1
|
Ibrahim E, Sohail SK, Ihunwo A, Eid RA, Al-Shahrani Y, Rezigalla AA. Effect of high-altitude hypoxia on function and cytoarchitecture of rats' liver. Sci Rep 2025; 15:12771. [PMID: 40229399 PMCID: PMC11997024 DOI: 10.1038/s41598-025-97863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 04/08/2025] [Indexed: 04/16/2025] Open
Abstract
The liver is central to metabolic, detoxification, and homeostatic functions. Exposure to hypobaric hypoxia at high altitudes causes detrimental effects on the liver, leading to injury. This study evaluated the effect of hypoxia-induced at high altitudes on liver function, oxidative stress, and histopathological changes in rats. This study used 24 male Wistar rats (aged 8-10 weeks). The hypoxia (hypobaric hypoxia) was inducted at a high altitude of 2,100 m above sea level. Normoxia is defined as 40 m above the sea level. The rats were randomly divided into two groups: a control group maintained at low altitudes and an experimental group exposed to high altitudes for eight weeks. Blood samples were collected from all rats through a cardiac puncture, and liver samples were taken through an abdominal approach. All samples were processed through standard methods and evaluated for liver function tests and histopathological assessment. Serum aspartate aminotransferase and alanine transaminase levels significantly increased by 25% and 30%, respectively, in the high-altitude group compared to controls (p < 0.01), indicating mild hepatocellular damage. Oxidative stress assessment indicated a significant elevation in malondialdehyde by 42% in the liver homogenates of high-altitude rats compared to controls (p < 0.001). Moreover, Superoxide dismutase activity and glutathione content decreased by 18% and 22% in the high-altitude group (p < 0.01), confirming the increased oxidative stress. Histologically, minimal inflammatory infiltration was observed in the rat livers at high altitudes, with no signs of necrosis or severe structural changes. Subclinical liver dysfunction, as evidenced by altered serum enzyme levels and increased oxidative stress with mild histological changes, is induced by high-altitude hypoxia in rats. This study's results support that a hypobaric hypoxic environment physiologically stresses the liver. Further research into the long-term implications of hypobaric hypoxia and the adaptive responses of the liver is warranted.
Collapse
Grants
- UB-14-1442 Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, which has supported this research work with the project number (UB-14-1442).
- UB-14-1442 Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, which has supported this research work with the project number (UB-14-1442).
- UB-14-1442 Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, which has supported this research work with the project number (UB-14-1442).
- UB-14-1442 Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, which has supported this research work with the project number (UB-14-1442).
- UB-14-1442 Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, which has supported this research work with the project number (UB-14-1442).
- UB-14-1442 Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, which has supported this research work with the project number (UB-14-1442).
- Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, which has supported this research work with the project number (UB-14-1442).
Collapse
Affiliation(s)
- Elwathiq Ibrahim
- Department of Anatomy, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Shahzada Khalid Sohail
- Department of Pathology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Amadi Ihunwo
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, 62529, 12573, Saudi Arabia
| | - Yazeed Al-Shahrani
- Department of Emergency Medicine, King Abdalla Hospital, Health Affairs Administration, Bisha, Saudi Arabia
| | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia.
| |
Collapse
|
2
|
Nakashima H, Kearney BM, Kinoshita M. The Liver X Receptor Promotes Immune Homeostasis via Controlled Activation of the Innate Immune System in the Liver. Biomolecules 2024; 15:25. [PMID: 39858420 PMCID: PMC11764419 DOI: 10.3390/biom15010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
The liver is an indispensable metabolic organ, responsible for accumulating and transporting various nutritional compounds in hepatocytes. However, the transport of these materials from the liver is an energetically intensive task because they contain a considerable number of hydrophobic components, including free cholesterol, and require specialized transfer proteins to shuttle these substances through an aqueous phase. Liver X receptors (LXRs) induce the expression of cholesterol transporters in macrophages to transport free cholesterol derived from apoptotic cells into extracellular space via high-density lipoproteins. Additionally, LXRs control innate immune cells through two major mechanisms: upregulating the phagocytic activity of macrophages and suppressing inflammatory reactions to prevent aggressive activation of immune cells. Therefore, the primary role of LXRs is to accelerate efferocytosis without provoking inflammation and facilitate the transfer of free cholesterol from the intracellular space. This mechanism makes the innate immune system a substantial contributor to systemic metabolic control. Concomitantly, LXRs are important factors in regulating systemic defense mechanisms through the efficient regulation of immune cells. LXR activation, therefore, has great potential for clinical applications in the treatment of metabolic, infectious, and autoimmune diseases. In this review, we discuss the current understanding of the link between LXRs and innate immune cells in the liver, along with prospects for clinical applications of LXR agonists.
