1
|
Zagal-Salinas AA, Ispanixtlahuatl-Meráz O, Olguín-Hernández JE, Rodríguez-Sosa M, García Cuéllar CM, Sánchez-Pérez Y, Chirino YI. Food grade titanium dioxide (E171) interferes with monocyte-macrophage cell differentiation and their phagocytic capacity. Food Chem Toxicol 2024; 192:114912. [PMID: 39121895 DOI: 10.1016/j.fct.2024.114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Food grade titanium dioxide E171 has been used in products such as confectionery, doughs and flours to enhance organoleptic properties. The European Union has warned about adverse effects on humans due to oral consumption. After oral exposure, E171 reaches the bloodstream which raises the concern about effects on blood cells such as monocytes. One of the main functions of these cells is the differentiation of macrophages leading to the phagocytosis of foreign particles. The aim of this study was to evaluate the effect of E171 exposure on the phagocytic capacity and differentiation process of monocytes (THP-1) into macrophages. Physicochemical E171 properties were evaluated, and THP-1 monocytes were exposed to 4, 40 and 200 μg/ml. Cell viability, uptake capacity, cytokine release, the differentiation process, cytoskeletal arrangement and E171 internalization were assayed. Results showed that E171 particles had an amorphous shape with a mean of hydrodynamic size of ∼46 nm in cell culture media. Cell viability decreased until the 9th day of exposure, while the uptake capacity decreased up to 62% in a concentration dependent manner in monocytes. Additionally, the E171 exposure increased the proinflammatory cytokines release and decreased the cell differentiation by a 61% in macrophages. E171 induced changes in cytoskeletal arrangement and some of the E171 particles were located inside the nuclei. We conclude that E171 exposure in THP-1 monocytes induced an inflammatory response, impaired the phagocytic capacity, and interfered with cell differentiation from monocytes to macrophages.
Collapse
Affiliation(s)
- Alejandro A Zagal-Salinas
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Octavio Ispanixtlahuatl-Meráz
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Jonadab E Olguín-Hernández
- Laboratorio Nacional en Salud Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Miriam Rodríguez-Sosa
- Laboratorio de Inmunidad Innata, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Claudia M García Cuéllar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de México, CP 14080, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de México, CP 14080, Mexico
| | - Yolanda I Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico.
| |
Collapse
|
2
|
Ilvonen P, Pusa R, Härkönen K, Laitinen S, Impola U. Distinct targeting and uptake of platelet and red blood cell-derived extracellular vesicles into immune cells. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e130. [PMID: 38938679 PMCID: PMC11080822 DOI: 10.1002/jex2.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 06/29/2024]
Abstract
Blood-derived extracellular vesicles (EVs) hold great therapeutic potential. As blood contains mixed EV populations, it is challenging to study EVs originating from different cells separately. Blood cell concentrates manufactured in blood banks offer an excellent non-invasive source of blood cell-specific EV populations. To study blood cell-specific EVs, we isolated EVs from platelet (TREVs) and red blood cell (EryEVs) concentrates and characterized them using nanoparticle tracking analysis, imaging flow cytometry, electron microscopy and western blot analysis and co-cultured them with peripheral blood mononuclear cells (PBMCs). Our aim was to use imaging flow cytometry to investigate EV interaction with PBMCs as well as study their effects on T-lymphocyte populations to better understand their possible biological functions. As a conclusion, TREVs interacted with PBMCs more than EryEVs. Distinctively, TREVs were uptaken into CD11c+ monocytes rapidly and into CD19+ B-lymphocytes in 24 h. EryEVs were not uptaken into CD11c+ monocytes before the 24-h time point, and they were only seen on the surface of lymphocytes. Neither TREVs nor EryEV were uptaken into CD3+ T-lymphocytes and no effect on T-cell populations was detected. We have previously seen similar differences in targeting PC-3 cancer cells. Further studies are needed to address the functional properties of blood cell concentrate-derived EVs. This study demonstrates that imaging flow cytometry can be used to study the distinctive differences in the interaction and uptake of EVs. Considering our current and previous results, EVs present a new valuable component for the future development of blood-derived therapeutics.
