz C, Multhoff G, Munoz LE, Murphy KM, Nakayama T, Nasi M, Neudörfl C, Nolan J, Nourshargh S, O'Connor JE, Ouyang W, Oxenius A, Palankar R, Panse I, Peterson P, Peth C, Petriz J, Philips D, Pickl W, Piconese S, Pinti M, Pockley AG, Podolska MJ, Pucillo C, Quataert SA, Radstake TRDJ, Rajwa B, Rebhahn JA, Recktenwald D, Remmerswaal EBM, Rezvani K, Rico LG, Robinson JP, Romagnani C, Rubartelli A, Ruckert B, Ruland J, Sakaguchi S, Sala-de-Oyanguren F, Samstag Y, Sanderson S, Sawitzki B, Scheffold A, Schiemann M, Schildberg F, Schimisky E, Schmid SA, Schmitt S, Schober K, Schüler T, Schulz AR, Schumacher T, Scotta C, Shankey TV, Shemer A, Simon AK, Spidlen J, Stall AM, Stark R, Stehle C, Stein M, Steinmetz T, Stockinger H, Takahama Y, Tarnok A, Tian Z, Toldi G, Tornack J, Traggiai E, Trotter J, Ulrich H, van der Braber M, van Lier RAW, Veldhoen M, Vento-Asturias S, Vieira P, Voehringer D, Volk HD, von Volkmann K, Waisman A, Walker R, Ward MD, Warnatz K, Warth S, Watson JV, Watzl C, Wegener L, Wiedemann A, Wienands J, Willimsky G, Wing J, Wurst P, Yu L, Yue A, Zhang Q, Zhao Y, Ziegler S, Zimmermann J. Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur J Immunol 2017; 47:1584-1797. [PMID: 29023707 PMCID: PMC9165548 DOI: 10.1002/eji.201646632] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, Univ. of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | | | | | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Via Regina Elena 324, 00161 Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Luca Battistini
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, Rome, Italy
| | - Wolfgang M Bauer
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sabine Baumgart
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Burkhard Becher
- University of Zurich, Institute of Experimental Immunology, Zürich, Switzerland
| | - Wolfgang Beisker
- Flow Cytometry Laboratory, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health
| | - Claudia Berek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Alfonso Blanco
- Flow Cytometry Core Technologies, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Giovanna Borsellino
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, Rome, Italy
| | - Philip E Boulais
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, New York, USA
| | - Ryan R Brinkman
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Martin Büscher
- Biopyhsics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Dirk H Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- DZIF - National Centre for Infection Research, Munich, Germany
- Focus Group ''Clinical Cell Processing and Purification", Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Timothy P Bushnell
- Department of Pediatrics and Shared Resource Laboratories, University of Rochester Medical Center, Rochester NY, United States of America
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
- Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | - Qingyu Cheng
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Medizinische Immunolologie Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sue Chow
- Divsion of Medical Oncology and Hematology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Mario Clerici
- University of Milano and Don C Gnocchi Foundation IRCCS, Milano, Italy
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Antonio Cosma
- CEA - Université Paris Sud - INSERM U, Immunology of viral infections and autoimmune diseases, France
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italia
| | - Ana Cumano
- Lymphopoiesis Unit, Immunology Department Pasteur Institute, Paris, France
| | - Van Duc Dang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Derek Davies
- Flow Cytometry Facility, The Francis Crick Institute, London, United Kingdom
| | - Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | | | - Silvia Della Bella
- University of Milan, Department of Medical Biotechnologies and Translational Medicine
- Humanitas Clinical and Research Center, Lab of Clinical and Experimental Immunology, Rozzano, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Head, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Günnur Deniz
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey
| | | | | | | | - Francesco Dieli
- University of Palermo, Department of Biopathology, Palermo, Italy
| | - Andreas Dolf
- Institute of Experimental Immunology, University Bonn, Bonn, Germany
| | - Vera S Donnenberg
- Department of Cardiothoracic Surgery, School of Medicine, University of Pittsburgh, PA
| | - Thomas Dörner
- Department of Medicine/Rheumatology and Clinical Immunology, Charite Universitätsmedizin Berlin, Germany
| | | | - Elmar Endl
- Department of Molecular Medicine and Experimental Immunology, (Core Facility Flow Cytometry) University of Bonn, Germany
| | - Pablo Engel
- Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| | - Britta Engelhardt
- Professor for Immunobiology, Director, Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Charlotte Esser
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Bart Everts
- Leiden University Medical Center, Department of Parasitology, Leiden, The Netherlands
| | - Anita Dreher
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Christine S Falk
- Institute of Transplant Immunology, IFB-Tx, MHH Hannover Medical School, Hannover, Germany
- German Center for Infectious diseases (DZIF), TTU-IICH, Hannover, Germany
| | - Todd A Fehniger
- Divisions of Hematology & Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO
| | - Andrew Filby
- The Flow Cytometry Core Facility, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Simon Fillatreau
- Institut Necker-Enfants Malades (INEM), INSERM U-CNRS UMR, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants Malades, Paris, France
| | - Marie Follo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Irmgard Förster
- Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | | | - Gemma A Foulds
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Paul S Frenette
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David Galbraith
- University of Arizona, Bio Institute, School of Plant Sciences and Arizona Cancer Center, Tucson, Arizona, USA
| | - Natalio Garbi
- Institute of Experimental Immunology, University Bonn, Bonn, Germany
- Department of Molecular Immunology, Institute of Experimental Immunology, Bonn, Germany
| | | | - Jens Geginat
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Kamran Ghoreschi