Collapse
Affiliation(s)
- Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Saitama 359-8513, Japan; (B.M.K.); (M.K.)
| | | | | |
Collapse
|
3
|
Cao Y, Guo A, Li M, Ma X, Bian X, Chen Y, Zhang C, Huang S, Zhao W, Zhao S. ETS1 deficiency in macrophages suppresses colorectal cancer progression by reducing the F4/80+TIM4+ macrophage population. Carcinogenesis 2024; 45:745-758. [PMID: 39162797 DOI: 10.1093/carcin/bgae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Tumor-associated macrophages (TAMs) take on pivotal and complex roles in the tumor microenvironment (TME); however, their heterogeneity in the TME remains incompletely understood. ETS proto-oncogene 1 (ETS1) is a transcription factor that is mainly expressed in lymphocytes. However, its expression and immunoregulatory role in colorectal cancer (CRC)-associated macrophages remain unclear. In the study, the expression levels of ETS1 in CD68+ macrophages in the CRC microenvironment were significantly higher than those in matched paracarcinoma tissues. Importantly, ETS1 increased the levels of chemokines C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 10 (CXCL10) in lipopolysaccharide-stimulated THP-1 cells. It also boosted the migration and invasion of CRC cells during the in vitro co-culture. In the ETS1 conditional knockout mouse model, ETS1 deficiency in macrophages ameliorated the histological changes in DSS-induced ulcerative colitis mouse models and prolonged the survival in an azomethane/dextran sodium sulfate (AOM/DSS)-induced CRC model. ETS1 deficiency in macrophages substantially inhibited tumor formation, reduced F4/80+TIM4+ macrophages in the mesenteric lymph nodes, and decreased CCL2 and CXCL10 protein levels in tumor tissues. Moreover, ETS1 deficiency in macrophages effectively prevented liver metastasis of CRC and reduced the infiltration of TAMs into the metastasis sites. Subsequent studies have indicated that ETS1 upregulated the expression of T-cell immunoglobulin mucin receptor 4 in macrophages through the signal transducer and activator of the transcription 1 signaling pathway activated by the autocrine action of CCL2/CXCL10. Collectively, ETS1 deficiency in macrophages potentiates antitumor immune responses by repressing CCL2 and CXCL10 expression, shedding light on potential therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Yuanyuan Cao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Anning Guo
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, Jiangsu, China
| | - Muxin Li
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, Jiangsu, China
| | - Xinghua Ma
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, Jiangsu, China
| | - Xiaofeng Bian
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - YiRong Chen
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, Jiangsu, China
| | - Caixia Zhang
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, Jiangsu, China
| | - Shijia Huang
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, Jiangsu, China
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, Jiangsu, China
| |
Collapse
|
4
|
Lei J, Feng Y, Zheng W, Khamis M, Zhang J, Hou X, Guan F. Type I/II Immune Balance Contributes to the Protective Effect of AIF-1 on Hepatic Immunopathology Induced by Schistosoma japonicum in a Transgenic Mouse Model. Inflammation 2024; 47:1806-1819. [PMID: 38554240 DOI: 10.1007/s10753-024-02010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Schistosomiasis is the second most debilitating neglected tropical disease in the world. Liver egg granuloma and fibrosis are the main damage of schistosomiasis. In this study, the role of allograft inflammatory factor-1 (AIF-1) in liver pathology and its regulation in immune responses were investigated in a transgenic mouse infected with Schistosoma japonicum. We found that AIF-1 overexpression reduced worm burden and decreased egg granuloma sizes and serum alanine aminotransferase levels, along with inhibited hepatic collagen deposition and serum hydroxyproline levels during S. japonicum infection. Moreover, AIF-1 overexpression resulted in an increased ratio of Th1/Th2, increased levels of IFN-γ and T-bet, and lower levels of GATA-3 in the spleen, accompanied by increased M1 percentages, decreased M2 percentages, and thus a higher ratio of M1/M2 in the peritoneal cavity and liver. AIF-1 induced CD68 and iNOS mRNA expression and protein levels of cytoplasmic p-P38 and nuclear NF-κB, along with enhanced levels of TNF-α and TGF-β in macrophages in vitro. Moreover, the hepatic pathology had a negative correlation with Th1/Th2 and M1/M2 ratios in the infected mice. The findings reveal that the beneficial role of AIF-1 in alleviating hepatic damage is related to restoring type I/II immune balance in S. japonicum infection.