Collapse
Affiliation(s)
| | - Reetta Pusa
- Finnish Red Cross Blood ServiceHelsinkiFinland
| | | | | | - Ulla Impola
- Finnish Red Cross Blood ServiceHelsinkiFinland
| |
Collapse
|
3
|
Vis B, Powell JJ, Hewitt RE. Label-Free Identification of Persistent Particles in Association with Primary Immune Cells by Imaging Flow Cytometry. Methods Mol Biol 2023; 2635:135-148. [PMID: 37074661 DOI: 10.1007/978-1-0716-3020-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The frequency of human exposure to persistent particles via consumer products, air pollution, and work environments is a modern-day hazard and an active area of research. Particle density and crystallinity, which often dictate their persistence in biological systems, are associated with strong light absorption and reflectance. These attributes allow several persistent particle types to be identified without the use of additional labels using laser light-based techniques such as microscopy, flow cytometry, and imaging flow cytometry. This form of identification allows the direct analysis of environmental persistent particles in association with biological samples after in vivo studies and real-life exposures. Microscopy and imaging flow cytometry have progressed with computing capabilities and fully quantitative imaging techniques can now plausibly detail the interactions and effects of micron and nano-sized particles with primary cells and tissues. This chapter summarises studies which have utilized the strong light absorption and reflectance characteristics of particles for their detection in biological specimens. This is followed by the description of methods for the analysis of whole blood samples and the use of imaging flow cytometry to identify particles in association with primary peripheral blood phagocytic cells, using brightfield and darkfield parameters.
Collapse
Affiliation(s)
- Bradley Vis
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jonathan J Powell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Rachel E Hewitt
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Rodríguez-Ibarra C, Medina-Reyes EI, Déciga-Alcaraz A, Delgado-Buenrostro NL, Quezada-Maldonado EM, Ispanixtlahuatl-Meráz O, Ganem-Rondero A, Flores-Flores JO, Vázquez-Zapién GJ, Mata-Miranda MM, López-Marure R, Pedraza-Chaverri J, García-Cuéllar CM, Sánchez-Pérez Y, Chirino YI. Food grade titanium dioxide accumulation leads to cellular alterations in colon cells after removal of a 24-hour exposure. Toxicology 2022; 478:153280. [PMID: 35973603 DOI: 10.1016/j.tox.2022.153280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 10/15/2022]
Abstract
Titanium dioxide food grade (E171) is one of the most used food additives containing nanoparticles. Recently, the European Food Safety Authority indicated that E171 could no longer be considered safe as a food additive due to the possibility of it being genotoxic and there is evidence that E171 administration exacerbates colon tumor formation in murine models. However, less is known about the effects of E171 accumulation once the exposure stopped, then we hypothesized that toxic effects could be detected even after E171 removal. Therefore, we investigated the effects of E171 exposure after being removed from colon cell cultures. Human colon cancer cell line (HCT116) was exposed to 0, 1, 10 and 50 μg/cm2 of E171. Our results showed that in the absence of cytotoxicity, E171 was accumulated in the cells after 24 of exposure, increasing granularity and reactive oxygen species, inducing alterations in the molecular pattern of nucleic acids and lipids, and causing nuclei enlargement, DNA damage and tubulin depolymerization. After the removal of E171, colon cells were cultured for 48 h more hours to analyze the ability to restore the previously detected alterations. As we hypothesized, the removal of E171 was unable to revert the alterations found after 24 h of exposure in colon cells. In conclusion, exposure to E171 causes alterations that cannot be reverted after 48 h if E171 is removed from colon cells.
Collapse
Affiliation(s)
- Carolina Rodríguez-Ibarra
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico
| | - Estefany I Medina-Reyes
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico
| | - Alejandro Déciga-Alcaraz
- Atmospheric Organic Aerosol Chemical Speciation Group, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, AP 70228, Ciudad de México 04510, Mexico
| | - Norma Laura Delgado-Buenrostro
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico
| | - Ericka Marel Quezada-Maldonado
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, CP 14080 Ciudad de México, Tlalpan, Mexico
| | - Octavio Ispanixtlahuatl-Meráz
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico
| | - Adriana Ganem-Rondero
- División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. 1° de Mayo s/n, Cuautitlán Izcalli CP 54740, Estado de México, Mexico
| | - José Ocotlán Flores-Flores
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, CP 04510 Ciudad de México, Mexico
| | - Gustavo J Vázquez-Zapién
- Laboratorio de Embriología, Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, CP 11200 Ciudad de México, Mexico
| | - Mónica M Mata-Miranda
- Laboratorio de Biología Celular y Tisular, Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, CP 11200 Ciudad de México, Mexico
| | - Rebeca López-Marure
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, CP 04510 Ciudad de México, Mexico
| | - Claudia M García-Cuéllar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, CP 14080 Ciudad de México, Tlalpan, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, CP 14080 Ciudad de México, Tlalpan, Mexico
| | - Yolanda I Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico.
