1
|
Cameron S, Weston-Green K, Newell KA. The disappointment centre of the brain gets exciting: a systematic review of habenula dysfunction in depression. Transl Psychiatry 2024; 14:499. [PMID: 39702626 DOI: 10.1038/s41398-024-03199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The habenula is an epithalamic brain structure that acts as a neuroanatomical hub connecting the limbic forebrain to the major monoamine centres. Abnormal habenula activity is increasingly implicated in depression, with a surge in publications on this topic in the last 5 years. Direct activation of the habenula is sufficient to induce a depressive phenotype in rodents, suggesting a causative role in depression. However, the molecular basis of habenula dysfunction in depression remains elusive and it is unclear how the preclinical advancements translate to the clinical field. METHODS A systematic literature search was conducted following the PRISMA guidelines. The two search terms depress* and habenula* were applied across Scopus, Web of Science and PubMed databases. Studies eligible for inclusion must have examined the habenula in clinical cases of depression or preclinical models of depression and compared their measures to an appropriate control. RESULTS Preclinical studies (n = 63) measured markers of habenula activity (n = 16) and neuronal firing (n = 22), largely implicating habenula hyperactivity in depression. Neurotransmission was briefly explored (n = 15), suggesting imbalances within excitatory and inhibitory habenula signalling. Additional preclinical studies reported neuroconnectivity (n = 1), inflammatory (n = 3), genomic (n = 3) and circadian rhythm (n = 3) abnormalities. Seven preclinical studies (11%) included both males and females. From these, 5 studies (71%) reported a significant difference between the sexes in at least one habenula measure taken. Clinical studies (n = 24) reported abnormalities in habenula connectivity (n = 15), volume (n = 6) and molecular markers (n = 3). Clinical studies generally included male and female subjects (n = 16), however, few of these studies examined sex as a biological variable (n = 6). CONCLUSIONS Both preclinical and clinical evidence suggest the habenula is disrupted in depression. However, there are opportunities for sex-specific analyses across both areas. Preclinical evidence consistently suggests habenula hyperactivity as a primary driver for the development of depressive symptoms. Clinical studies support gross habenula abnormalities such as altered activation, connectivity, and volume, with emerging evidence of blood brain barrier dysfunction, however, progress is limited by a lack of detailed molecular analyses and limited imaging resolution.
Collapse
Affiliation(s)
- Sarah Cameron
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Katrina Weston-Green
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Kelly A Newell
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
2
|
Yun JY, Kim YK. Neural correlates of treatment response to ketamine for treatment-resistant depression: A systematic review of MRI-based studies. Psychiatry Res 2024; 340:116092. [PMID: 39116687 DOI: 10.1016/j.psychres.2024.116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/26/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
Treatment-resistant depression (TRD) is defined as patients diagnosed with depression having a history of failure with different antidepressants with an adequate dosage and treatment duration. The NMDA receptor antagonist ketamine rapidly reduces depressive symptoms in TRD. We examined neural correlates of treatment response to ketamine in TRD through a systematic review of brain magnetic resonance imaging (MRI) studies. A comprehensive search in PubMed was performed using "ketamine AND depression AND magnetic resonance." The time span for the database queries was "Start date: 2018/01/01; End date: 2024/05/31." Total 41 original articles comprising 1,396 TRD and 587 healthy controls (HC) were included. Diagnosis of depression was made using the Structured Clinical Interview for DSM Disorders (SCID), the Mini-International Neuropsychiatric Interview (MINI), and/or the clinical assessment by psychiatrists. Patients with affective psychotic disorders were excluded. Most studies applied ketamine [0.5mg/kg racemic ketamine and/or 0.25mg/kg S-ketamine] diluted in 60cc of normal saline via intravenous infusion over 40 min one time, four times, or six times spaced 2-3 days apart over 2 weeks. Clinical outcome was defined as either remission, response, and/or percentage changes of depressive symptoms. Brain MRI of the T2*-weighted imaging (resting-state or task performance), arterial spin labeling, diffusion weighted imaging, and T1-weighted imaging were acquired at baseline and mainly 1-3days after the ketamine administration. Only the study results replicated by ≥ 2 studies and were included in the default-mode, salience, fronto-parietal, subcortical, and limbic networks were regarded as meaningful. Putative brain-based markers of treatment response to ketamine in TRD were found in the structural/functional features of limbic (subgenual ACC, hippocampus, cingulum bundle-hippocampal portion; anhedonia/suicidal ideation), salience (dorsal ACC, insula, cingulum bundle-cingulate gyrus portion; thought rumination/suicidal ideation), fronto-parietal (dorsolateral prefrontal cortex, superior longitudinal fasciculus; anhedonia/suicidal ideation), default-mode (posterior cingulate cortex; thought rumination), and subcortical (striatum; anhedonia/thought rumination) networks. Brain features of limbic, salience, and fronto-parietal networks could be useful in predicting the TRD with better response to ketamine in relief of anhedonia, thought rumination, and suicidal ideation.
