1
|
The Prognostic Model Established by the Differential Expression Genes Based on CD8 + T Cells to Evaluate the Prognosis and the Response to Immunotherapy in Osteosarcoma. Mediators Inflamm 2023; 2023:6563609. [PMID: 36816742 PMCID: PMC9934978 DOI: 10.1155/2023/6563609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Osteosarcoma (OS) is a malignant tumor with an extremely poor prognosis, especially in progressive patients. Immunotherapy based on immune checkpoint inhibitors (ICIs) is considered to be a promising treatment option for OS. Due to tumor heterogeneity, only a minority of patients benefit from immunotherapy. Therefore, it is urgent to explore a model that can accurately assess the response of OS to immunotherapy. In this study, we obtained the single-cell RNA sequencing datasets of OS patients from public databases and defined 34 cell clusters by dimensional reduction and clustering analysis. PTPRC was applied to identify immune cell clusters and nonimmune cell clusters. Next, we performed clustering analysis on the immune cell clusters and obtained 25 immune cell subclusters. Immune cells were labeled with CD8A and CD8B to obtain CD8+ T cell clusters. Meanwhile, we extracted the differentially expressed genes (DEGs) of CD8+ T cell clusters and other immune cell clusters. Furthermore, we constructed a prognostic model (CD8-DEG model) based on the obtained DEGs of CD8+ T cells, and verified the excellent predictive ability of this model for the prognosis of OS. Moreover, we further investigated the value of the CD8-DEG model. The results indicated that the risk score of the CD8-DEG model was an independent risk factor for OS patients. Finally, we revealed that the risk score of the CD8-DEG model correlates with the immune profile of OS and can be used to evaluate the response of OS to immunotherapy. In conclusion, our study revealed the critical role of CD8 cells in OS. The risk score model based on CD8-DEGs can provide guidance for prognosis and immunotherapy of OS.
Collapse
|
2
|
Short treatment of peripheral blood cells product with Fas ligand using closed automated cell processing system significantly reduces immune cell reactivity of the graft in vitro and in vivo. Bone Marrow Transplant 2022; 57:1250-1259. [PMID: 35538142 PMCID: PMC9088133 DOI: 10.1038/s41409-022-01698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 11/08/2022]
Abstract
Mobilized peripheral blood cells (MPBCs) graft and peripheral blood cells apheresis are used for bone marrow transplantation and for treatment of graft versus host disease (GvHD). We demonstrate that a short treatment of MPBCs with Fas ligand (FasL, CD95L) for 2 h using a closed automated cell processing system selectively induces apoptosis of specific donor T cells, B cells and antigen presenting cells, but, critically, not CD34+ hematopoietic stem cells and progenitors, all of which may contribute to an increased likelihood of graft survival and functionality and reduced GvHD. Treated cells secreted lower levels of interferon-gamma as compared with control, untreated, cells. Moreover, FasL treatment of immune cells increased signals, which led to their phagocytosis by activated macrophages. FasL treated immune cells also reduced the ability of activated macrophages to secrete pro-inflammatory cytokines. Most importantly, FasL ex vivo treated MPBCs prior to transplantation in NOD-SCID NSG mice prevented GvHD and improved stem cell transplantation in vivo. In conclusion, MPBCs, as well as other blood cell products, treated with FasL by automated manufacturing (AM), may be used as potential treatments for conditions where the immune system is over-responding to both self and non-self-antigens.