| |
Collapse
|
5
|
Srinivas M, Sharma P, Jhunjhunwala S. Phagocytic Uptake of Polymeric Particles by Immune Cells under Flow Conditions. Mol Pharm 2021; 18:4501-4510. [PMID: 34748349 DOI: 10.1021/acs.molpharmaceut.1c00698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Particles injected intravenously are thought to be cleared by macrophages residing in the liver and spleen, but they also encounter circulating immune cells. It remains to be established if the circulating cells can take up particles while flowing and if the uptake capacity is similar under static and flow conditions. Here, we use an in vitro peristaltic pump setup that mimics pulsatile blood flow to determine if immune cells take up particles under constant fluidic flow. We use polystyrene particles of varying sizes as the model of a polymeric particle for these studies. Our results show that the immune cells do phagocytose under flow conditions. We demonstrate that cell lines representing myeloid cells, primary human neutrophils, and monocytes take up submicrometer-sized particles at similar or better rates under flow compared to static conditions. Experiments with whole human blood show that, even under the crowding effects of red blood cells, neutrophils and monocytes take up particles while flowing. Together, these data suggest that circulating immune cells are likely to phagocytose intravenously injected particulates, which has implications for the design of particles to evade or target these cells.
Collapse
Affiliation(s)
- Megha Srinivas
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.,Undergraduate Program, Indian Institute of Science, Bengaluru 560012, India
| | - Preeti Sharma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
6
|
Vis B, Powell JJ, Hewitt RE. Imaging flow cytometry methods for quantitative analysis of label-free crystalline silica particle interactions with immune cells. AIMS BIOPHYSICS 2020; 7:144-166. [PMID: 32642556 DOI: 10.3934/biophy.2020012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exposure to respirable fractions of crystalline silica quartz dust particles is associated with silicosis, cancer and the development of autoimmune conditions. Early cellular interactions are not well understood, partly due to a lack of suitable technological methods. Improved techniques are needed to better quantify and study high-level respirable crystalline silica exposure in human populations. Techniques that can be applied to complex biological matrices are pivotal to understanding particle-cell interactions and the impact of particles within real, biologically complex environments. In this study, we investigated whether imaging flow cytometry could be used to assess the interactions between cells and crystalline silica when present within complex biological matrices. Using the respirable-size fine quartz crystalline silica dust Min-u-sil® 5, we first validated previous reports that, whilst associating with cells, crystalline silica particles can be detected solely through their differential light scattering profile using conventional flow cytometry. This same property reliably identified crystalline silica in association with primary monocytic cells in vitro using an imaging flow cytometry assay, where darkfield intensity measurements were able to detect crystalline silica concentrations as low as 2.5 μg/mL. Finally, we ultilised fresh whole blood as an exemplary complex biological matrix to test the technique. Even after the increased sample processing required to analyse cells within whole blood, imaging flow cytometry was capable of detecting and assessing silica-association to cells. As expected, in fresh whole blood exposed to crystalline silica, neutrophils and cells of the monocyte/macrophage lineage phagocytosed the particles. In addition to the use of this technique in in vitro exposure models, this method has the potential to be applied directly to ex vivo diagnostic studies and research models, where the identification of crystalline silica association with cells in complex biological matrices such as bronchial lavage fluids, alongside additional functional and phenotypic cellular readouts, is required.
