1
|
Wang X, Memon AA, Hedelius A, Grundberg A, Sundquist J, Sundquist K. Circulating mitochondrial long non-coding 7S RNA in primary health care patients with depression/anxiety. J Affect Disord 2024; 349:101-106. [PMID: 38163568 DOI: 10.1016/j.jad.2023.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The significant role of long non-coding 7S RNA in controlling mitochondrial transcription highlights its importance in mitochondrial function. Considering the suggested connection between mitochondrial dysfunction and the onset of mental disorders, this study aimed to explore the potential involvement of 7S RNA in the context of depression/anxiety. RESULTS A total of 181 patients in primary health care (age 20-64 years) with depression/anxiety and 59 healthy controls were included in the study. 7S RNA was measured using quantitative real-time PCR in plasma samples collected before (baseline) and after 8 weeks of treatment (mindfulness or cognitive-based behavioral therapy). Upon adjustment for age and sex, the baseline plasma levels of 7S RNA were significantly higher in patients than in healthy controls (p < 0.001). Notably, post-treatment, there was a significant reduction in 7S RNA levels (p = 0.03). These changes in 7S RNA were related to the treatment response, as indicated by HADS-D (Hospital Anxiety and Depression Scale) scores (ß = -0.04, p = 0.04), even after accounting for baseline scores and other cofounders. CONCLUSION The findings of this study indicate an association between plasma 7S RNA levels and depression/anxiety, as well as treatment response. While further confirmatory analyses are necessary, plasma 7S RNA holds promise as a potential predictive biomarker for both depression/anxiety and the treatment response within these disorders.
Collapse
Affiliation(s)
- Xiao Wang
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden.
| | - Ashfaque A Memon
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden
| | - Anna Hedelius
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden
| | - Anton Grundberg
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai, New York, USA; Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Japan
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai, New York, USA; Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Japan
| |
Collapse
|
2
|
Ryan KM, Doody E, McLoughlin DM. Whole blood mitochondrial DNA copy number in depression and response to electroconvulsive therapy. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110656. [PMID: 36216200 DOI: 10.1016/j.pnpbp.2022.110656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Mitochondrial dysfunction may play a role in various psychiatric conditions. Mitochondrial DNA copy number (mtDNAcn), the ratio of mitochondrial DNA to nuclear DNA, represents an attractive marker of mitochondrial health that is easily measured from stored DNA samples, and has been shown to be altered in depression. In this study, we measured mtDNAcn in whole blood samples from medicated patients with depression (n = 100) compared to healthy controls (n = 89) and determined the relationship between mtDNAcn and depression severity and the therapeutic response to electroconvulsive therapy (ECT). We also explored the relationship between mtDNAcn and telomere length and inflammatory markers. Our results show that mtDNAcn was significantly elevated in blood from patients with depression when compared to control samples, and this result survived statistical adjustment for potential confounders (p = 0.002). mtDNAcn was significantly elevated in blood from subgroups of patients with non-psychotic or unipolar depression. There was no difference in mtDNAcn noted in subgroups of ECT remitters/non-remitters or responders/non-responders. Moreover, mtDNAcn was not associated with depression severity, telomere length, or circulating inflammatory marker concentrations. Overall, our results show that mtDNAcn is elevated in blood from patients with depression, though whether this translates to mitochondrial function is unknown. Further work is required to clarify the contribution of mitochondria and mtDNA to the pathophysiology of depression and the therapeutic response to antidepressant treatments.
Collapse
Affiliation(s)
- Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, James Street, Dublin 8, Ireland
| | - Eimear Doody
- Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, James Street, Dublin 8, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, James Street, Dublin 8, Ireland.
| |
Collapse
|
3
|
Sex-related difference of association of mitochondrial DNA copy number with PTSD in U.S. service members. J Psychiatr Res 2023; 159:1-5. [PMID: 36652751 DOI: 10.1016/j.jpsychires.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Gender differences in the lifetime prevalence of post-traumatic stress disorder (PTSD) have been well described with rates reported as approximately 10%-12% in females and 5%-6% in males (Olff, 2017). This study examined whether the sex-related difference of mitochondrial DNA copy number (mtDNAcn), an emerging systemic index of mitochondrial biogenesis and function can serve as a potential biomarker for PTSD. Leukocyte mtDNAcn of service members with PTSD (male = 127, female = 24) or without PTSD (male = 621, female = 78) was assessed using a TaqMan assay. The results were validated by the absolute quantification of QX-200 droplet digital PCR (ddPCR). PTSD symptoms and symptom severity were assessed using the PTSD Checklist (PCL), a 17-item, DSM-based, self-report questionnaire with well-established validity and reliability. DSM-IV criteria and PTSD were determined by PCL total score. We found that mtDNAcn of female subjects with PTSD was significantly higher compared to either male or female non-PTSD controls or male subjects with PTSD (p < 0.05). There was no significant difference in mtDNAcn between males with PTSD and male/female controls without PTSD. Using in vitro cultured SH-SY5Y cells (human neuroblastoma), we demonstrated that estrogen (Estro) treatment significantly decreased mtDNAcn (P < 0.001) compared to the vehicle control. We also found that pre-treatment with either synthetic glucocorticoid dexamethasone (Dex) or Estro blocker tamoxifen (Tamox) attenuated the estrogen-induced decreases of mtDNAcn. Our data suggest that mtDNAcn may be gender-dependent in the Servicemembers with PTSD. Glucocorticoid and/or estrogen receptors may play a role in the regulation of mtDNAcn. The sex-related difference of mtDNAcn may serve as a PTSD biomarker for females.