Collapse
Affiliation(s)
- Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of Korea; Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, College of Medicine, Republic of Korea.
| |
Collapse
|
3
|
Liu Y, Jing Y, Gao Y, Li M, Qin W, Xie Y, Zhang B, Li J. Exploring the correlation between childhood trauma experiences, inflammation, and brain activity in first-episode, drug-naive major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01847-3. [PMID: 39073445 DOI: 10.1007/s00406-024-01847-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Childhood trauma experiences and inflammation are pivotal factors in the onset and perpetuation of major depressive disorder (MDD). However, research on brain mechanisms linking childhood trauma experiences and inflammation to depression remains insufficient and inconclusive. METHODS Resting-state fMRI scans were performed on fifty-six first-episode, drug-naive MDD patients and sixty healthy controls (HCs). A whole-brain functional network was constructed by thresholding 246 brain regions, and connectivity and network properties were calculated. Plasma interleukin-6 (IL-6) levels were assessed using enzyme-linked immunosorbent assays in MDD patients, and childhood trauma experiences were evaluated through the Childhood Trauma Questionnaire (CTQ). RESULTS Negative correlations were observed between CTQ total (r = -0.28, p = 0.047), emotional neglect (r = -0.286, p = 0.042) scores, as well as plasma IL-6 levels (r = -0.294, p = 0.036), with mean decreased functional connectivity (FC) in MDD patients. Additionally, physical abuse exhibited a positive correlation with the nodal clustering coefficient of the left thalamus in patients (r = 0.306, p = 0.029). Exploratory analysis indicated negative correlations between CTQ total and emotional neglect scores and mean decreased FC in MDD patients with lower plasma IL-6 levels (n = 28), while these correlations were nonsignificant in MDD patients with higher plasma IL-6 levels (n = 28). CONCLUSIONS This finding enhances our understanding of the correlation between childhood trauma experiences, inflammation, and brain activity in MDD, suggesting potential variations in their underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Yuan Liu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Yifan Jing
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Ying Gao
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Meijuan Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bin Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China.
| |
Collapse
|
4
|
Wang J, Li G, Ji G, Hu Y, Zhang W, Ji W, Yu J, Han Y, Cui G, Wang H, Manza P, Volkow ND, Wang GJ, Zhang Y. Habenula Volume and Functional Connectivity Changes Following Laparoscopic Sleeve Gastrectomy for Obesity Treatment. Biol Psychiatry 2024; 95:916-925. [PMID: 37480977 DOI: 10.1016/j.biopsych.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/18/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Neuroimaging studies have revealed alterations in habenular (Hb) structure and functional connectivity (FC) in psychiatric conditions. The Hb plays a particularly critical role in regulating negative emotions, which trigger excessive food intake and obesity. However, obesity and weight loss intervention (i.e., laparoscopic sleeve gastrectomy [LSG])-associated changes in Hb structure and FC have not been studied. METHODS We used voxel-based morphometry analysis to measure changes in gray matter volume (GMV) in the Hb in 56 patients with obesity at pre-LSG and 12 months post-LSG and in 78 normal-weight (NW) control participants. Then, we conducted Hb seed-based resting-state FC (RSFC) to examine obesity-related and LSG-induced alterations in RSFC. Finally, we used mediation analysis to characterize the interrelationships among Hb GMV, RSFC, and behaviors. RESULTS Compared with NW participants, Hb GMV was smaller in patients at pre-LSG and increased at 12 months post-LSG to levels equivalent to that of NW; in addition, increases in Hb GMV were correlated with reduced body mass index (BMI). Compared with NW participants, pre-LSG patients showed greater RSFCs of the Hb-insula, Hb-precentral gyrus, and Hb-rolandic operculum and weaker RSFCs of the Hb-thalamus, Hb-hypothalamus, and Hb-caudate; LSG normalized these RSFCs. Decreased RSFC of the Hb-insula was correlated with reduced BMI, Yale Food Addiction Scale rating, and emotional eating; reduced hunger levels were correlated with increased RSFCs of the Hb-thalamus and Hb-hypothalamus; and reduced BMI and Yale Food Addiction Scale ratings were correlated with increased RSFCs of the Hb-thalamus and Hb-hypothalamus, respectively. The bidirectional relationships between Hb GMV and RSFC of the Hb-insula contributed to reduced BMI. CONCLUSIONS These findings indicate that LSG increased Hb GMV and that its related improvement in RSFC of the Hb-insula may mediate long-term benefits of LSG for eating behaviors and weight loss.