Collapse
Affiliation(s)
- Bradley Vis
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| | - Jonathan J Powell
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| | - Rachel E Hewitt
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| |
Collapse
|
7
|
da Silva AB, Miniter M, Thom W, Hewitt RE, Wills J, Jugdaohsingh R, Powell JJ. Gastrointestinal Absorption and Toxicity of Nanoparticles and Microparticles: Myth, Reality and Pitfalls explored through Titanium Dioxide. CURRENT OPINION IN TOXICOLOGY 2020; 19:112-120. [PMID: 32566805 PMCID: PMC7305030 DOI: 10.1016/j.cotox.2020.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Daily oral exposure to vast numbers (>1013/adult/day) of micron or nano-sized persistent particles has become the norm for many populations. Significant airborne particle exposure is deleterious, so what about ingestion? Titanium dioxide in food grade form (fgTiO2) , which is an additive to some foods, capsules, tablets and toothpaste, may provide clues. Certainly, exposed human populations accumulate these particles in specialised intestinal cells at the base of large lymphoid follicles (Peyer's patches) and it's likely that a degree of absorption goes beyond this- i.e. lymphatics to blood circulation to tissues. We critically review the evidence and pathways. Regarding potential adverse effects, our primary message, for today's state-of-art, is that in vivo models have not been good enough and at times woeful. We provide a 'caveats list' to improve approaches and experimentation and illustrate why studies on biomarkers of particle uptake, and lower gut/mesenteric lymph nodes as targets, should be prioritized.
Collapse
Affiliation(s)
- Alessandra Barreto da Silva
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Michelle Miniter
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - William Thom
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Rachel E Hewitt
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - John Wills
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Ravin Jugdaohsingh
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Jonathan J Powell
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
8
|
Ultrasmall silica nanoparticles directly ligate the T cell receptor complex. Proc Natl Acad Sci U S A 2019; 117:285-291. [PMID: 31871161 DOI: 10.1073/pnas.1911360117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The impact of ultrasmall nanoparticles (<10-nm diameter) on the immune system is poorly understood. Recently, ultrasmall silica nanoparticles (USSN), which have gained increasing attention for therapeutic applications, were shown to stimulate T lymphocytes directly and at relatively low-exposure doses. Delineating underlying mechanisms and associated cell signaling will hasten therapeutic translation and is reported herein. Using competitive binding assays and molecular modeling, we established that the T cell receptor (TCR):CD3 complex is required for USSN-induced T cell activation, and that direct receptor complex-particle interactions are permitted both sterically and electrostatically. Activation is not limited to αβ TCR-bearing T cells since those with γδ TCR showed similar responses, implying that USSN mediate their effect by binding to extracellular domains of the flanking CD3 regions of the TCR complex. We confirmed that USSN initiated the signaling pathway immediately downstream of the TCR with rapid phosphorylation of both ζ-chain-associated protein 70 and linker for activation of T cells protein. However, T cell proliferation or IL-2 secretion were only triggered by USSN when costimulatory anti-CD28 or phorbate esters were present, demonstrating that the specific impact of USSN is in initiation of the primary, nuclear factor of activated T cells-pathway signaling from the TCR complex. Hence, we have established that USSN are partial agonists for the TCR complex because of induction of the primary T cell activation signal. Their ability to bind the TCR complex rapidly, and then to dissolve into benign orthosilicic acid, makes them an appealing option for therapies targeted at transient TCR:CD3 receptor binding.
Collapse
|
9
|
Mochalova EN, Kotov IA, Rozenberg JM, Nikitin MP. Precise Quantitative Analysis of Cell Targeting by Particle-Based Agents Using Imaging Flow Cytometry and Convolutional Neural Network. Cytometry A 2019; 97:279-287. [PMID: 31809002 DOI: 10.1002/cyto.a.23939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/13/2019] [Accepted: 11/06/2019] [Indexed: 01/10/2023]
Abstract
Understanding the intricacies of particle-cell interactions is essential for many applications such as imaging, phototherapy, and drug/gene delivery, because it is the key to accurate control of the particle properties for the improvement of their therapeutic and diagnostic efficiency. Recently, high-throughput methods have emerged for the detailed investigation of these interactions. For example, imaging flow cytometry (IFC) collects up to 60,000 images of cells per second (in 12 optical channels) and provides information about morphology and organelle localization in combination with fluorescence and side scatter intensity data. However, analysis of IFC data is extremely difficult to perform using conventional methods that calculate integral parameters or use mask-based object recognition. Here, we show application of a convolutional neural network (CNN) for precise quantitative analysis of particle targeting of cells using IFC data. CNN provides high-throughput object detection with almost human precision but avoids the subjective choice of image processing parameters that often leads to incorrect data interpretation. The method allows accurate counting of cell-bound particles with reliable discrimination from the nonbound particles in the field of view. The proposed method expands capabilities of spot counting applications (such as organelle counting, quantification of cell-cell and cell-bacteria interactions) and is going to be useful not only for high-throughput analysis of IFC data but also for other imaging techniques. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Elizaveta N Mochalova