Collapse
|
4
|
Wang B, Shi H, Yang B, Miao Z, Sun M, Yang H, Xu X. The mitochondrial Ahi1/GR participates the regulation on mtDNA copy numbers and brain ATP levels and modulates depressive behaviors in mice. Cell Commun Signal 2023; 21:21. [PMID: 36691038 PMCID: PMC9869592 DOI: 10.1186/s12964-022-01034-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Previous studies have shown that depression is often accompanied by an increase in mtDNA copy number and a decrease in ATP levels; however, the exact regulatory mechanisms remain unclear. METHODS In the present study, Western blot, cell knockdown, immunofluorescence, immunoprecipitation and ChIP-qPCR assays were used to detect changes in the Ahi1/GR-TFAM-mtDNA pathway in the brains of neuronal Abelson helper integration site-1 (Ahi1) KO mice and dexamethasone (Dex)-induced mice to elucidate the pathogenesis of depression. In addition, a rescue experiment was performed to determine the effects of regular exercise on the Ahi1/GR-TFAM-mtDNA-ATP pathway and depression-like behavior in Dex-induced mice and Ahi1 KO mice under stress. RESULTS In this study, we found that ATP levels decreased and mitochondrial DNA (mtDNA) copy numbers increased in depression-related brain regions in Dex-induced depressive mice and Ahi1 knockout (KO) mice. In addition, Ahi1 and glucocorticoid receptor (GR), two important proteins related to stress and depressive behaviors, were significantly decreased in the mitochondria under stress. Intriguingly, GR can bind to the D-loop control region of mitochondria and regulate mitochondrial replication and transcription. Importantly, regular exercise significantly increased mitochondrial Ahi1/GR levels and ATP levels and thus improved depression-like behaviors in Dex-induced depressive mice but not in Ahi1 KO mice under stress. CONCLUSIONS In summary, our findings demonstrated that the mitochondrial Ahi1/GR complex and TFAM coordinately regulate mtDNA copy numbers and brain ATP levels by binding to the D-loop region of mtDNA Regular exercise increases the levels of the mitochondrial Ahi1/GR complex and improves depressive behaviors. Video Abstract.
Collapse
Affiliation(s)
- Bin Wang
- Department of Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Haixia Shi
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Bo Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Miao Sun
- Department of Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Hao Yang
- Department of Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Xingshun Xu
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
5
|
Lorenzo EC, Kuchel GA, Kuo CL, Moffitt TE, Diniz BS. Major depression and the biological hallmarks of aging. Ageing Res Rev 2023; 83:101805. [PMID: 36410621 PMCID: PMC9772222 DOI: 10.1016/j.arr.2022.101805] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Major depressive disorder (MDD) is characterized by psychological and physiological manifestations contributing to the disease severity and outcome. In recent years, several lines of evidence have suggested that individuals with MDD have an elevated risk of age-related adverse outcomes across the lifespan. This review provided evidence of a significant overlap between the biological abnormalities in MDD and biological changes commonly observed during the aging process (i.e., hallmarks of biological aging). Based on such evidence, we formulate a mechanistic model showing how abnormalities in the hallmarks of biological aging can be a common denominator and mediate the elevated risk of age-related health outcomes commonly observed in MDD. Finally, we proposed a roadmap for novel studies to investigate the intersection between the biology of aging and MDD, including the use of geroscience-guided interventions, such as senolytics, to delay or improve major depression by targeting biological aging.