- Flow Cytometry Core Facility, Department of Dermatology, University Medical Center, Eberhard Karls University Tübingen, Germany
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | | | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow
| | - Andrea Gori
- Clinic of Infectious Diseases, "San Gerardo" Hospital - ASST Monza, University Milano-Bicocca, Monza, Italy
| | - Jane Grogan
- Genentech, Department of Cancer Immunology, South San Francisco, California, USA
| | - Mor Gross
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas Grützkau
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | | | - Jonas Hahn
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Quirin Hammer
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Anja E Hauser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Immundynamics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - David Hedley
- Divsion of Medical Oncology and Hematology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Guadalupe Herrera
- Cytometry Service, Incliva Foundation. Clinic Hospital and Faculty of Medicine, The University of Valencia. Av. Blasco Ibáñez, Valencia, Spain
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Falk Hiepe
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Medizinische Immunolologie Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tristan Holland
- Department of Molecular Immunology, Institute of Experimental Immunology, Bonn, Germany
| | - Pleun Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Jessica P Houston
- Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Bimba F Hoyer
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Medizinische Immunolologie Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bo Huang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Immunology, Institute of Basic Medical Sciences & State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Iannone
- Department of Diagnostic Medicine, Clinical and Public Health, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of MolecularMedicine, University Hospital Erlangen, Erlangen, Germany
| | - Beatriz Jávega
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, The University of Valencia. Av. Blasco Ibáñez, Valencia, Spain
| | - Stipan Jonjic
- Faculty of Medicine, Center for Proteomics, University of Rijeka, Rijeka, Croatia
- Department for Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Kerstin Juelke
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Toralf Kaiser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Baerbel Keller
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Srijit Khan
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Deborah Kienhöfer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Thomas Kroneis
- Medical University of Graz, Institute of Cell Biology, Histology & Embryology, Graz, Austria
| | - Désirée Kunkel
- BCRT Flow Cytometry Lab, Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin
| | - Christian Kurts
- Institute of Experimental Immunology, University Bonn, Bonn, Germany
| | - Pia Kvistborg
- Division of immunology, the Netherlands Cancer Institute, Amsterdam
| | - Joanne Lannigan
- University of Virginia School of Medicine, Flow Cytometry Shared Resource, Charlottesville, VA, USA
| | - Olivier Lantz
- INSERM U932, Institut Curie, Paris 75005, France
- Laboratoire d'immunologie clinique, Institut Curie, Paris 75005, France
- Centre d'investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Institut Curie, Paris 75005, France
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Principal Investigator, Biology of Aging Program
- Director Flow Cytomerty Platform, Immunomonitoring Platform, Agency for Science Technology and Research (A*STAR), Singapore
- Department of Medicine, University of Sherbrooke, Qc, Canada
- Faculty of Sciences, ElManar University, Tunis, Tunisia
| | | | - Michael D Leipold
- The Human Immune Monitoring Center (HIMC), Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, CA, USA
| | - Megan K Levings
- Department of Surgery, University of British Columbia & British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | | | - Yanling Liu
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Michael Lohoff
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg 35043, Germany
| | - Giovanna Lombardi
- MRC Centre for Transplantation, King's College London, Guy's Hospital, SE1 9RT London, UK
| | | | - Amy Lovett-Racke
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Erik Lubberts
- Erasmus MC, University Medical Center, Department of Rheumatology, Rotterdam, The Netherlands
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Holden T Maecker
- The Human Immune Monitoring Center (HIMC), Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, CA, USA
| | - Glòria Martrus
- Department of Virus Immunology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy and Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Christian Maueröder
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Mairi McGrath
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Iain McInnes
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow
| | - Henrik E Mei
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Fritz Melchers
- Senior Group on Lymphocyte Development, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, University Leipzig, Leipzig, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Kingston Mills
- Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - David Mirrer
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute Stockholm, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Jonni Moore
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Barry Moran
- Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Alessandro Moretta
- Department of Experimental Medicine, University of Genova, Genova, Italy
- Centro di Eccellenza per la Ricerca Biomedica-CEBR, Genova, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesu Children's Hospital, Rome, Italy
| | - Tim R Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Susann Müller
- Centre for Environmental Research - UFZ, Department Environemntal Microbiology, Leipzig, Germany
| | - Werner Müller
- Bill Ford Chair in Cellular Immunology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Christian Münz
- University of Zurich, Institute of Experimental Immunology, Zürich, Switzerland
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany
- Institute for Innovative Radiotherapy (iRT), Experimental Immune Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Luis Enrique Munoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Kenneth M Murphy
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Howard Hughes Medical Institute, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Christine Neudörfl
- Institute of Transplant Immunology, IFB-Tx, MHH Hannover Medical School, Hannover, Germany
| | - John Nolan
- The Scintillon Institute, Nancy Ridge Drive, San Diego, CA, USA
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - José-Enrique O'Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, The University of Valencia. Av. Blasco Ibáñez, Valencia, Spain
| | - Wenjun Ouyang
- Department of Inflammation and Oncology, Amgen Inc., South San Francisco, CA, USA
| | | | - Raghav Palankar
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17489, Greifswald, Germany
| | - Isabel Panse
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Christian Peth
- Biopyhsics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Jordi Petriz
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Daisy Philips
- Division of immunology, the Netherlands Cancer Institute, Amsterdam
| | - Winfried Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Silvia Piconese
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Via Regina Elena 324, 00161 Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - A Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
- Chromocyte Limited, Electric Works, Sheffield, UK
| | - Malgorzata Justyna Podolska
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Carlo Pucillo
- Univeristy of Udine - Department of Medicine, Lab of Immunology, Udine, Italy
| | - Sally A Quataert
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Timothy R D J Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bartek Rajwa
- Bindley Biosciences Center, Purdue University, West Lafayette, In, USA
| | - Jonathan A Rebhahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Ester B M Remmerswaal
- Department of Experimental Immunology and Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, The Netherlands
| | - Katy Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Laura G Rico
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - J Paul Robinson
- The SVM Professor of Cytomics & Professor of Biomedical Engineering, Purdue University Cytometry Laboratories, Purdue University, West Lafayette, IN, USA
| | - Chiara Romagnani
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | | | - Beate Ruckert
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Francisco Sala-de-Oyanguren
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, The University of Valencia. Av. Blasco Ibáñez, Valencia, Spain
| | - Yvonne Samstag
- Institute of Immunology, Section Molecular Immunology, Ruprecht-Karls-University, D-69120, Heidelberg, Germany
| | - Sharon Sanderson
- Translational Immunology Laboratory, NIHR BRC, University of Oxford, Kennedy Institute of Rheumatology,Oxford, United Kingdom
| | - Birgit Sawitzki
- Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin
- Berlin Institute of Health, Institute of Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Alexander Scheffold
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Germany
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank Schildberg
- Harvard Medical School, Department of Microbiology and Immunobiology, Boston, MA, USA
| | | | - Stephan A Schmid
- Klinik und Poliklinik für Innere Medizin I, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Steffen Schmitt
- Imaging and Cytometry Core Facility, Flow Cytometry Unit, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel Ronald Schulz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Ton Schumacher
- Division of immunology, the Netherlands Cancer Institute, Amsterdam
| | - Cristiano Scotta
- MRC Centre for Transplantation, King's College London, Guy's Hospital, SE1 9RT London, UK
| | | | - Anat Shemer
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Josef Spidlen
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | | | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Christina Stehle
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Merle Stein
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tobit Steinmetz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Attila Tarnok
- Departement for Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute for Medical Informatics, IMISE, Leipzig, Germany
| | - ZhiGang Tian
- School of Life Sciences and Medical Center, Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Science, University of Science and Technology of China, Hefei, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Gergely Toldi
- University of Birmingham, Institute of Immunology and Immunotherapy, Birmingham, UK
| | - Julia Tornack
- Senior Group on Lymphocyte Development, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo
| | | | - René A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | | | | | - Paulo Vieira
- Unité Lymphopoiese, Institut Pasteur, Paris, France
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | | | | | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | | | - Klaus Warnatz
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sarah Warth
- BCRT Flow Cytometry Lab, Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin
| | | | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, IfADo, Department of Immunology, Dortmund, Germany
| | - Leonie Wegener
- Biopyhsics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Annika Wiedemann
- Department of Medicine/Rheumatology and Clinical Immunology, Charite Universitätsmedizin Berlin, Germany
| | - Jürgen Wienands
- Universitätsmedizin Göttingen, Georg-August-Universität, Abt. Zelluläre und Molekulare Immunologie, Humboldtallee 34, 37073 Göttingen, Germany
| | - Gerald Willimsky
- Cooperation Unit for Experimental and Translational Cancer Immunology, Institute of Immunology (Charité - Universitätsmedizin Berlin) and German Cancer Research Center (DKFZ), Berlin, Germany
| | - James Wing
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Peter Wurst
- Institute of Experimental Immunology, University Bonn, Bonn, Germany
| | | | - Alice Yue
- School of Computing Science, Simon Fraser University, Burnaby, Canada
| | | | - Yi Zhao
- Department of Rheumatology & Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Susanne Ziegler
- Department of Virus Immunology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jakob Zimmermann
- Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Murtenstrasse, Bern
| |
Collapse
|
21
|
Mizrahi O, Ish Shalom E, Baniyash M, Klieger Y. Quantitative Flow Cytometry: Concerns and Recommendations in Clinic and Research. CYTOMETRY PART B-CLINICAL CYTOMETRY 2017; 94:211-218. [DOI: 10.1002/cyto.b.21515] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 12/31/2022]
Affiliation(s)
| | | | - Michal Baniyash
- ImProDia LTD; Herzliya Pituah 46723 Israel
- Lautenberg Center for General and Tumor Immunology; Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University; Jerusalem 91120 Israel
| | | |
Collapse
|
22
|
Azad A, Rajwa B, Pothen A. flowVS: channel-specific variance stabilization in flow cytometry. BMC Bioinformatics 2016; 17:291. [PMID: 27465477 PMCID: PMC4964071 DOI: 10.1186/s12859-016-1083-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 05/14/2016] [Indexed: 01/21/2023] Open
Abstract
Background Comparing phenotypes of heterogeneous cell populations from multiple biological conditions is at the heart of scientific discovery based on flow cytometry (FC). When the biological signal is measured by the average expression of a biomarker, standard statistical methods require that variance be approximately stabilized in populations to be compared. Since the mean and variance of a cell population are often correlated in fluorescence-based FC measurements, a preprocessing step is needed to stabilize the within-population variances. Results We present a variance-stabilization algorithm, called flowVS, that removes the mean-variance correlations from cell populations identified in each fluorescence channel. flowVS transforms each channel from all samples of a data set by the inverse hyperbolic sine (asinh) transformation. For each channel, the parameters of the transformation are optimally selected by Bartlett’s likelihood-ratio test so that the populations attain homogeneous variances. The optimum parameters are then used to transform the corresponding channels in every sample. flowVS is therefore an explicit variance-stabilization method that stabilizes within-population variances in each channel by evaluating the homoskedasticity of clusters with a likelihood-ratio test. With two publicly available datasets, we show that flowVS removes the mean-variance dependence from raw FC data and makes the within-population variance relatively homogeneous. We demonstrate that alternative transformation techniques such as flowTrans, flowScape, logicle, and FCSTrans might not stabilize variance. Besides flow cytometry, flowVS can also be applied to stabilize variance in microarray data. With a publicly available data set we demonstrate that flowVS performs as well as the VSN software, a state-of-the-art approach developed for microarrays. Conclusions The homogeneity of variance in cell populations across FC samples is desirable when extracting features uniformly and comparing cell populations with different levels of marker expressions. The newly developed flowVS algorithm solves the variance-stabilization problem in FC and microarrays by optimally transforming data with the help of Bartlett’s likelihood-ratio test. On two publicly available FC datasets, flowVS stabilizes within-population variances more evenly than the available transformation and normalization techniques. flowVS-based variance stabilization can help in performing comparison and alignment of phenotypically identical cell populations across different samples. flowVS and the datasets used in this paper are publicly available in Bioconductor.
Collapse
Affiliation(s)
- Ariful Azad
- Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, 94720, CA, USA.
| | - Bartek Rajwa
- Bindley Bioscience Center, Purdue University, West Lafayette, 47907, IN, USA
| | - Alex Pothen
- Department of Computer Science, Purdue University, West Lafayette, 47907, IN, USA
| |
Collapse
|
23
|
Tárnok A. Aνομοιογɛ´νɛια. Cytometry A 2016; 89:525-6. [PMID: 27337387 DOI: 10.1002/cyto.a.22893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 04/21/2016] [Accepted: 05/31/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Attila Tárnok
- Saxonian Incubator for Clinical Translation (SIKT), University Leipzig, Leipzig, Germany.,Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
24
|
Hunt AM, Shallenberger W, Ten Eyck SP, Craig FE. Use of internal control T-cell populations in the flow cytometric evaluation for T-cell neoplasms. CYTOMETRY PART B-CLINICAL CYTOMETRY 2016; 90:404-14. [PMID: 26525599 DOI: 10.1002/cyto.b.21335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/26/2015] [Accepted: 10/30/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Flow cytometry is an important tool for identification of neoplastic T-cells, but immunophenotypic abnormalities are often subtle and must be distinguished from nonneoplastic subsets. Use of internal control (IC) T-cells in the evaluation for T-cell neoplasms was explored, both as a quality measure and as a reference for evaluating abnormal antigen expression. METHODS All peripheral blood specimens (3-month period), or those containing abnormal T-cells (29-month period), stained with CD45 V500, CD2 V450, CD3 PE-Cy7, CD7 PE, CD4 Per-CP-Cy5.5, CD8 APC-H7, CD56 APC, CD16&57 FITC, were evaluated. IC T-cells were identified (DIVA, BD Biosciences) and median fluorescence intensity (MFI) recorded. Selected files were merged and reference templates generated (Infinicyt, Cytognos). RESULTS IC T-cells were present in all specimens, including those with abnormal T-cells, but subsets were less well-represented. IC T-cell CD3 MFI differed between instruments (p = 0.0007) and subsets (p < 0.001), but not specimen categories, and served as a longitudinal process control. Merged files highlighted small unusual IC-T subsets: CD2+(dim) (0.25% total), CD2- (0.03% total). An IC reference template highlighted neoplastic T-cells, but was limited by staining variability (IC CD3 MFI reference samples different from test (p = 0.003)). CONCLUSIONS IC T-cells present in the majority of specimens can serve as positive and longitudinal process controls. Use of IC T-cells as an internal reference is limited by variable representation of subsets. Analysis of merged IC T-cells from previously analyzed patient samples can alert the interpreter to less-well-recognized non-neoplastic subsets. However, application of a merged file IC reference template was limited by staining variability. © 2016 Clinical Cytometry Society.