- Moscow Institute of Physics and Technology, 1A Kerchenskaya St., 117303, Moscow, Russia.,Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991, Moscow, Russia
| | - Ivan A Kotov
- Moscow Institute of Physics and Technology, 1A Kerchenskaya St., 117303, Moscow, Russia
| | - Julian M Rozenberg
- Moscow Institute of Physics and Technology, 1A Kerchenskaya St., 117303, Moscow, Russia
| | - Maxim P Nikitin
- Moscow Institute of Physics and Technology, 1A Kerchenskaya St., 117303, Moscow, Russia
| |
Collapse
|
10
|
Talamini L, Gimondi S, Violatto MB, Fiordaliso F, Pedica F, Tran NL, Sitia G, Aureli F, Raggi A, Nelissen I, Cubadda F, Bigini P, Diomede L. Repeated administration of the food additive E171 to mice results in accumulation in intestine and liver and promotes an inflammatory status. Nanotoxicology 2019; 13:1087-1101. [DOI: 10.1080/17435390.2019.1640910] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Laura Talamini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Sara Gimondi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Martina B. Violatto
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Fabio Fiordaliso
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Federica Pedica
- Division of Molecular Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Ngoc Lan Tran
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Giovanni Sitia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Federica Aureli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità-National Institute of Health, Rome, Italy
| | - Andrea Raggi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità-National Institute of Health, Rome, Italy
| | - Inge Nelissen
- Health Department, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Francesco Cubadda
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità-National Institute of Health, Rome, Italy
| | - Paolo Bigini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| |
Collapse
|
11
|
Abstract
As a consequence of their increase in annual production and widespread distribution in the environment, nanoparticles potentially pose a significant public health risk. The sought-after catalytic activity granted by their physiochemical properties doubles as a hazard to physiological processes following exposure through inhalation, oral, transdermal, subcutaneous, and intravenous uptake. Upon uptake into the body, their size, morphology, surface charge, coating, and chemical composition augment the response of biological systems to the materials and enhance their toxicity. Identification of each property is necessary to predict the harm imposed by foreign nanomaterials in the body. Assay methods ranging from endotoxin and lactate dehydrogenase (LDH) signaling to apoptosis and oxidative stress detection supply valuable techniques for exposing biomarkers of nanoparticle-induced cellular damage. Spectroscopic investigation of epithelial barrier permeation and distribution within living cells reveals the proclivity of nanoparticles to penetrate the body's natural defensive boundaries and deposit themselves in cytotoxic locations. Combination of the various characterization methodologies and assays is required for every new nanoparticulate system despite preexisting data for similar systems due to the lack of deterministic trends among investigated nanoparticles. The propensity of nanomaterials to denature proteins and oxidize substrates in their local environment generates significant concern for the applicability of several traditional in vitro assays, and the modification of susceptible approaches into novel methods suitable for the evaluation of nanoparticles comprises the focus of future work centered on nanoparticle toxicity analysis.
Collapse
Affiliation(s)
- Dustin T Savage
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Thomas D Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
12
|
Vis B, Hewitt RE, Faria N, Bastos C, Chappell H, Pele L, Jugdaohsingh R, Kinrade SD, Powell JJ. Non-Functionalized Ultrasmall Silica Nanoparticles Directly and Size-Selectively Activate T Cells. ACS NANO 2018; 12:10843-10854. [PMID: 30346692 DOI: 10.1021/acsnano.8b03363] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Sub-micron-sized silica nanoparticles, even as small as 10-20 nm in diameter, are well-known for their activation of mononuclear phagocytes. In contrast, the cellular impact of those <10 nm [ i.e., ultrasmall silica nanoparticles (USSN)] is not well-established for any cell type despite anticipated human exposure. Here, we synthesized discrete populations of USSN with volume median diameters between 1.8 to 16 nm and investigated their impact on the mixed cell population of human primary peripheral mononuclear cells. USSN 1.8-7.6 nm in diameter, optimally 3.6-5.1 nm in diameter, induced dose-dependent CD4 and CD8 T-cell activation in terms of cell surface CD25 and CD69 up-regulation at concentrations above 150 μM Sitotal (∼500 nM particles). Induced activation with only ∼2.4 μM particles was (a) equivalent to that observed with typical positive control levels of Staphylococcal enterotoxin B (SEB) and (b) evident in antigen presenting cell-deplete cultures as well as in a pure T-cell line (Jurkat) culture. In the primary mixed-cell population, USSN induced IFN-γ secretion but failed to induce T-cell proliferation or the secretion of IL-2, IL-10, or IL-4. Collectively, these data indicate that USSN initiate activation, with Th1 polarization, of T cells via direct particle-cell interaction. Finally, similarly sized iron hydroxide particles did not induce the expression of T-cell activation markers, indicating some selectivity of the ultrasmall particle type. Given that humans may be exposed to ultrasmall particles and that these materials have emerging bioclinical applications, their off-target immunomodulatory effects via direct T-cell activation should be carefully considered.