Collapse
Affiliation(s)
- Erica C Lorenzo
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Chia-Ling Kuo
- Department of Public Health Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Terrie E Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, Kings College London, London, United Kingdom; PROMENTA Center, University of Oslo, Oslo, Norway
| | - Breno S Diniz
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
6
|
Durand M, Nagot N, Michel L, Le SM, Duong HT, Vallo R, Vizeneux A, Rapoud D, Giang HT, Quillet C, Thanh NTT, Hai Oanh KT, Vinh VH, Feelemyer J, Vande Perre P, Minh KP, Laureillard D, Des Jarlais D, Molès JP. Mental Disorders Are Associated With Leukocytes Telomere Shortening Among People Who Inject Drugs. Front Psychiatry 2022; 13:846844. [PMID: 35782414 PMCID: PMC9247253 DOI: 10.3389/fpsyt.2022.846844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Premature biological aging, assessed by shorter telomere length (TL) and mitochondrial DNA (mtDNA) alterations, has been reported among people with major depressive disorders or psychotic disorders. However, these markers have never been assessed together among people who inject drugs (PWIDs), although mental disorders are highly prevalent in this population, which, in addition, is subject to other aggravating exposures. Diagnosis of mental disorders was performed by a psychiatrist using the Mini International Neuropsychiatric Interview test among active PWIDs in Haiphong, Vietnam. mtDNA copy number (MCN), mtDNA deletion, and TL were assessed by quantitative PCR and compared to those without any mental disorder. We next performed a multivariate analysis to identify risk factors associated with being diagnosed with a major depressive episode (MDE) or a psychotic syndrome (PS). In total, 130 and 136 PWIDs with and without psychiatric conditions were analyzed. Among PWIDs with mental disorders, 110 and 74 were diagnosed with MDE and PS, respectively. TL attrition was significantly associated with hepatitis C virus-infected PWIDs with MDE or PS (adjusted odds ratio [OR]: 0.53 [0.36; 0.80] and 0.59 [0.39; 0.88], respectively). TL attrition was even stronger when PWIDs cumulated at least two episodes of major depressive disorders. On the other hand, no difference was observed in mtDNA alterations between groups. The telomeric age difference with drug users without a diagnosis of psychiatric condition was estimated during 4.2-12.8 years according to the number of MDEs, making this group more prone to age-related diseases.
Collapse
Affiliation(s)
- Mélusine Durand
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| | - Laurent Michel
- Pierre Nicole Center, CESP UMR 1018, Paris-Saclay University, Paris, France
| | - Sao Mai Le
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Huong Thi Duong
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Roselyne Vallo
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| | - Amélie Vizeneux
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| | - Delphine Rapoud
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| | - Hoang Thi Giang
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Catherine Quillet
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| | | | | | - Vu Hai Vinh
- Infectious and Tropical Diseases Department, Viet Tiep Hospital, Hai Phong, Vietnam
| | - Jonathan Feelemyer
- School of Global Public Health, New York University, New York, NY, United States
| | - Philippe Vande Perre
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| | - Khue Pham Minh
- Faculty of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Didier Laureillard
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France.,Infectious and Tropical Diseases Department, Caremeau University Hospital, Nîmes, France
| | - Don Des Jarlais
- School of Global Public Health, New York University, New York, NY, United States
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| |
Collapse
|
7
|
Gentiluomo M, Giaccherini M, Gào X, Guo F, Stocker H, Schöttker B, Brenner H, Canzian F, Campa D. Genome-wide association study of mitochondrial copy number. Hum Mol Genet 2021; 31:1346-1355. [PMID: 34964454 DOI: 10.1093/hmg/ddab341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial DNA copy number (mtDNAcn) variation has been associated with increased risk of several human diseases in epidemiological studies. The quantification of mtDNAcn performed with real-time PCR is currently considered the de facto standard among several techniques. However, the heterogeneity of the laboratory methods (DNA extraction, storage, processing) used could give rise to results that are difficult to compare and reproduce across different studies. Several lines of evidence suggest that mtDNAcn is influenced by nuclear and mitochondrial genetic variability, however this relation is largely unexplored. The aim of this work was to elucidate the genetic basis of mtDNAcn variation. We performed a genome-wide association study (GWAS) of mtDNAcn in 6836 subjects from the ESTHER prospective cohort, and included, as replication set, the summary statistics of a GWAS that used 295 150 participants from the UK Biobank. We observed two novel associations with mtDNAcn variation on chromosome 19 (rs117176661), and 12 (rs7136238) that reached statistical significance at the genome-wide level. A polygenic score that we called mitoscore including all known single nucleotide polymorphisms explained 1.11% of the variation of mtDNAcn (p = 5.93 × 10-7). In conclusion, we performed a GWAS on mtDNAcn, adding to the evidence of the genetic background of this trait.