Collapse
Affiliation(s)
- Alicia M Hunt
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Stephen P Ten Eyck
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fiona E Craig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
25
|
Fletez-Brant K, Špidlen J, Brinkman RR, Roederer M, Chattopadhyay PK. flowClean: Automated identification and removal of fluorescence anomalies in flow cytometry data. Cytometry A 2016; 89:461-71. [PMID: 26990501 DOI: 10.1002/cyto.a.22837] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/18/2016] [Accepted: 02/10/2016] [Indexed: 11/09/2022]
Abstract
Modern flow cytometry systems can be coupled to plate readers for high-throughput acquisition. These systems allow hundreds of samples to be analyzed in a single day. Quality control of the data remains challenging, however, and is further complicated when a large number of parameters is measured in an experiment. Our examination of 29,228 publicly available FCS files from laboratories worldwide indicates 13.7% have a fluorescence anomaly. In particular, fluorescence measurements for a sample over the collection time may not remain stable due to fluctuations in fluid dynamics; the impact of instabilities may differ between samples and among parameters. Therefore, we hypothesized that tracking cell populations (which represent a summary of all parameters) in centered log ratio space would provide a sensitive and consistent method of quality control. Here, we present flowClean, an algorithm to track subset frequency changes within a sample during acquisition, and flag time periods with fluorescence perturbations leading to the emergence of false populations. Aberrant time periods are reported as a new parameter and added to a revised data file, allowing users to easily review and exclude those events from further analysis. We apply this method to proof-of-concept datasets and also to a subset of data from a recent vaccine trial. The algorithm flags events that are suspicious by visual inspection, as well as those showing more subtle effects that might not be consistently flagged by investigators reviewing the data manually, and out-performs the current state-of-the-art. flowClean is available as an R package on Bioconductor, as a module on the free-to-use GenePattern web server, and as a plugin for FlowJo X. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Kipper Fletez-Brant
- McKusick-Nathans Institute of Genetic Medicine and Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland.,Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Baltimore, Maryland
| | - Josef Špidlen
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Ryan R Brinkman
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Baltimore, Maryland
| | - Pratip K Chattopadhyay
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
26
|
Finak G, Langweiler M, Jaimes M, Malek M, Taghiyar J, Korin Y, Raddassi K, Devine L, Obermoser G, Pekalski ML, Pontikos N, Diaz A, Heck S, Villanova F, Terrazzini N, Kern F, Qian Y, Stanton R, Wang K, Brandes A, Ramey J, Aghaeepour N, Mosmann T, Scheuermann RH, Reed E, Palucka K, Pascual V, Blomberg BB, Nestle F, Nussenblatt RB, Brinkman RR, Gottardo R, Maecker H, McCoy JP. Standardizing Flow Cytometry Immunophenotyping Analysis from the Human ImmunoPhenotyping Consortium. Sci Rep 2016; 6:20686. [PMID: 26861911 PMCID: PMC4748244 DOI: 10.1038/srep20686] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/05/2016] [Indexed: 01/21/2023] Open
Abstract
Standardization of immunophenotyping requires careful attention to reagents, sample handling, instrument setup, and data analysis, and is essential for successful cross-study and cross-center comparison of data. Experts developed five standardized, eight-color panels for identification of major immune cell subsets in peripheral blood. These were produced as pre-configured, lyophilized, reagents in 96-well plates. We present the results of a coordinated analysis of samples across nine laboratories using these panels with standardized operating procedures (SOPs). Manual gating was performed by each site and by a central site. Automated gating algorithms were developed and tested by the FlowCAP consortium. Centralized manual gating can reduce cross-center variability, and we sought to determine whether automated methods could streamline and standardize the analysis. Within-site variability was low in all experiments, but cross-site variability was lower when central analysis was performed in comparison with site-specific analysis. It was also lower for clearly defined cell subsets than those based on dim markers and for rare populations. Automated gating was able to match the performance of central manual analysis for all tested panels, exhibiting little to no bias and comparable variability. Standardized staining, data collection, and automated gating can increase power, reduce variability, and streamline analysis for immunophenotyping.