Collapse
Affiliation(s)
- Bradley Vis
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
- Department of Chemistry , Lakehead University , Thunder Bay , Ontario P7B 5E1 , Canada
| | - Rachel E Hewitt
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
| | - Nuno Faria
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
| | - Carlos Bastos
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
| | - Helen Chappell
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
- School of Food Science and Nutrition , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , United Kingdom
| | - Laetitia Pele
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
| | - Ravin Jugdaohsingh
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
| | - Stephen D Kinrade
- Department of Chemistry , Lakehead University , Thunder Bay , Ontario P7B 5E1 , Canada
| | - Jonathan J Powell
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
| |
Collapse
|
13
|
Andreoli C, Leter G, De Berardis B, Degan P, De Angelis I, Pacchierotti F, Crebelli R, Barone F, Zijno A. Critical issues in genotoxicity assessment of TiO2
nanoparticles by human peripheral blood mononuclear cells. J Appl Toxicol 2018; 38:1471-1482. [DOI: 10.1002/jat.3650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Cristina Andreoli
- Department of Environment and Health; Istituto Superiore di Sanità; Viale Regina Elena 299 00161 Rome Italy
| | - Giorgio Leter
- Laboratory Biosafety and Risk Assessment, ENEA CR Casaccia; Via Anguillarese 301 00123 Rome Italy
| | - Barbara De Berardis
- National Centre for Innovative Technologies in Public Health; Istituto Superiore di Sanità; Viale Regina Elena 299 00161 Rome Italy
| | - Paolo Degan
- S.C. Mutagenesis, IRCCS AOU San Martino - IST (Istituto Nazionale per la Ricerca sul Cancro), CBA Torre A2; L.go R. Benzi 10 Genoa Italy
| | - Isabella De Angelis
- Department of Environment and Health; Istituto Superiore di Sanità; Viale Regina Elena 299 00161 Rome Italy
| | - Francesca Pacchierotti
- Laboratory Biosafety and Risk Assessment, ENEA CR Casaccia; Via Anguillarese 301 00123 Rome Italy
| | - Riccardo Crebelli
- Department of Environment and Health; Istituto Superiore di Sanità; Viale Regina Elena 299 00161 Rome Italy
| | - Flavia Barone
- Department of Environment and Health; Istituto Superiore di Sanità; Viale Regina Elena 299 00161 Rome Italy
| | - Andrea Zijno
- Department of Environment and Health; Istituto Superiore di Sanità; Viale Regina Elena 299 00161 Rome Italy
| |
Collapse
|
14
|
Koller D, Bramhall P, Devoy J, Goenaga-Infante H, Harrington CF, Leese E, Morton J, Nuñez S, Rogers J, Sampson B, Powell JJ. Analysis of soluble or titanium dioxide derived titanium levels in human whole blood: consensus from an inter-laboratory comparison. Analyst 2018; 143:5520-5529. [DOI: 10.1039/c8an00824h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Exposure to titanium (Ti),viathe ingestion of pigment grade Ti dioxide (TiO2), is commonplace for westernised populations.