Collapse
|
3
|
Renavikar PS, Sinha S, Brate AA, Borcherding N, Crawford MP, Steward-Tharp SM, Karandikar NJ. IL-12-Induced Immune Suppressive Deficit During CD8+ T-Cell Differentiation. Front Immunol 2020; 11:568630. [PMID: 33193343 PMCID: PMC7657266 DOI: 10.3389/fimmu.2020.568630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Autoimmune diseases are characterized by regulatory deficit in both the CD4+ and CD8+ T-cell compartments. We have shown that CD8+ T-cells associated with acute relapse of multiple sclerosis are significantly deficient in their immune suppressive ability. We hypothesized that distinct CD8+ cytotoxic T-cell (Tc) lineages, determined by cytokine milieu during naïve T-cell differentiation, may harbor differential ability to suppress effector CD4+ T-cells. We differentiated purified human naïve CD8+ T-cells in vitro toward Tc0 (media control), Tc1 and Tc17 lineages. Using in vitro flow cytometric suppression assays, we observed that Tc0 and Tc17 cells had similar suppressive ability. In contrast, Tc1 cells showed significant loss of suppressive ability against ex vivo CD4+ T-cells and in vitro-differentiated Th0, Th1 and Th17 cells. Of note, Tc1 cells were also suboptimal in suppressing CD4-induced acute xenogeneic graft versus host disease (xGVHD) in vivo. Tc subtypes derived under various cytokine combinations revealed that IL-12-containing conditions resulted in less suppressive cells exhibiting dysregulated cytotoxic degranulation. RNA sequencing transcriptome analyses indicated differential regulation of inflammatory genes and enrichment in GM-CSF-associated pathways. These studies provide insights into the role of T-cell differentiation in CD8 suppressive biology and may reveal therapeutically targetable pathways to reverse suppressive deficit during immune-mediated disease.
Collapse
Affiliation(s)
- Pranav S Renavikar
- Department of Pathology, University of Iowa Health Care, Iowa City, IA, United States
| | - Sushmita Sinha
- Department of Pathology, University of Iowa Health Care, Iowa City, IA, United States
| | - Ashley A Brate
- Department of Pathology, University of Iowa Health Care, Iowa City, IA, United States
| | - Nicholas Borcherding
- Department of Pathology, University of Iowa Health Care, Iowa City, IA, United States
| | - Michael P Crawford
- Department of Pathology, University of Iowa Health Care, Iowa City, IA, United States
| | - Scott M Steward-Tharp
- Department of Pathology, University of Iowa Health Care, Iowa City, IA, United States
| | - Nitin J Karandikar
- Department of Pathology, University of Iowa Health Care, Iowa City, IA, United States
| |
Collapse
|
4
|
Li Y, Li P, Li R, Xu Q. Intracellular Antibody Delivery Mediated by Lipids, Polymers, and Inorganic Nanomaterials for Therapeutic Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Peixuan Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Raissa Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Qiaobing Xu
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| |
Collapse
|
5
|
Walcher L, Hilger N, Wege AK, Lange F, Tretbar US, Blaudszun AR, Fricke S. Humanized mouse model: Hematopoietic stemcell transplantation and tracking using short tandem repeat technology. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:363-370. [PMID: 32525618 PMCID: PMC7416029 DOI: 10.1002/iid3.317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022]
Abstract
Introduction Models of mice carrying a human immune system, so‐called humanized mice, are used increasingly as preclinical models to bridge the gap between model organisms and human beings. Challenges of the humanized mouse model include finding suitable sources for human hematopoietic stem cells (HSC) and reaching sufficient engraftment of these cells in immunocompromised mice. Methods In this study, we compared the use of CD34+ HSC from cord blood (CB) vs HSC from adult mobilized peripheral blood. Furthermore, we developed a simple and highly specific test for donor identification in humanized mice by applying the detection method of short tandem repeats (STR). Results It was found that, in vitro, CB‐derived and adult HSC show comparable purity, viability, and differentiation potential in colony‐forming unit assays. However, in vivo, CB‐derived HSC engrafted to a significantly higher extent in NOD.Cg‐PrkdcscidIL2rγtm1Wjl/SzJ (NSG) mice than adult HSC. Increasing the cell dose of adult HSC or using fresh cells without cryopreservation did not improve the engraftment rate. Interestingly, when using adult HSC, the percentage of human cells in the bone marrow was significantly higher than that in the peripheral blood. Using the STR‐based test, we were able to identify and distinguish human cells from different donors in humanized mice and in a humanized allogeneic transplantation model. Conclusion From these findings, we conclude that adult mobilized HSC are less suitable for generating a humanized immune system in mice than CB‐derived cells.