Collapse
Affiliation(s)
- Manuel Gentiluomo
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy
| | - Matteo Giaccherini
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy.,Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Feng Guo
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, 69120, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg, 69120, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Daniele Campa
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy
| |
Collapse
|
8
|
Mitochondrial DNA Copy Number Adaptation as a Biological Response Derived from an Earthquake at Intrauterine Stage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211771. [PMID: 34831526 PMCID: PMC8624126 DOI: 10.3390/ijerph182211771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 01/07/2023]
Abstract
An altered mitochondrial DNA copy number (mtDNAcn) at birth can be a marker of increased disease susceptibility later in life. Gestational exposure to acute stress, such as that derived from the earthquake experienced on 19 September 2017 in Mexico City, could be associated with changes in mtDNAcn at birth. Our study used data from the OBESO (Biochemical and Epigenetic Origins of Overweight and Obesity) perinatal cohort in Mexico City. We compared the mtDNAcn in the umbilical cord blood of 22 infants born before the earthquake, 24 infants whose mothers were pregnant at the time of the earthquake (exposed), and 37 who were conceived after the earthquake (post-earthquake). We quantified mtDNAcn by quantitative real-time polymerase chain reaction normalized with a nuclear gene. We used a linear model adjusted by maternal age, body mass index, socioeconomic status, perceived stress, and pregnancy comorbidities. Compared to non-exposed newborns (mean ± SD mtDNAcn: 0.740 ± 0.161), exposed and post-earthquake newborns (mtDNAcn: 0.899 ± 0.156 and 0.995 ± 0.169, respectively) had increased mtDNAcn, p = 0.001. The findings of this study point at mtDNAcn as a potential biological marker of acute stress and suggest that experiencing an earthquake during pregnancy or before gestation can have programing effects in the unborn child. Long-term follow-up of newborns to women who experience stress prenatally, particularly that derived from a natural disaster, is warranted.
Collapse
|
9
|
Humphreys KL, Sisk LM, Manczak EM, Lin J, Gotlib IH. Depressive Symptoms Predict Change in Telomere Length and Mitochondrial DNA Copy Number Across Adolescence. J Am Acad Child Adolesc Psychiatry 2020; 59:1364-1370.e2. [PMID: 31628984 PMCID: PMC7160006 DOI: 10.1016/j.jaac.2019.09.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/10/2019] [Accepted: 10/11/2019] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Several studies have found associations between a diagnosis or symptoms of major depressive disorder and markers of cellular aging and dysfunction. These investigations, however, are predominantly cross-sectional and focus on adults. In the present study, we used a prospective longitudinal design to test the cross-sectional association between depressive symptoms in adolescents and telomere length (TL) as well as mitochondrial DNA copy number (mtDNA-cn). METHOD A total of 121 adolescents (mean age = 11.38 years, SD = 1.03; 39% male adolescents and 61% female adolescents) were followed for approximately 2 years. At baseline and follow-up, participants provided saliva for DNA extraction, from which measures of TL and mtDNA-cn were obtained. Depressive symptoms were obtained via the Children's Depression Inventory. RESULTS There was no association between depressive symptoms and markers of cellular aging at baseline; however, depressive symptoms at baseline predicted higher rates of telomere erosion (β = -0.201, p = .016) and greater increases in mtDNA-cn (β = 0.190, p = .012) over the follow-up period. Markers of cellular aging at baseline did not predict subsequent changes in depressive symptoms. Furthermore, including the number of stressful life events did not alter these patterns of findings. CONCLUSION These results indicate that depressive symptoms precede changes in cellular aging and dysfunction, rather than the reverse.
Collapse
Affiliation(s)
| | | | | | - Jue Lin
- University of California, San Francisco
| | | |
Collapse
|
10
|
Vyas CM, Ogata S, Reynolds CF, Mischoulon D, Chang G, Cook NR, Manson JE, Crous-Bou M, De Vivo I, Okereke OI. Lifestyle and behavioral factors and mitochondrial DNA copy number in a diverse cohort of mid-life and older adults. PLoS One 2020; 15:e0237235. [PMID: 32785256 PMCID: PMC7423118 DOI: 10.1371/journal.pone.0237235] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/02/2020] [Indexed: 01/15/2023] Open
Abstract
Mitochondrial DNA copy number (mtDNAcn) is a putative biomarker of oxidative stress and biological aging. Modifiable factors, including physical activity (PA), avoidance of heavy alcohol use and smoking, and maintaining good mental health, may reduce oxidative stress and promote healthy aging. Yet, limited data exist regarding how these factors are associated with mtDNAcn or whether age, sex or race/ethnicity moderate associations. In this cross-sectional study, we selected 391 adults (183 non-Hispanic White, 110 Black and 98 Hispanic; mean = 67 years) from the VITAL-DEP (VITamin D and OmegA-3 TriaL-Depression Endpoint Prevention) ancillary to the VITAL trial. We estimated associations between lifestyle and behavioral factors (PA, alcohol consumption, cigarette smoking and depression) and log-transformed mtDNAcn using multivariable linear regression models. MtDNAcn was not correlated with chronological age; women had ~17% higher mtDNAcn compared to men. There were no significant associations between PA measures (frequency, amount or intensity) or alcohol consumption with mtDNAcn. Cigarette smoking (per 5 pack-years) was significantly associated with mtDNAcn (percent difference = -2.9% (95% confidence interval (CI) = -5.4%, -0.4%)); a large contrast was observed among heavy vs. non-smokers (≥30 vs. 0 pack-years): percent difference = -28.5% (95% CI = -44.2%, -8.3%). The estimate of mtDNAcn was suggestively different for past vs. no depression history (percent difference = -15.1% 95% CI = -30.8%, 4.1%), but this difference was not statistically significant. The association between smoking and log-mtDNAcn varied by sex and race/ethnicity; it was stronger in men and Black participants. While chance findings cannot be excluded, results from this study support associations of smoking, but not chronological age, with mtDNAcn and suggest nuanced considerations of mtDNAcn as indicative of varying oxidative stress states vs. biological aging itself.