Collapse
Affiliation(s)
- Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Gang Ji
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Juan Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Su T, Chen B, Yang M, Wang Q, Zhou H, Zhang M, Wu Z, Lin G, Wang D, Li Y, Zhong X, Ning Y. Disrupted functional connectivity of the habenula links psychomotor retardation and deficit of verbal fluency and working memory in late-life depression. CNS Neurosci Ther 2024; 30:e14490. [PMID: 37804094 PMCID: PMC11017447 DOI: 10.1111/cns.14490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/02/2023] [Accepted: 09/23/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Functional abnormalities of the habenula in patients with depression have been demonstrated in an increasing number of studies, and the habenula is involved in cognitive processing. However, whether patients with late-life depression (LLD) exhibit disrupted habenular functional connectivity (FC) and whether habenular FC mediates the relationship between depressive symptoms and cognitive impairment remain unclear. METHODS Overall, 127 patients with LLD and 75 healthy controls were recruited. The static and dynamic FC between the habenula and the whole brain was compared between LLD patients and healthy controls, and the relationships of habenular FC with depressive symptoms and cognitive impairment were explored by correlation and mediation analyses. RESULTS Compared with the controls, patients with LLD exhibited decreased static FC between the right habenula and bilateral inferior frontal gyrus (IFG); there was no significant difference in dynamic FC of the habenula between the two groups. Additionally, the decreased static FC between the right habenula and IFG was associated with more severe depressive symptoms (especially psychomotor retardation) and cognitive impairment (language, memory, and visuospatial skills). Last, static FC between the right habenula and left IFG partially mediated the relationship between depressive symptoms (especially psychomotor retardation) and cognitive impairment (verbal fluency and working memory). CONCLUSIONS Patients with LLD exhibited decreased static FC between the habenula and IFG but intact dynamic FC of the habenula. This decreased static FC mediated the relationship between depressive symptoms and cognitive impairment.
Collapse
Affiliation(s)
- Ting Su
- Department of RadiologyThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Ben Chen
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Mingfeng Yang
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Qiang Wang
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Huarong Zhou
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Min Zhang
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhangying Wu
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Gaohong Lin
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | | | - Yue Li
- Guangzhou Medical UniversityGuangzhouChina
| | - Xiaomei Zhong
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yuping Ning
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical UniversityGuangzhouChina
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
| |
Collapse
|
6
|
Chen C, Wang M, Yu T, Feng W, Xu Y, Ning Y, Zhang B. Habenular functional connections are associated with depression state and modulated by ketamine. J Affect Disord 2024; 345:177-185. [PMID: 37879411 DOI: 10.1016/j.jad.2023.10.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Depression is a widespread mental health disorder with complex neurobiological underpinnings. The habenula, known as the 'anti-reward center', is thought to play a pivotal role in the pathophysiology of depression. This study aims to elucidate the association between the functional connections of the habenula and depression severity and to explore the modulation of these connections by ketamine. METHODS We studied 177 participants from a 7-T resting-state functional magnetic resonance imaging subset of the Human Connectome Project dataset to determine the associations between the functional connections of the habenula and depression. Additionally, we analyzed 60 depressed patients from our ketamine database to conduct a preliminary study on alterations in the functional connections of the habenula after ketamine infusions. We also investigated whether the baseline functional connectivity of the habenula is linked to subsequent improvement in depression. RESULTS We found that functional connections between the habenula and the substantia nigra, as well as the ventral tegmental area were negatively correlated with depression scores and elevated after ketamine infusions. Furthermore, the connection between the right habenula and the right substantia nigra was negatively associated with the improvement of depression. LIMITATIONS The Human Connectome Project dataset primarily consists of data from healthy participants, with varying levels of depression scores. CONCLUSION These results suggest that the habenula may facilitate depression by suppressing dopamine reward centers, and ketamine may relieve depression by disinhibiting these dopaminergic regions. This study may enhance our understanding of the neural underpinnings of depression and ketamine's antidepressant effects.