Collapse
Affiliation(s)
- Lia Walcher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Nadja Hilger
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Anja K Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | - Franziska Lange
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - U Sandy Tretbar
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - André-René Blaudszun
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Stephan Fricke
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
6
|
Fukasaku Y, Goto R, Ganchiku Y, Emoto S, Zaitsu M, Watanabe M, Kawamura N, Fukai M, Shimamura T, Taketomi A. Novel immunological approach to asses donor reactivity of transplant recipients using a humanized mouse model. Hum Immunol 2020; 81:342-353. [PMID: 32345498 DOI: 10.1016/j.humimm.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
In organ transplantation, a reproducible and robust immune-monitoring assay has not been established to determine individually tailored immunosuppressants (IS). We applied humanized mice reconstituted with human (hu-) peripheral blood mononuclear cells (PBMCs) obtained from living donor liver transplant recipients to evaluate their immune status. Engraftment of 2.5 × 106 hu-PBMCs from healthy volunteers and recipients in the NSG mice was achieved successfully. The reconstituted lymphocytes consisted mainly of hu-CD3+ lymphocytes with predominant CD45RA-CD62Llo TEM and CCR6-CXCR3+CD4+ Th1 cells in hu-PBMC-NSG mice. Interestingly, T cell allo-reactivity of hu-PBMC-NSG mice was amplified significantly compared with that of freshly isolated PBMCs (p < 0.05). Furthermore, magnified hu-T cell responses to donor antigens (Ag) were observed in 2/10 immunosuppressed recipients with multiple acute rejection (AR) experiences, suggesting that the immunological assay in hu-PBMC-NSG mice revealed hidden risks of allograft rejection by IS. Furthermore, donor Ag-specific hyporesponsiveness was maintained in recipients who had been completely weaned off IS (n = 4), despite homeostatic proliferation of hu-T cells in the hu-PBMC-NSG mice. The immunological assay in humanized mice provides a new tool to assess recipient immunity in the absence of IS and explore the underlying mechanisms to maintaining operational tolerance.
Collapse
Affiliation(s)
- Yasutomo Fukasaku
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Ryoichi Goto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan.
| | - Yoshikazu Ganchiku
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Shin Emoto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Masaaki Zaitsu
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Masaaki Watanabe
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan; Department of Transplant Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Norio Kawamura
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan; Department of Transplant Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan.
| |
Collapse
|
7
|
Stahl L, Duenkel A, Hilger N, Tretbar US, Fricke S. The Epitope-Specific Anti-human CD4 Antibody MAX.16H5 and Its Role in Immune Tolerance. Front Immunol 2019; 10:1035. [PMID: 31178857 PMCID: PMC6543443 DOI: 10.3389/fimmu.2019.01035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/23/2019] [Indexed: 01/03/2023] Open
Abstract
T cell modulation in the clinical background of autoimmune diseases or allogeneic cell and organ transplantations with concurrent preservation of their natural immunological functions (e.g., pathogen defense) is the major obstacle in immunology. An anti-human CD4 antibody (MAX.16H5) was applied intravenously in clinical trials for the treatment of autoimmune diseases (e.g., rheumatoid arthritis) and acute late-onset rejection after transplantation of a renal allograft. The response rates were remarkable and no critical allergic problems or side effects were obtained. During the treatment of autoimmune diseases with the murine MAX.16H5 IgG1 antibody its effector mechanisms with effects on lymphocytes, cytokines, laboratory and clinical parameters, adverse effects as well as pharmacodynamics and kinetics were studied in detail. However, as the possibility of developing immune reactions against the murine IgG1 Fc-part remains, the murine antibody was chimerized, inheriting CD4-directed variable domains of the MAX.16H5 IgG1 connected to a human IgG4 backbone. Both antibodies were studied in vitro and in specific humanized mouse transplantation models in vivo with a new scope. By ex vivo incubation of an allogeneic immune cell transplant with MAX.16H5 a new therapy strategy has emerged for the first time enabling both the preservation of the graft-vs.-leukemia (GVL) effect and the permanent suppression of the acute graft-vs.-host disease (aGVHD) without conventional immunosuppression. In this review, we especially focus on experimental data and clinical trials obtained from the treatment of autoimmune diseases with the murine MAX.16H5 IgG1 antibody. Insights gained from these trials have paved the way to better understand the effects with the chimerized MAX.16H5 IgG4 as novel therapeutic approach in the context of GVHD prevention.