Collapse
Affiliation(s)
- Chirag M. Vyas
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Soshiro Ogata
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Charles F. Reynolds
- Department of Psychiatry, UPMC and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - David Mischoulon
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Grace Chang
- Department of Psychiatry, VA Boston Healthcare System, Brockton, Massachusetts, United States of America
| | - Nancy R. Cook
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - JoAnn E. Manson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Marta Crous-Bou
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Olivia I. Okereke
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Cai N, Fňašková M, Konečná K, Fojtová M, Fajkus J, Coomber E, Watt S, Soranzo N, Preiss M, Rektor I. No Evidence of Persistence or Inheritance of Mitochondrial DNA Copy Number in Holocaust Survivors and Their Descendants. Front Genet 2020; 11:87. [PMID: 32211017 PMCID: PMC7069217 DOI: 10.3389/fgene.2020.00087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial DNA copy number has been previously shown to be elevated with severe and chronic stress, as well as stress-related pathology like Major Depressive Disorder (MDD) and post-traumatic stress disorder (PTSD). While experimental data point to likely recovery of mtDNA copy number changes after the stressful event, time needed for full recovery and whether it can be achieved are still unknown. Further, while it has been shown that stress-related mtDNA elevation affects multiple tissues, its specific consequences for oogenesis and maternal inheritance of mtDNA has never been explored. In this study, we used qPCR to quantify mtDNA copy number in 15 Holocaust survivors and 102 of their second- and third-generation descendants from the Czech Republic, many of whom suffer from PTSD, and compared them to controls in the respective generations. We found no significant difference in mtDNA copy number in the Holocaust survivors compared to controls, whether they have PTSD or not, and no significant elevation in descendants of female Holocaust survivors as compared to descendants of male survivors or controls. Our results showed no evidence of persistence or inheritance of mtDNA changes in Holocaust survivors, though that does not rule out effects in other tissues or mitigating mechanism for such changes.
Collapse
Affiliation(s)
- Na Cai
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.,European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Monika Fňašková
- Neuroscience Centre, CEITEC, Masaryk University, Brno, Czechia.,1st Neurology Department, Hospital St Anne and School of Medicine, Masaryk University, Brno, Czechia
| | - Klára Konečná
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czechia.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czechia.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czechia.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Eve Coomber
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Stephen Watt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Nicole Soranzo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Marek Preiss
- Neuroscience Centre, CEITEC, Masaryk University, Brno, Czechia
| | - Ivan Rektor
- Neuroscience Centre, CEITEC, Masaryk University, Brno, Czechia
| |
Collapse
|
12
|
Chung JK, Lee SY, Park M, Joo EJ, Kim SA. Investigation of mitochondrial DNA copy number in patients with major depressive disorder. Psychiatry Res 2019; 282:112616. [PMID: 31639552 DOI: 10.1016/j.psychres.2019.112616] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/25/2019] [Accepted: 10/13/2019] [Indexed: 12/24/2022]
Abstract
Mitochondrial dysfunction is implicated in the pathophysiology of major depressive disorder (MDD). This dysfunction can be indirectly assessed using the mitochondrial DNA (mtDNA) copy number. A total of 118 patients with MDD and 116 age- and sex-matched control subjects were recruited for this study, and mtDNA copy numbers were measured in peripheral blood cells. This study also examined the potential variables that might impact mtDNA copy number in MDD, including age and clinical features. Additionally, epigenetic control of mtDNA copy number was examined by assessing DNA methylation ratios in the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) promoter in nuclear DNA and the displacement loop (D-loop) region of mtDNA. The present results showed that patients with MDD had a higher mtDNA copy number and a decreased DNA methylation status in the PGC1α promoter. mtDNA copy numbers were negatively associated with an age, psychomotor agitation, and somatic symptoms in MDD. These results suggest that the alterations in mitochondrial function and epigenetic change of PGC1α may be relevant to the pathophysiology of MDD.
Collapse
Affiliation(s)
- Jae Kyung Chung
- Department of Psychiatry, Eumsung-somang Hospital, Eumsung, Republic of Korea
| | - Soo Young Lee
- Department of Pharmacology, School of Medicine, Eulji University, 77, Gyeryong-ro 771 beon-gil, Jung-gu, Daejeon 34824, Republic of Korea
| | - Mira Park
- Department of Preventive Medicine, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Eun-Jeong Joo
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon, Republic of Korea; Department of Neuropsychiatry, Department of Psychiatry, Nowon Eulji Medical Center, Eulji University, 68 Hangeulbiseokro, Nowon-Gu, 01830 Seoul, Republic of Korea.