Collapse
Affiliation(s)
- Chengfeng Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingqia Wang
- Institute of Mental Health, Peking University, Beijing, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Tong Yu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanting Feng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingyi Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
7
|
Medeiros GC, Matheson M, Demo I, Reid MJ, Matheson S, Twose C, Smith GS, Gould TD, Zarate CA, Barrett FS, Goes FS. Brain-based correlates of antidepressant response to ketamine: a comprehensive systematic review of neuroimaging studies. Lancet Psychiatry 2023; 10:790-800. [PMID: 37625426 PMCID: PMC11534374 DOI: 10.1016/s2215-0366(23)00183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 08/27/2023]
Abstract
Ketamine is an effective antidepressant, but there is substantial variability in patient response and the precise mechanism of action is unclear. Neuroimaging can provide predictive and mechanistic insights, but findings are limited by small sample sizes. This systematic review covers neuroimaging studies investigating baseline (pre-treatment) and longitudinal (post-treatment) biomarkers of responses to ketamine. All modalities were included. We performed searches of five electronic databases (from inception to April 26, 2022). 69 studies were included (with 1751 participants). There was substantial methodological heterogeneity and no well replicated biomarker. However, we found convergence across some significant results, particularly in longitudinal biomarkers. Response to ketamine was associated with post-treatment increases in gamma power in frontoparietal regions in electrophysiological studies, post-treatment increases in functional connectivity within the prefrontal cortex, and post-treatment increases in the functional activation of the striatum. Although a well replicated neuroimaging biomarker of ketamine response was not identified, there are biomarkers that warrant further investigation.
Collapse
Affiliation(s)
- Gustavo C Medeiros
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Malcolm Matheson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isabella Demo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew J Reid
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Claire Twose
- Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gwenn S Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, NIMH-NIH, Bethesda, MD, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Department of Psychological and Brain Sciences, and Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Chen T, Cheng L, Ma J, Yuan J, Pi C, Xiong L, Chen J, Liu H, Tang J, Zhong Y, Zhang X, Liu Z, Zuo Y, Shen H, Wei Y, Zhao L. Molecular mechanisms of rapid-acting antidepressants: New perspectives for developing antidepressants. Pharmacol Res 2023; 194:106837. [PMID: 37379962 DOI: 10.1016/j.phrs.2023.106837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Major depressive disorder (MDD) is a chronic relapsing psychiatric disorder. Conventional antidepressants usually require several weeks of continuous administration to exert clinically significant therapeutic effects, while about two-thirds of the patients are prone to relapse of symptoms or are completely ineffective in antidepressant treatment. The recent success of the N-methyl-D-aspartic acid (NMDA) receptor antagonist ketamine as a rapid-acting antidepressant has propelled extensive research on the action mechanism of antidepressants, especially in relation to its role in synaptic targets. Studies have revealed that the mechanism of antidepressant action of ketamine is not limited to antagonism of postsynaptic NMDA receptors or GABA interneurons. Ketamine produces powerful and rapid antidepressant effects by affecting α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors, adenosine A1 receptors, and the L-type calcium channels, among others in the synapse. More interestingly, the 5-HT2A receptor agonist psilocybin has demonstrated potential for rapid antidepressant effects in depressed mouse models and clinical studies. This article focuses on a review of new pharmacological target studies of emerging rapid-acting antidepressant drugs such as ketamine and hallucinogens (e.g., psilocybin) and briefly discusses the possible strategies for new targets of antidepressants, with a view to shed light on the direction of future antidepressant research.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ling Cheng
- Hospital-Acquired Infection Control Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jingwen Ma
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiyuan Yuan