Collapse
Affiliation(s)
- Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, 98109, WA
| | - Marc Langweiler
- Hematology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Mehrnoush Malek
- Terry Fox Laboratory , British Columbia Cancer Agency, V3J 4W6, Canada
| | - Jafar Taghiyar
- Terry Fox Laboratory , British Columbia Cancer Agency, V3J 4W6, Canada
| | - Yael Korin
- UCLA Pathology and Laboratory Medicine, Los Angeles, CA
| | | | - Lesley Devine
- Dept of Neurology, Yale School of Medicine, New Haven, CT
| | | | - Marcin L. Pekalski
- University of Cambridge, JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, Cambridge, UK
| | - Nikolas Pontikos
- University of Cambridge, JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, Cambridge, UK
| | - Alain Diaz
- Dept Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Susanne Heck
- Guys and St Thomas Hospital, Guy’s Hospital, London, UK
| | | | - Nadia Terrazzini
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom
| | - Florian Kern
- Brighton and Sussex Medical School, Division of Medicine, Brighton, BN1 9PS, United Kingdom
| | - Yu Qian
- Department of Informatics, J. Craig Venter Institute, La Jolla, 92037, CA
| | - Rick Stanton
- Department of Informatics, J. Craig Venter Institute, La Jolla, 92037, CA
| | - Kui Wang
- School of Mathematics and Physics, University of Queensland, Brisbane, Australia
| | - Aaron Brandes
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - John Ramey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, 98109, WA
| | - Nima Aghaeepour
- Terry Fox Laboratory , British Columbia Cancer Agency, V3J 4W6, Canada
- Baxter Laboratory in Stem Cell Biology, Stanford University, Stanford, California, 94305, USA
| | - Tim Mosmann
- Hematology Branch, National Institutes of Health, Bethesda, Maryland, USA
- University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, 14642, NY
| | | | - Elaine Reed
- UCLA Pathology and Laboratory Medicine, Los Angeles, CA
| | | | | | - Bonnie B. Blomberg
- Dept Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Frank Nestle
- Guys and St Thomas Hospital, Guy’s Hospital, London, UK
| | - Robert B. Nussenblatt
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ryan Remy Brinkman
- Terry Fox Laboratory , British Columbia Cancer Agency, V3J 4W6, Canada
- Department of Medical Genetics, University of British Columbia, Canada
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, 98109, WA
| | - Holden Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, 94305, CA
| | | |
Collapse
|
27
|
Abstract
This chapter discusses some of the pitfalls encountered when performing biomedical research involving high-throughput "omics" data and presents some strategies and guidelines that researchers should follow when undertaking such studies. We discuss common errors in experimental design and data analysis that lead to irreproducible and non-replicable research and provide some guidelines to avoid these common mistakes so that researchers may have confidence in study outcomes, even if the results are negative. We discuss the importance of ranking and prespecifying hypotheses, performing power analysis, careful experimental design, and preplanning of statistical analyses in order to avoid the "fishing expedition" data analysis strategy, which is doomed to fail. The impact of multiple testing on false-positive rates is discussed, particularly in the context of the analysis of high-throughput data, and methods to correct for it are presented, as well as approaches to detect and correct for experimental biases and batch effects, which often plague high-throughput assays. We highlight the importance of sharing data and analysis code to facilitate reproducibility and present tools and software that are appropriate for this purpose.
Collapse
|
28
|
Rothman AL, Currier JR, Friberg HL, Mathew A. Analysis of cell-mediated immune responses in support of dengue vaccine development efforts. Vaccine 2015; 33:7083-90. [PMID: 26458801 DOI: 10.1016/j.vaccine.2015.09.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 11/23/2022]
Abstract
Dengue vaccine development has made significant strides, but a better understanding of how vaccine-induced immune responses correlate with vaccine efficacy can greatly accelerate development, testing, and deployment as well as ameliorate potential risks and safety concerns. Advances in basic immunology knowledge and techniques have already improved our understanding of cell-mediated immunity of natural dengue virus infection and vaccination. We conclude that the evidence base is adequate to argue for inclusion of assessments of cell-mediated immunity as part of clinical trials of dengue vaccines, although further research to identify useful correlates of protective immunity is needed.
Collapse
Affiliation(s)
- Alan L Rothman
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington St., Providence, RI 02903, USA.
| | - Jeffrey R Currier
- Virus Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD, USA.
| | - Heather L Friberg
- Virus Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD, USA.
| | - Anuja Mathew
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington St., Providence, RI 02903, USA.