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, 77, Gyeryong-ro 771 beon-gil, Jung-gu, Daejeon 34824, Republic of Korea.
| |
Collapse
|
13
|
Ridout KK, Parade SH, Kao HT, Magnan S, Seifer R, Porton B, Price LH, Tyrka AR. Childhood maltreatment, behavioral adjustment, and molecular markers of cellular aging in preschool-aged children: A cohort study. Psychoneuroendocrinology 2019; 107:261-269. [PMID: 31174164 PMCID: PMC7839663 DOI: 10.1016/j.psyneuen.2019.05.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 05/04/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Childhood maltreatment is a major risk factor for the development of behavioral problems and poor physical and mental health. Accelerated cellular aging, through reduced telomere length and mitochondrial dysfunction, may be a mechanism underlying these associations. METHODS Families with (n = 133) and without (n = 123) child welfare documentation of moderate-severe maltreatment in the past six months participated in this study. Children ranged in age from 3 to 5 years, were racially and ethnically diverse, and 91% qualified for public assistance. Structured record review and interviews were used to assess a history of maltreatment and other adversities. Telomere length and mitochondrial DNA copy number (mtDNAcn) were measured from saliva DNA using real-time PCR. Measures were repeated at a six-month follow-up assessment. Repeated measures general linear models were used to examine the effects of maltreatment and other adversities on telomere length and mtDNAcn over time. RESULTS Maltreatment and other adverse experiences were significant positive predictors of both telomere length and mtDNAcn over time. Internalizing and externalizing behavior problems were also both significantly associated with telomere length, but only internalizing symptoms were associated with mtDNAcn. CONCLUSIONS This is the first study to show that mtDNAcn is altered in children with stress and trauma, and the findings are consistent with recent studies of adults. Surprisingly, children who experienced moderate-severe levels of maltreatment in the prior six months had longer telomeres, possibly reflecting compensatory changes in response to recent trauma. Telomere length and mtDNAcn were also associated with behavioral problems, suggesting that these measures of cellular aging may be causally implicated in the pathophysiology of stress-related conditions.
Collapse
Affiliation(s)
- Kathryn K. Ridout
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Stephanie H. Parade
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Bradley/Hasbro Children’s Research Center, E. P. Bradley Hospital, East Providence, RI, USA
| | - Hung-Teh Kao
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Stevie Magnan
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Ronald Seifer
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Bradley/Hasbro Children’s Research Center, E. P. Bradley Hospital, East Providence, RI, USA
| | - Barbara Porton
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Lawrence H. Price
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Audrey R. Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Address Correspondence to: Audrey R. Tyrka, M.D., Ph.D., Butler Hospital, 345 Blackstone Blvd., Providence, RI 02906. TEL: (401) 455-6520. FAX: (401) 455-6534.
| |
Collapse
|
14
|
Tymofiyeva O, Blom EH, Ho TC, Connolly CG, Lindqvist D, Wolkowitz OM, Lin J, LeWinn KZ, Sacchet MD, Han LKM, Yuan JP, Bhandari SP, Xu D, Yang TT. High levels of mitochondrial DNA are associated with adolescent brain structural hypoconnectivity and increased anxiety but not depression. J Affect Disord 2018; 232:283-290. [PMID: 29500956 PMCID: PMC5864120 DOI: 10.1016/j.jad.2018.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/19/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Adolescent anxiety and depression are highly prevalent psychiatric disorders that are associated with altered molecular and neurocircuit profiles. Recently, increased mitochondrial DNA copy number (mtDNA-cn) has been found to be associated with several psychopathologies in adults, especially anxiety and depression. The associations between mtDNA-cn and anxiety and depression have not, however, been investigated in adolescents. Moreover, to date there have been no studies examining associations between mtDNA-cn and brain network alterations in mood disorders in any age group. METHODS The first aim of this study was to compare salivary mtDNA-cn between 49 depressed and/or anxious adolescents and 35 well-matched healthy controls. The second aim of this study was to identify neural correlates of mtDNA-cn derived from diffusion tensor imaging (DTI) and tractography, in the full sample of adolescents. RESULTS There were no diagnosis-specific alterations in mtDNA-cn. However, there was a positive correlation between mtDNA-cn and levels of anxiety, but not depression, in the full sample of adolescents. A subnetwork of connections largely corresponding to the left fronto-occipital fasciculus had significantly lower fractional anisotropy (FA) values in adolescents with higher than median mtDNA-cn. LIMITATIONS Undifferentiated analysis of free and intracellular mtDNA and use of DTI-based tractography represent this study's limitations. CONCLUSIONS The results of this study help elucidate the relationships between clinical symptoms, molecular changes, and neurocircuitry alterations in adolescents with and without anxiety and depression, and they suggest that increased mtDNA-cn is associated both with increased anxiety symptoms and with decreased fronto-occipital structural connectivity in this population.