Collapse
Affiliation(s)
- D. Koller
- Biomineral Research Group
- Department of Veterinary Medicine
- University of Cambridge
- Cambridge
- UK
| | - P. Bramhall
- University Hospital of Wales TRACE ELEMENT LABORATORY
- Department of Medical Biochemistry and Immunology
- Cardiff
- UK
| | - J. Devoy
- INRS
- Unité de Génération d'atmosphères et de Chimie Analytique Toxicologique
- 54519 Vandoeuvre-lès-Nancy
- France
| | | | | | - E. Leese
- Health and Safety Executive
- Biological Monitoring
- Buxton
- UK
| | - J. Morton
- Health and Safety Executive
- Biological Monitoring
- Buxton
- UK
| | - S. Nuñez
- LGC Limited
- Inorganic Analysis
- Teddington
- UK
| | - J. Rogers
- University Hospital of Wales TRACE ELEMENT LABORATORY
- Department of Medical Biochemistry and Immunology
- Cardiff
- UK
| | - B. Sampson
- Charing Cross Hospital
- SAS Trace Element Laboratory
- London
- UK
| | - J. J. Powell
- Biomineral Research Group
- Department of Veterinary Medicine
- University of Cambridge
- Cambridge
- UK
| |
Collapse
|
15
|
Riedle S, Pele LC, Otter DE, Hewitt RE, Singh H, Roy NC, Powell JJ. Pro-inflammatory adjuvant properties of pigment-grade titanium dioxide particles are augmented by a genotype that potentiates interleukin 1β processing. Part Fibre Toxicol 2017; 14:51. [PMID: 29216926 PMCID: PMC5721614 DOI: 10.1186/s12989-017-0232-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 11/23/2017] [Indexed: 02/07/2023] Open
Abstract
Background Pigment-grade titanium dioxide (TiO2) particles are an additive to some foods (E171 on ingredients lists), toothpastes, and pharma−/nutraceuticals and are absorbed, to some extent, in the human intestinal tract. TiO2 can act as a modest adjuvant in the secretion of the pro-inflammatory cytokine interleukin 1β (IL-1β) when triggered by common intestinal bacterial fragments, such as lipopolysaccharide (LPS) and/or peptidoglycan. Given the variance in human genotypes, which includes variance in genes related to IL-1β secretion, we investigated whether TiO2 particles might, in fact, be more potent pro-inflammatory adjuvants in cells that are genetically susceptible to IL-1β-related inflammation. Methods We studied bone marrow-derived macrophages from mice with a mutation in the nucleotide-binding oligomerisation domain-containing 2 gene (Nod2m/m), which exhibit heightened secretion of IL-1β in response to the peptidoglycan fragment muramyl dipeptide (MDP). To ensure relevance to human exposure, TiO2 was food-grade anatase (119 ± 45 nm mean diameter ± standard deviation). We used a short ‘pulse and chase’ format: pulsing with LPS and chasing with TiO2 +/− MDP or peptidoglycan. Results IL-1β secretion was not stimulated in LPS-pulsed bone marrow-derived macrophages, or by chasing with MDP, and only very modestly so by chasing with peptidoglycan. In all cases, however, IL-1β secretion was augmented by chasing with TiO2 in a dose-dependent fashion (5–100 μg/mL). When co-administered with MDP or peptidoglycan, IL-1β secretion was further enhanced for the Nod2m/m genotype. Tumour necrosis factor α was triggered by LPS priming, and more so for the Nod2m/m genotype. This was enhanced by chasing with TiO2, MDP, or peptidoglycan, but there was no additive effect between the bacterial fragments and TiO2. Conclusion Here, the doses of TiO2 that augmented bacterial fragment-induced IL-1β secretion were relatively high. In vivo, however, selected intestinal cells appear to be loaded with TiO2, so such high concentrations may be ‘exposure-relevant’ for localised regions of the intestine where both TiO2 and bacterial fragment uptake occurs. Moreover, this effect is enhanced in cells from Nod2m/m mice indicating that genotype can dictate inflammatory signalling in response to (nano)particle exposure. In vivo studies are now merited. Electronic supplementary material The online version of this article (10.1186/s12989-017-0232-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Riedle
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand.,, Present address: Conreso GmbH, Neuhauser Str. 47, 80331, München, Germany
| | - Laetitia C Pele
- Biomineral Research Group, MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB1 9NL, UK
| | - Don E Otter
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442, New Zealand.,Present address: Center for Dairy Research, University of Wisconsin-Madison, 1605 Linden Drive, Madison, WI, 53706-1565, USA
| | - Rachel E Hewitt
- Biomineral Research Group, MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB1 9NL, UK.,Department of Veterinary Medicine, Biomineral Research Group, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Nicole C Roy
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Jonathan J Powell
- Biomineral Research Group, MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB1 9NL, UK. .,Department of Veterinary Medicine, Biomineral Research Group, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| |
Collapse
|