| |
Collapse
|
29
|
Mair F, Hartmann FJ, Mrdjen D, Tosevski V, Krieg C, Becher B. The end of gating? An introduction to automated analysis of high dimensional cytometry data. Eur J Immunol 2015; 46:34-43. [DOI: 10.1002/eji.201545774] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/15/2015] [Accepted: 11/03/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Florian Mair
- Institute of Experimental Immunology; University of Zurich; Zurich Switzerland
| | - Felix J. Hartmann
- Institute of Experimental Immunology; University of Zurich; Zurich Switzerland
| | - Dunja Mrdjen
- Institute of Experimental Immunology; University of Zurich; Zurich Switzerland
| | - Vinko Tosevski
- Institute of Experimental Immunology; University of Zurich; Zurich Switzerland
| | - Carsten Krieg
- Institute of Experimental Immunology; University of Zurich; Zurich Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology; University of Zurich; Zurich Switzerland
| |
Collapse
|
30
|
Liang M, Schwickart M, Schneider AK, Vainshtein I, Del Nagro C, Standifer N, Roskos LK. Receptor occupancy assessment by flow cytometry as a pharmacodynamic biomarker in biopharmaceutical development. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 90:117-27. [PMID: 26054054 PMCID: PMC5042057 DOI: 10.1002/cyto.b.21259] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/20/2015] [Accepted: 05/28/2015] [Indexed: 12/19/2022]
Abstract
Receptor occupancy (RO) assays are designed to quantify the binding of therapeutics to their targets on the cell surface and are frequently used to generate pharmacodynamic (PD) biomarker data in nonclinical and clinical studies of biopharmaceuticals. When combined with the pharmacokinetic (PK) profile, RO data can establish PKPD relationships, which are crucial for informing dose decisions. RO is commonly measured by flow cytometry on fresh blood specimens and is subject to numerous technical and logistical challenges. To ensure that reliable and high quality results are generated from RO assays, careful assay design, key reagent characterization, data normalization/reporting, and thorough planning for implementation are of critical importance during development. In this article, the authors share their experiences and perspectives in these areas and discuss challenges and potential solutions when developing and implementing a flow cytometry‐based RO method in support of biopharmaceutical drug development. © 2015 The Authors Cytometry Part B: Clinical Cytometry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Meina Liang
- Department of Clinical Pharmacology and DMPK, Medimmune, LLC, Mountain View, California, 94043
| | - Martin Schwickart
- Department of Clinical Pharmacology and DMPK, Medimmune, LLC, Mountain View, California, 94043
| | - Amy K Schneider
- Department of Clinical Pharmacology and DMPK, Medimmune, LLC, Mountain View, California, 94043
| | - Inna Vainshtein
- Department of Clinical Pharmacology and DMPK, Medimmune, LLC, Mountain View, California, 94043
| | - Christopher Del Nagro
- Department of Clinical Pharmacology and DMPK, Medimmune, LLC, Mountain View, California, 94043
| | - Nathan Standifer
- Department of Clinical Pharmacology and DMPK, Medimmune, LLC, Mountain View, California, 94043
| | - Lorin K Roskos
- Department of Clinical Pharmacology and DMPK, Medimmune, LLC, Mountain View, California, 94043
| |
Collapse
|
31
|
WANG XIANWEN, CHEN FENG, CHENG ZHI, DU YAOHUA, WU TAIHU. AUTOMATED GATING OF PORTABLE CYTOMETER DATA BASED ON SKEW t MIXTURE MODELS. J MECH MED BIOL 2015. [DOI: 10.1142/s0219519415500335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A major component of flow cytometry (FCM) data analysis involves gating, which is the process of identifying homogeneous groups of cells. With the rapid development of the portable flow cytometer, manual gating techniques have been unable to meet the demand for accurate and rapid analysis of samples. To provide a practical application for portable devices, we propose a flexible, statistical model-based clustering approach for identifying cell populations in FCM data. This approach, which mimics the manual gating process, employs a finite mixture model with a density function of skew t distribution and estimates parameters via an expectation maximization algorithm. Data analysis from an experiment on a patient’s peripheral blood samples have proven that the proposed methodology yields better results in terms of robustness against outliers than current state-of-the-art automated gating methods, has more flexibility in clustering symmetric data and leads to lower misclassification rates (misclassification rates of skew t method is 0.06442) when handling highly asymmetric data. The method we proposed will improve data analysis of portable flow cytometers, especially when the users have no professional training.
Collapse
Affiliation(s)
- XIANWEN WANG
- Institute of Medical Equipment, Academy of Military Medical Sciences, Wandong Road 106, Hedong District, Tianjin 300161, P. R. China
| | - FENG CHEN
- Institute of Medical Equipment, Academy of Military Medical Sciences, Wandong Road 106, Hedong District, Tianjin 300161, P. R. China
| | - ZHI CHENG
- Institute of Medical Equipment, Academy of Military Medical Sciences, Wandong Road 106, Hedong District, Tianjin 300161, P. R. China
| | - YAOHUA DU
- Institute of Medical Equipment, Academy of Military Medical Sciences, Wandong Road 106, Hedong District, Tianjin 300161, P. R. China
| | - TAIHU WU
- Institute of Medical Equipment, Academy of Military Medical Sciences, Wandong Road 106, Hedong District, Tianjin 300161, P. R. China
| |
Collapse
|
32
|
Sörensen T, Baumgart S, Durek P, Grützkau A, Häupl T. immunoClust--An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. Cytometry A 2015; 87:603-15. [PMID: 25850678 DOI: 10.1002/cyto.a.22626] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/01/2014] [Accepted: 12/24/2014] [Indexed: 12/27/2022]
Abstract
Multiparametric fluorescence and mass cytometry offers new perspectives to disclose and to monitor the high diversity of cell populations in the peripheral blood for biomarker research. While high-end cytometric devices are currently available to detect theoretically up to 120 individual parameters at the single cell level, software tools are needed to analyze these complex datasets automatically in acceptable time and without operator bias or knowledge. We developed an automated analysis pipeline, immunoClust, for uncompensated fluorescence and mass cytometry data, which consists of two parts. First, cell events of each sample are grouped into individual clusters. Subsequently, a classification algorithm assorts these cell event clusters into populations comparable between different samples. The clustering of cell events is designed for datasets with large event counts in high dimensions as a global unsupervised method, sensitive to identify rare cell types even when next to large populations. Both parts use model-based clustering with an iterative expectation maximization algorithm and the integrated classification likelihood to obtain the clusters. A detailed description of both algorithms is presented. Testing and validation was performed using 1) blood cell samples of defined composition that were depleted of particular cell subsets by magnetic cell sorting, 2) datasets of the FlowCAP III challenges to identify populations of rare cell types and 3) high-dimensional fluorescence and mass-cytometry datasets for comparison with conventional manual gating procedures. In conclusion, the immunoClust-algorithm is a promising tool to standardize and automate the analysis of high-dimensional cytometric datasets. As a prerequisite for interpretation of such data, it will support our efforts in developing immunological biomarkers for chronic inflammatory disorders and therapy recommendations in personalized medicine. immunoClust is implemented as an R-package and is provided as source code from www.bioconductor.org.