Collapse
Affiliation(s)
- Olga Tymofiyeva
- Department of Radiology & Biomedical Imaging, University of California San Francisco, United States.
| | - Eva Henje Blom
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States,Department of Clinical Sciences/ Child- and Adolescent Psychiatry, Umeå University, Umeå, Sweden
| | - Tiffany C. Ho
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States,Department of Psychology, Stanford University, United States
| | - Colm G. Connolly
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States
| | - Daniel Lindqvist
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States,Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Psychiatry, Sweden
| | - Owen M. Wolkowitz
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, United States
| | - Kaja Z. LeWinn
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States
| | - Matthew D. Sacchet
- Department of Psychiatry and Behavioral Sciences, Stanford University, United States
| | - Laura K. M. Han
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, GGZ inGeest, Amsterdam Public Health research institute, Amsterdam, The Netherlands
| | - Justin P. Yuan
- Department of Radiology & Biomedical Imaging, University of California San Francisco, United States
| | - Sarina P. Bhandari
- Department of Radiology & Biomedical Imaging, University of California San Francisco, United States
| | - Duan Xu
- Department of Radiology & Biomedical Imaging, University of California San Francisco, United States
| | - Tony T. Yang
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States
| |
Collapse
|
15
|
Depression, telomeres and mitochondrial DNA: between- and within-person associations from a 10-year longitudinal study. Mol Psychiatry 2018; 23:850-857. [PMID: 28348385 DOI: 10.1038/mp.2017.48] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 12/16/2022]
Abstract
Alterations in cellular aging, indexed by leukocyte telomere length (LTL) and mitochondrial DNA copy number (mtDNAcn), might partly account for the increased health risks in persons with depression. Although some studies indeed found cross-sectional associations of depression with LTL and mtDNAcn, the longitudinal associations remain unclear. This 10-year longitudinal study examined between- and within-person associations of depressive symptoms with LTL and mtDNAcn in a large community sample. Data are from years 15, 20 and 25 follow-up evaluations in 977 subjects from the Coronary Artery Risk Development in Young Adults study. Depressive symptoms (years 15, 20, 25) were assessed with the Center for Epidemiologic Studies Depression (CES-D) scale; LTL (years 15, 20, 25) and mtDNAcn (years 15, 25) were measured in whole blood by quantitative PCR. With mixed-model analyses, we explored between- and within-person associations between CES-D scores and cellular aging markers. Results showed that high levels of depressive symptomatology throughout the 10-year time span was associated with shorter average LTL over 10 years (B=-4.2; P=0.014) after covarying for age, sex, race and education. However, no within-person association was found between depressive symptoms and LTL at each year (B=-0.8; P=0.548). Further, we found no between-person (B=-0.2; P=0.744) or within-person (B=0.4; P=0.497) associations between depressive symptomatology and mtDNAcn. Our results provide evidence for a long-term, between-person relationship of depressive symptoms with LTL, rather than a dynamic and direct within-person relationship. In this study, we found no evidence for an association between depressive symptoms and mtDNAcn.
Collapse
|
16
|
Relation of long-term patterns in caregiving activity and depressive symptoms to telomere length in older women. Psychoneuroendocrinology 2018; 89:161-167. [PMID: 29414028 PMCID: PMC5878722 DOI: 10.1016/j.psyneuen.2018.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/11/2017] [Accepted: 01/08/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Research links psychological stress to accelerated cellular aging. Here we examined whether long-term patterns of depression and caregiving burden, forms of chronic psychological stress, were associated with shorter telomere length, a biomarker of cellular aging. METHODS The study included 1250 healthy older women (mean: 68.0; range: 60-81 years) in the Nurses' Health Study. Long-term patterns in depressive symptoms and caregiving activity (separated into care of children/grandchildren vs. ill or disabled family members/others) incorporated questionnaire data between 1992 and 2000; relative leukocyte telomere lengths (LTLs) were measured in 2000-2001. Least-squares means LTL z-scores were calculated across categories of depression patterns and caregiving intensity. RESULTS Six empirically-derived latent classes of depressive symptom trajectories were identified: minimal-stable (63.7%), mild-worsening (3.9%), subthreshold-improving (22.8%), subthreshold-worsening (2.7%), clinical range depressive-improving (6.2%), and clinical range depressive-persistent (0.6%). After collapsing trajectory patterns into 4 groups (combining those with minimal and mild symptoms into one group and those with clinical range depressive symptoms into one group) due to very small sample sizes in some groups, we observed marginal associations (p = 0.07): e.g., the least-squares means LTL z-scores were lowest (-0.08; 95% CI: -0.22 to 0.06) for the clinical range depressive symptoms group and highest (0.12; 0.04-0.20) for the subthreshold-improving group (Tukey's post-hoc pairwise p = 0.07). With six depressive symptom trajectories, no significant associations were observed with regard to telomere lengths. There were no significant associations between caregiving intensity and LTLs. CONCLUSIONS There were no associations between long-term patterns of caregiving burden and telomere lengths among older women. Possible differences in telomere lengths by types of long-term depressive symptom trajectories may warrant further investigation.