Collapse
Affiliation(s)
- Lilly Stahl
- Immune Tolerance Unit, Fraunhofer Institute of Cell Therapy and Immunology, Leipzig, Germany
| | - Anna Duenkel
- Immune Tolerance Unit, Fraunhofer Institute of Cell Therapy and Immunology, Leipzig, Germany
| | - Nadja Hilger
- Max-Bürger Research Center, Institute for Clinical Immunology, University of Leipzig Medical Center, Leipzig, Germany
| | - Uta Sandy Tretbar
- Immune Tolerance Unit, Fraunhofer Institute of Cell Therapy and Immunology, Leipzig, Germany
| | - Stephan Fricke
- Immune Tolerance Unit, Fraunhofer Institute of Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
8
|
Brehm MA, Kenney LL, Wiles MV, Low BE, Tisch RM, Burzenski L, Mueller C, Greiner DL, Shultz LD. Lack of acute xenogeneic graft- versus-host disease, but retention of T-cell function following engraftment of human peripheral blood mononuclear cells in NSG mice deficient in MHC class I and II expression. FASEB J 2019; 33:3137-3151. [PMID: 30383447 PMCID: PMC6404556 DOI: 10.1096/fj.201800636r] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022]
Abstract
Immunodeficient mice engrafted with human peripheral blood mononuclear cells (PBMCs) support preclinical studies of human pathogens, allograft rejection, and human T-cell function. However, a major limitation of PBMC engraftment is development of acute xenogeneic graft- versus-host disease (GVHD) due to human T-cell recognition of murine major histocompatibility complex (MHC). To address this, we created 2 NOD- scid IL-2 receptor subunit γ ( IL2rg) null (NSG) strains that lack murine MHC class I and II [NSG-β-2-microglobulin ( B2M) null ( IA IE)null and NSG -( Kb Db) null ( IAnull)]. We observed rapid human IgG clearance in NSG- B2Mnull ( IA IE) null mice whereas clearance in NSG -( Kb Db) null ( IAnull) mice and NSG mice was comparable. Injection of human PBMCs into both strains enabled long-term engraftment of human CD4+ and CD8+ T cells without acute GVHD. Engrafted human T-cell function was documented by rejection of human islet allografts. Administration of human IL-2 to NSG -( Kb Db) null ( IAnull) mice via adeno-associated virus vector increased human CD45+ cell engraftment, including an increase in human regulatory T cells. However, high IL-2 levels also induced the development of GVHD. These data document that NSG mice deficient in murine MHC support studies of human immunity in the absence of acute GVHD and enable evaluation of human antibody therapeutics targeting human T cells.-Brehm, M. A., Kenney, L. L., Wiles, M. V., Low, B. E., Tisch, R. M., Burzenski, L., Mueller, C., Greiner, D. L., Shultz, L. D. Lack of acute xenogeneic graft- versus-host disease, but retention of T-cell function following engraftment of human peripheral blood mononuclear cells in NSG mice deficient in MHC class I and II expression.
Collapse
Affiliation(s)
- Michael A. Brehm
- Diabetes Center of Excellence University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Laurie L. Kenney
- Diabetes Center of Excellence University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | - Roland M. Tisch
- Department of Immunology and Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; and
| | | | - Christian Mueller
- Department of Pediatrics and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dale L. Greiner
- Diabetes Center of Excellence University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
9
|
Walcher L, Müller C, Hilger N, Kretschmer A, Stahl L, Wigge S, Rengelshausen J, Müller AM, Fricke S. Effect of combined sublethal X-ray irradiation and cyclosporine A treatment in NOD scid gamma (NSG) mice. Exp Anim 2019; 68:1-11. [PMID: 30078790 PMCID: PMC6389519 DOI: 10.1538/expanim.18-0056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cyclosporine A (CsA) is used in hematopoietic stem cell transplantations (HSCT) to
prevent graft-versus-host disease (GvHD). GvHD is the most severe side effect of
allogeneic HSCT and efficient therapies are lacking. Mouse models are an essential tool
for assessing potential new therapeutic strategies. Our aim is to mimic a clinical setting
as close as possible using CsA treatment after sublethal irradiation in NSG mice and
thereby evaluate the feasibility of this mouse model for GvHD studies. The effect of CsA
(7.5 mg/kg body weight) on sublethally X-ray irradiated (2 Gy) and non-irradiated NSG mice
was tested. CsA was administered orally every twelve hours for nine days. Animals
irradiated and treated with CsA showed a shorter survival (n=3/10) than irradiated animals
treated with NaCl (n=10/10). Furthermore, combined therapy resulted in severe weight loss
(82 ± 6% of initial weight, n=7, day 8), with weight recovery after the CsA application
was ceased. A high number of apoptotic events in the liver was observed in these mice
(0.431 ± 0.371 apoptotic cells/cm2, n=2, compared to 0.027 ± 0.034 apoptotic
cells/cm2, n=5, in the non-irradiated group). Other adverse effects,
including a decrease in white blood cell counts were non-CsA-specific manifestations of
irradiation. The combination of CsA treatment with irradiation has a hepatotoxic and
lethal effect on NSG mice, whereas the treatment without irradiation is tolerated.