Collapse
Affiliation(s)
- Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujie Feng
- Department of Clinical Laboratory, First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Wenwen Zheng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mwadini Khamis
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinyuan Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Hou
- Department of Clinical Laboratory, General Hospital of Central Theater Command, Wuhan, 430000, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Liu M, Wu E, Pan F, Tian K, Fu J, Yu Y, Guo Z, Ma Y, Wei A, Yu X, Zhan C, Qian J. Effects of drug-induced liver injury on the in vivo fate of liposomes. Eur J Pharm Biopharm 2024; 201:114389. [PMID: 38945407 DOI: 10.1016/j.ejpb.2024.114389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Liposomes represent one of the most extensively studied nano-carriers due to their potential in targeted drug delivery. However, the complex in vivo fate, particularly under pathological conditions, presents challenges for clinical translation of liposomal therapeutics. Liver serves as the most important organ for liposome accumulation and metabolism. Unfortunately, the fate of liposomes under pathological liver conditions has been significantly overlooked. This study aimed to investigate the in vivo pharmacokinetic profile and biodistribution profile of liposomes under drug-induced liver injury (DILI) conditions. Two classic DILI animal models, i.e. acetaminophen-induced acute liver injury (AILI) and triptolide-induced subacute liver injury (TILI), were established to observe the effect of pathological liver conditions on the in vivo performance of liposomes. The study revealed significant changes in the in vivo fate of liposomes following DILI, including prolonged blood circulation and enhanced hepatic accumulation of liposomes. Changes in the composition of plasma proteins and mononuclear phagocyte system (MPS)-related cell subpopulations collectively led to the altered in vivo fate of liposomes under liver injury conditions. Despite liver injury, macrophages remained the primary cells responsible for liposomes uptake in liver, with the recruited monocyte-derived macrophages exhibiting enhanced ability to phagocytose liposomes under pathological conditions. These findings indicated that high capture of liposomes by the recruited hepatic macrophages not only offered potential solutions for targeted delivery, but also warned the clinical application of patients under pathological liver conditions.
Collapse
Affiliation(s)
- Mengyuan Liu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education & Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai 201203, PR China
| | - Ercan Wu
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China
| | - Feng Pan
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education & Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai 201203, PR China
| | - Kaisong Tian
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China
| | - Jiaru Fu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yifei Yu
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China
| | - Zhiwei Guo
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China
| | - Yinyu Ma
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China
| | - Anqi Wei
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China
| | - Xiaoyue Yu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education & Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai 201203, PR China.
| | - Changyou Zhan
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, PR China.
| | - Jun Qian
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education & Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
6
|
Ye Y, Cheng H, Wang Y, Sun Y, Zhang LD, Tang J. Macrophage: A key player in neuropathic pain. Int Rev Immunol 2024; 43:326-339. [PMID: 38661566 DOI: 10.1080/08830185.2024.2344170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
Research on the relationship between macrophages and neuropathic pain has flourished in the past two decades. It has long been believed that macrophages are strong immune effector cells that play well-established roles in tissue homeostasis and lesions, such as promoting the initiation and progression of tissue injury and improving wound healing and tissue remodeling in a variety of pathogenesis-related diseases. They are also heterogeneous and versatile cells that can switch phenotypically/functionally in response to the micro-environment signals. Apart from microglia (resident macrophages of both the spinal cord and brain), which are required for the neuropathic pain processing of the CNS, neuropathic pain signals in PNS are influenced by the interaction of tissue-resident macrophages and BM infiltrating macrophages with primary afferent neurons. And the current review looks at new evidence that suggests sexual dimorphism in neuropathic pain are caused by variations in the immune system, notably macrophages, rather than the neurological system.
Collapse
Affiliation(s)
- Ying Ye
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hao Cheng
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China
| | - Yan Wang
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yan Sun
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Li-Dong Zhang
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jun Tang
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|