Collapse
|
17
|
Association of mitochondrial DNA in peripheral blood with depression, anxiety and stress- and adjustment disorders in primary health care patients. Eur Neuropsychopharmacol 2017. [PMID: 28647451 DOI: 10.1016/j.euroneuro.2017.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondrial dysfunction may result in a variety of diseases. The objectives here were to examine possible differences in mtDNA copy number between healthy controls and patients with depression, anxiety or stress- and adjustment disorders; the association between mtDNA copy number and disease severity at baseline; and the association between mtDNA copy number and response after an 8-week treatment (mindfulness, cognitive based therapy). A total of 179 patients in primary health care (age 20-64 years) with depression, anxiety and stress- and adjustment disorders, and 320 healthy controls (aged 19-70 years) were included in the study. Relative mtDNA copy number was measured using quantitative real-time PCR on peripheral blood samples. We found that the mean mtDNA copy number was significantly higher in patients compared to controls (84.9 vs 75.9, p<0.0001) at baseline. The difference in mtDNA copy number between patients and controls remained significant after controlling for age and sex (ß=8.13, p<0.0001; linear regression analysis). The mtDNA copy number was significantly associated with Patient Health Questionnaire (PHQ-9) scores (β=0.57, p=0.02) at baseline. After treatment, the change in mtDNA copy number was significantly associated with the treatment response, i.e., change in Hospital Anxiety and Depression Scale (HADS-D) and PHQ-9 scores (ß=1.00, p=0.03 and ß=0.65, p=0.04, respectively), after controlling for baseline scores, age, sex, BMI, smoking status, alcohol drinking and medication. Our findings show that mtDNA copy number is associated with symptoms of depression, anxiety and stress- and adjustment disorders and treatment response in these disorders.
Collapse
|
18
|
Docherty AR, Edwards AC, Yang F, Peterson RE, Sawyers C, Adkins DE, Moore AA, Webb BT, Bacanu SA, Flint J, Kendler KS. Age of onset and family history as indicators of polygenic risk for major depression. Depress Anxiety 2017; 34:446-452. [PMID: 28152564 PMCID: PMC5501985 DOI: 10.1002/da.22607] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/31/2016] [Accepted: 12/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The extent to which earlier age of onset (AO) is a reflection of increased genetic risk for major depression (MD) is still unknown. Previous biometrical research has provided mixed empirical evidence for the genetic overlap of AO with MD. If AO is demonstrated to be relevant to molecular polygenic risk for MD, incorporation of AO as a phenotype could enhance future genetic studies. METHODS This research estimated the SNP-based heritability of AO in the China, Oxford and VCU Experimental Research on Genetic Epidemiology (CONVERGE) case-control sample (N = 9,854; MD case, n = 4,927). Common single nucleotide polymorphism heritability of MD was also examined across both high and low median-split AO groups, and best linear unbiased predictor (BLUP) scores of polygenic risk, in split-halves, were used to predict AO. Distributions of genetic risk across early and late AO were compared, and presence of self-reported family history (FH) of MD was also examined as a predictor of AO. RESULTS AO was not significantly heritable and polygenic risk derived from the aggregated effects of common genetic variants did not significantly predict AO in any analysis. AO was modestly but significantly lower in cases with a first-degree genetic FH of MD. CONCLUSIONS Findings indicate that AO is associated with greater self-reported genetic risk for MD in cases, yet not associated with common variant polygenic risk for MD. Future studies of early MD may benefit more from the examination of important moderating variables such as early life events.
Collapse
Affiliation(s)
- Anna R. Docherty
- Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University School of Medicine,Corresponding author: Anna R. Docherty, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, 1P-132 Biotech One, 800 East Leigh Street, Richmond, VA 23220, USA. Telephone: +1 804 828 8127, fax: +1 804 828 1471,
| | - Alexis C. Edwards
- Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University School of Medicine
| | - Fuzhong Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Roseann E. Peterson
- Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University School of Medicine
| | - Chelsea Sawyers
- Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University School of Medicine
| | - Daniel E. Adkins
- Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University School of Medicine
| | - Ashlee A. Moore
- Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University School of Medicine
| | - Bradley T. Webb
- Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University School of Medicine
| | - Silviu A. Bacanu
- Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University School of Medicine
| | - Jonathan Flint
- Center for Neurobehavioral Genetics, UCLA Semel Institute for Neuroscience and Human Behavior,Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine
| | - Kenneth S. Kendler
- Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University School of Medicine
| |
Collapse
|