Therefore, when using in vivo models of GvHD in NSG mice, a combined
treatment with CsA and X-ray irradiation should be avoided or carefully evaluated.
Collapse
Affiliation(s)
- Lia Walcher
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Claudia Müller
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Nadja Hilger
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany.,Institute for Clinical Immunology, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Anna Kretschmer
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Lilly Stahl
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Simone Wigge
- Grünenthal GmbH, Zieglerstrasse 6, 52078 Aachen, Germany
| | | | - Anne M Müller
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Hilger N, Mueller C, Stahl L, Mueller AM, Zoennchen B, Dluczek S, Halbich C, Wickenhauser C, Gerloff D, Wurm AA, Behre G, Kretschmer A, Fricke S. Incubation of Immune Cell Grafts With MAX.16H5 IgG1 Anti-Human CD4 Antibody Prolonged Survival After Hematopoietic Stem Cell Transplantation in a Mouse Model for Fms Like Tyrosine Kinase 3 Positive Acute Myeloid Leukemia. Front Immunol 2018; 9:2408. [PMID: 30405611 PMCID: PMC6204383 DOI: 10.3389/fimmu.2018.02408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022] Open
Abstract
Despite the constant development of innovative therapeutic options for hematological malignancies, the gold-standard therapy regimen for curative treatment often includes allogeneic hematopoietic stem cell transplantation (HSCT). The graft-vs.-leukemia effect (GVL) is one of the main therapeutic goals that arises from HSCT. On the other hand, graft-vs.-host disease (GVHD) is still one of the main and most serious complications following allogeneic HSCT. In acute myeloid leukemia (AML), HSCT together with high-dose chemotherapy is used as a treatment option. An aggressive progression of the disease, a decreased response to treatment, and a poor prognosis are connected to internal tandem duplication (ITD) mutations in the Fms like tyrosine kinase 3 (FLT3) gene, which affects around 30% of AML patients. In this study, C3H/HeN mice received an allogeneic graft together with 32D-FLT3ITD AML cells to induce acute GVHD and GVL. It was examined if pre-incubation of the graft with the anti-human cluster of differentiation (CD) 4 antibody MAX.16H5 IgG1 prevented the development of GVHD and whether the graft function was impaired. Animals receiving grafts pre-incubated with the antibody together with FLT3ITD AML cells survived significantly longer than mice receiving untreated grafts. The observed prolonged survival due to MAX.16H5 incubation of immune cell grafts prior to transplantation may allow an extended application of additional targeted strategies in the treatment of AML.
Collapse
Affiliation(s)
- Nadja Hilger
- Immune Tolerance, Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Claudia Mueller
- Immune Tolerance, Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Lilly Stahl
- Immune Tolerance, Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Anne M Mueller
- Immune Tolerance, Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Bianca Zoennchen
- Immune Tolerance, Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sarah Dluczek
- Immune Tolerance, Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Christoph Halbich
- Immune Tolerance, Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | | | - Dennis Gerloff
- Department of Dermatology and Venereology, University Hospital Halle, Halle, Germany
| | - Alexander A Wurm
- Division of Hematology and Medical Oncology, Leipzig University Hospital, Leipzig, Germany
| | - Gerhard Behre
- Division of Hematology and Medical Oncology, Leipzig University Hospital, Leipzig, Germany
| | - Anna Kretschmer
- Immune Tolerance, Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Stephan Fricke
- Immune Tolerance, Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
11
|
Exploring Crimean-Congo Hemorrhagic Fever Virus-Induced Hepatic Injury Using Antibody-Mediated Type I Interferon Blockade in Mice. J Virol 2018; 92:JVI.01083-18. [PMID: 30111561 DOI: 10.1128/jvi.01083-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/07/2018] [Indexed: 01/22/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) can cause severe hepatic injury in humans. However, the mechanism(s) causing this damage is poorly characterized. CCHFV produces an acute disease, including liver damage, in mice lacking type I interferon (IFN-I) signaling due to either STAT-1 gene deletion or disruption of the IFN-I receptor 1 gene. Here, we explored CCHFV-induced liver pathogenesis in mice using an antibody to disrupt IFN-I signaling. When IFN-I blockade was induced within 24 h postexposure to CCHFV, mice