- Clinical trial center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China
| | - Linjin Xiong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Huiyang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jia Tang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yueting Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of medicinal chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, Sichuan 646000, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Ying Zuo
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan 646000, China
| | - Hongping Shen
- Clinical trial center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
9
|
Yuan S, Luo X, Chen X, Wang M, Hu Y, Zhou Y, Ning Y, Zhang B. Functional connectivity differences in the amygdala are related to the antidepressant efficacy of ketamine in patients with anxious depression. J Affect Disord 2023; 320:29-36. [PMID: 36181911 DOI: 10.1016/j.jad.2022.09.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND The antidepressant effects of ketamine in patients with anxious depression (AD) remain unclear. Functional connectivity (FC) differences in the amygdala have been linked to depression improvement after ketamine treatment in depressed patients, but their role in AD patients is uncertain. We investigated the correlation between depression improvement after ketamine treatment and amygdala FC in AD patients. METHODS Thirty-one AD patients and 18 non-anxious depression (NAD) patients received six intravenous ketamine infusions (0.5 mg/kg) over two weeks. AD patients were further divided into responders (defined as a ≥50% MADRS total score reduction on day 13) and non-responders. The FC of the amygdala subregions, including the laterobasal amygdala (LBA), centromedial amygdala (CMA), and superficial amygdala, were compared between the groups. Receiver operating characteristic curves were used to predict treatment response after ketamine infusions. RESULTS The baseline FC difference in the left LBA and the left precuneus between responders and non-responders among AD patients was found to be associated with depression improvement and was a significant predictor of treatment response to ketamine. A marked reduction in baseline LBA-precuneus FC after ketamine infusion was observed in responders. Unlike in patients with NAD, a lower right CMA-right middle temporal gyrus FC was found in AD patients. LIMITATIONS The sample size is rather small. CONCLUSIONS Our findings may suggest that amygdala FC is a significant predictor of treatment response to ketamine infusions in patients with AD. Further studies exploring the potential antidepressant mechanisms of ketamine may aid in the treatment of AD patients.
Collapse
Affiliation(s)
- Shiqi Yuan
- Psychiatric & Psychological Neuroimage Laboratory (PsyNI Lab), The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Luo
- Psychiatric & Psychological Neuroimage Laboratory (PsyNI Lab), The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Chen
- Psychiatric & Psychological Neuroimage Laboratory (PsyNI Lab), The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingqia Wang
- Psychiatric & Psychological Neuroimage Laboratory (PsyNI Lab), The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yiru Hu
- Psychiatric & Psychological Neuroimage Laboratory (PsyNI Lab), The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanling Zhou
- Psychiatric & Psychological Neuroimage Laboratory (PsyNI Lab), The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- Psychiatric & Psychological Neuroimage Laboratory (PsyNI Lab), The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
10
|
The Downstaging Concept in Treatment-Resistant Depression: Spotlight on Ketamine. Int J Mol Sci 2022; 23:ijms232314605. [PMID: 36498934 PMCID: PMC9738502 DOI: 10.3390/ijms232314605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Treatment-resistant depression is a pleomorphic phenomenon occurring in 30% of patients with depression. The chance to achieve remission decreases with every subsequent episode. It constitutes a significant part of the global disease burden, causes increased morbidity and mortality, and is associated with poor quality of life. It involves multiple difficult-to-treat episodes, with increasing resistance over time. The concept of staging captures the process of changes causing increasing treatment resistance and global worsening of functioning in all areas of life. Ketamine is a novel rapid-acting antidepressant with neuroplastic potential. Here, we argue that ketamine use as an add-on treatment of resistant major depressive disorder, based on its unique pharmacological properties, can reverse this process, give hope to patients, and prevent therapeutic nihilism.