Collapse
Affiliation(s)
- Till Sörensen
- Department of Rheumatology and Clinical Immunology, Charité, Berlin, Germany
| | - Sabine Baumgart
- Immune Monitoring, German Arthritis Research Center (DRFZ), Berlin, Germany
| | - Pawel Durek
- Immune Monitoring, German Arthritis Research Center (DRFZ), Berlin, Germany
| | - Andreas Grützkau
- Immune Monitoring, German Arthritis Research Center (DRFZ), Berlin, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité, Berlin, Germany
| |
Collapse
|
33
|
Abstract
B cells are central players in multiple autoimmune rheumatic diseases as a result of the imbalance between pathogenic and protective B-cell functions, which are presumably mediated by distinct populations. Yet the functional role of different B-cell populations and the contribution of specific subsets to disease pathogenesis remain to be fully understood owing to a large extent to the use of pauci-color flow cytometry. Despite its limitations, this approach has been instrumental in providing a global picture of multiple B-cell abnormalities in multiple human rheumatic diseases, more prominently systemic lupus erythematosus, rheumatoid arthritis and Sjogren’s syndrome. Accordingly, these studies represent the focus of this review. In addition, we also discuss the added value of tapping into the potential of polychromatic flow cytometry to unravel a higher level of B-cell heterogeneity, provide a more nuanced view of B-cell abnormalities in disease and create the foundation for a precise understanding of functional division of labor among the different phenotypic subsets. State-of-the-art polychromatic flow cytometry and novel multidimensional analytical approaches hold tremendous promise for our understanding of disease pathogenesis, the generation of disease biomarkers, patient stratification and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Chungwen Wei
- Department of Medicine, Division of Rheumatology and Lowance Center for Human Immunology, Emory University, 615 Michael Street, Atlanta, GA, 30322, USA.
| | - Scott Jenks
- Department of Medicine, Division of Rheumatology and Lowance Center for Human Immunology, Emory University, 615 Michael Street, Atlanta, GA, 30322, USA.
| | - Iñaki Sanz
- Department of Medicine, Division of Rheumatology and Lowance Center for Human Immunology, Emory University, 615 Michael Street, Atlanta, GA, 30322, USA.
| |
Collapse
|
34
|
Finak G, Frelinger J, Jiang W, Newell EW, Ramey J, Davis MM, Kalams SA, De Rosa SC, Gottardo R. OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLoS Comput Biol 2014; 10:e1003806. [PMID: 25167361 PMCID: PMC4148203 DOI: 10.1371/journal.pcbi.1003806] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/10/2014] [Indexed: 12/13/2022] Open
Abstract
Flow cytometry is used increasingly in clinical research for cancer, immunology and vaccines. Technological advances in cytometry instrumentation are increasing the size and dimensionality of data sets, posing a challenge for traditional data management and analysis. Automated analysis methods, despite a general consensus of their importance to the future of the field, have been slow to gain widespread adoption. Here we present OpenCyto, a new BioConductor infrastructure and data analysis framework designed to lower the barrier of entry to automated flow data analysis algorithms by addressing key areas that we believe have held back wider adoption of automated approaches. OpenCyto supports end-to-end data analysis that is robust and reproducible while generating results that are easy to interpret. We have improved the existing, widely used core BioConductor flow cytometry infrastructure by allowing analysis to scale in a memory efficient manner to the large flow data sets that arise in clinical trials, and integrating domain-specific knowledge as part of the pipeline through the hierarchical relationships among cell populations. Pipelines are defined through a text-based csv file, limiting the need to write data-specific code, and are data agnostic to simplify repetitive analysis for core facilities. We demonstrate how to analyze two large cytometry data sets: an intracellular cytokine staining (ICS) data set from a published HIV vaccine trial focused on detecting rare, antigen-specific T-cell populations, where we identify a new subset of CD8 T-cells with a vaccine-regimen specific response that could not be identified through manual analysis, and a CyTOF T-cell phenotyping data set where a large staining panel and many cell populations are a challenge for traditional analysis. The substantial improvements to the core BioConductor flow cytometry packages give OpenCyto the potential for wide adoption. It can rapidly leverage new developments in computational cytometry and facilitate reproducible analysis in a unified environment.
Collapse
Affiliation(s)
- Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jacob Frelinger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Wenxin Jiang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Evan W. Newell
- Agency for Science Technology and Research, Singapore Immunology Network, Singapore
| | - John Ramey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, California, United States of America
- The Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Spyros A. Kalams
- Infectious Diseases Division, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|