developed severe disease with greater than 95% mortality by 6 days postexposure. In addition, we observed increased proinflammatory cytokines, chemoattractants, and liver enzymes in these mice. Extensive liver damage was evident by 4 days postexposure and was characterized by hepatocyte necrosis and the loss of CLEC4F-positive Kupffer cells. Similar experiments in CCHFV-exposed NOD-SCID-γ (NSG), Rag2-deficient, and perforin-deficient mice also demonstrated liver injury, suggesting that cytotoxic immune cells are dispensable for hepatic damage. Some apoptotic liver cells contained viral RNA, while other apoptotic liver cells were negative, suggesting that cell death occurred by both intrinsic and extrinsic mechanisms. Protein and transcriptional analysis of livers revealed that activation of tumor necrosis factor superfamily members occurred by day 4 postexposure, implicating these molecules as factors in liver cell death. These data provide insights into CCHFV-induced hepatic injury and demonstrate the utility of antibody-mediated IFN-I blockade in the study of CCHFV pathogenesis in mice.IMPORTANCE CCHFV is an important human pathogen that is both endemic and emerging throughout Asia, Africa, and Europe. A common feature of acute disease is liver injury ranging from mild to fulminant hepatic failure. The processes through which CCHFV induces severe liver injury are unclear, mostly due to the limitations of existing small-animal systems. The only small-animal model in which CCHFV consistently produces severe liver damage is mice lacking IFN-I signaling. In this study, we used antibody-mediated blockade of IFN-I signaling in mice to study CCHFV liver pathogenesis in various transgenic mouse systems. We found that liver injury did not depend on cytotoxic immune cells and observed extensive activation of death receptor signaling pathways in the liver during acute disease. Furthermore, acute CCHFV infection resulted in a nearly complete loss of Kupffer cells. Our model system provides insight into both the molecular and the cellular features of CCHFV hepatic injury.
Collapse
|
12
|
Laudanski K, Stentz M, DiMeglio M, Furey W, Steinberg T, Patel A. Potential Pitfalls of the Humanized Mice in Modeling Sepsis. Int J Inflam 2018; 2018:6563454. [PMID: 30245803 PMCID: PMC6139216 DOI: 10.1155/2018/6563454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/17/2018] [Accepted: 08/13/2018] [Indexed: 01/30/2023] Open
Abstract
Humanized mice are a state-of-the-art tool used to study several diseases, helping to close the gap between mice and human immunology. This review focuses on the potential obstacles in the analysis of immune system performance between humans and humanized mice in the context of severe acute inflammation as seen in sepsis or other critical care illnesses. The extent to which the reconstituted human immune system in mice adequately compares to the performance of the human immune system in human hosts is still an evolving question. Although certain viral and protozoan infections can be replicated in humanized mice, whether a highly complex and dynamic systemic inflammation like sepsis can be accurately represented by current humanized mouse models in a clinically translatable manner is unclear. Humanized mice are xenotransplant animals in the most general terms. Several organs (e.g., bone marrow mesenchymal cells, endothelium) cannot interact with the grafted human leukocytes effectively due to species specificity. Also the interaction between mice gut flora and the human immune system may be paradoxical. Often, grafting is performed utilizing an identical batch of stem cells in highly inbred animals which fails to account for human heterogeneity. Limiting factors include the substantial cost and restricting supply of animals. Finally, humanized mice offer an opportunity to gain knowledge of human-like conditions, requiring careful data interpretation just as in nonhumanized animals.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Stentz
- Department of Anesthesiology and Intensive Care, Emory University, Atlanta, GA 30322, USA
| | - Matthew DiMeglio
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - William Furey
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Toby Steinberg
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arpit Patel
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Tárnok A. The expanded cytometry concept. Cytometry A 2018; 93:391-392. [PMID: 29694735 DOI: 10.1002/cyto.a.23374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Attila Tárnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany.,Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany.,Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| |
Collapse
|
14
|
|