Collapse
|
11
|
Luo Q, Chen J, Li Y, Wu Z, Lin X, Yao J, Yu H, Wu H, Peng H. Aberrant brain connectivity is associated with childhood maltreatment in individuals with major depressive disorder. Brain Imaging Behav 2022; 16:2021-2036. [PMID: 35906517 DOI: 10.1007/s11682-022-00672-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 11/02/2022]
Abstract
Although childhood maltreatment confers a high risk for the development of major depressive disorder, the neurobiological mechanisms underlying this connection remain unknown. The present study sought to identify the specific resting-state networks associated with childhood maltreatment. We recruited major depressive disorder patients with and without a history of childhood maltreatment (n = 31 and n = 30, respectively) and healthy subjects (n = 80). We used independent component analysis to compute inter- and intra- network connectivity. We found that individuals with major depressive disorder and childhood maltreatment could be characterized by the following network disconnectivity model relative to healthy subjects: (i) decreased intra-network connectivity in the left frontoparietal network and increased intra-network connectivity in the right frontoparietal network, (ii) decreased inter-network connectivity in the posterior default mode network-auditory network, posterior default mode network-limbic system, posterior default mode network-anterior default mode network, auditory network-medial visual network, lateral visual network - medial visual network, medial visual network-sensorimotor network, medial visual network - anterior default mode network, occipital pole visual network-dorsal attention network, and posterior default mode network-anterior default mode network, and (iii) increased inter-network connectivity in the sensorimotor network-ventral attention network, and dorsal attention network-ventral attention network. Moreover, we found significant correlations between the severity of childhood maltreatment and the intra-network connectivity of the frontoparietal network. Our study demonstrated that childhood maltreatment is integrally associated with aberrant network architecture in patients with major depressive disorder.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, No.36, Mingxin Road, Liwan District, Guangzhou, 510370, China
| | - Juran Chen
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, No.36, Mingxin Road, Liwan District, Guangzhou, 510370, China
| | - Yuhong Li
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, No.36, Mingxin Road, Liwan District, Guangzhou, 510370, China
| | - Zhiyao Wu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, No.36, Mingxin Road, Liwan District, Guangzhou, 510370, China
| | - Xinyi Lin
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, No.36, Mingxin Road, Liwan District, Guangzhou, 510370, China
| | - Jiazheng Yao
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, No.36, Mingxin Road, Liwan District, Guangzhou, 510370, China
| | - Huiwen Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, No.36, Mingxin Road, Liwan District, Guangzhou, 510370, China
| | - Huawang Wu
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China. .,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, No.36, Mingxin Road, Liwan District, Guangzhou, 510370, China. .,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.
| |
Collapse
|
12
|
Demchenko I, Tassone VK, Kennedy SH, Dunlop K, Bhat V. Intrinsic Connectivity Networks of Glutamate-Mediated Antidepressant Response: A Neuroimaging Review. Front Psychiatry 2022; 13:864902. [PMID: 35722550 PMCID: PMC9199367 DOI: 10.3389/fpsyt.2022.864902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Conventional monoamine-based pharmacotherapy, considered the first-line treatment for major depressive disorder (MDD), has several challenges, including high rates of non-response. To address these challenges, preclinical and clinical studies have sought to characterize antidepressant response through monoamine-independent mechanisms. One striking example is glutamate, the brain's foremost excitatory neurotransmitter: since the 1990s, studies have consistently reported altered levels of glutamate in MDD, as well as antidepressant effects following molecular targeting of glutamatergic receptors. Therapeutically, this has led to advances in the discovery, testing, and clinical application of a wide array of glutamatergic agents, particularly ketamine. Notably, ketamine has been demonstrated to rapidly improve mood symptoms, unlike monoamine-based interventions, and the neurobiological basis behind this rapid antidepressant response is under active investigation. Advances in brain imaging techniques, including functional magnetic resonance imaging, magnetic resonance spectroscopy, and positron emission tomography, enable the identification of the brain network-based characteristics distinguishing rapid glutamatergic modulation from the effect of slow-acting conventional monoamine-based pharmacology. Here, we review brain imaging studies that examine brain connectivity features associated with rapid antidepressant response in MDD patients treated with glutamatergic pharmacotherapies in contrast with patients treated with slow-acting monoamine-based treatments. Trends in recent brain imaging literature suggest that the activity of brain regions is organized into coherent functionally distinct networks, termed intrinsic connectivity networks (ICNs). We provide an overview of major ICNs implicated in depression and explore how treatment response following glutamatergic modulation alters functional connectivity of limbic, cognitive, and executive nodes within ICNs, with well-characterized anti-anhedonic effects and the enhancement of "top-down" executive control. Alterations within and between the core ICNs could potentially exert downstream effects on the nodes within other brain networks of relevance to MDD that are structurally and functionally interconnected through glutamatergic synapses. Understanding similarities and differences in brain ICNs features underlying treatment response will positively impact the trajectory and outcomes for adults suffering from MDD and will facilitate the development of biomarkers to enable glutamate-based precision therapeutics.
Collapse
Affiliation(s)
- Ilya Demchenko
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Vanessa K Tassone
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Sidney H Kennedy
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katharine Dunlop
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|