1
|
Kerekes N, Söderström A, Holmberg C, Hedman Ahlström B. Yoga for children and adolescents: A decade-long integrative review on feasibility and efficacy in school-based and psychiatric care interventions. J Psychiatr Res 2024; 180:489-499. [PMID: 39547048 DOI: 10.1016/j.jpsychires.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND There has been a concerning rise in mental illness among children and adolescents. Attention deficit and hyperactivity disorder, autism spectrum disorder, anxiety, and depression are the most prevalent diagnoses in this field. Research suggests that yoga as a complementary treatment offers relief from mental symptoms and has already been successfully applied in adult healthcare settings. OBJECTIVE The objective of this review is to provide an integrative summary of the existing research on the feasibility and effectiveness of yoga as a school-based intervention and complementary intervention in psychiatric care for children and adolescents. METHODS An integrative literature review was conducted, employing a combined quantitative and qualitative approach. The review was based on 16 selected articles, which presented data from more than 1000 children and adolescents aged 5-19 years and encompassed a variety of study designs. Literature searches were carried out systematically and unsystematically in February 2023, across three chosen databases. RESULTS Yoga interventions consistently yielded positive outcomes in multiple domains. In this review, the findings are categorized into five themes: alleviated symptoms of psychiatric conditions; strengthened self-control and behavioral changes; improved cognitive functioning; refined relaxation; enhanced well-being. By improving psychiatric symptoms, enhancing self-control, promoting relaxation, and fostering overall well-being, yoga offers a multifaceted approach toward improving mental and physical health in children and adolescents. CONCLUSION This comprehensive review presents compelling evidence of the positive benefits of yoga as a complementary intervention for a wide range of psychological symptoms and cognitive functions in children and adolescents. In order to further validate and consolidate these findings, there is a pressing need for future studies to provide more robust evidence and a deeper understanding of the effectiveness of yoga as a complementary intervention in this context.
Collapse
Affiliation(s)
- Nóra Kerekes
- Department of Health Sciences, University West, Trollhättan, 461 86, Sweden; Centre for Holistic Psychiatry Research (ChoPy), Mölndal, 431 60, Sweden.
| | - Alexandra Söderström
- Department of Child and Adolescent Psychiatry NU Hospital Group, Trollhättan, 461 73, Sweden.
| | - Christine Holmberg
- Department of Child and Adolescent Psychiatry NU Hospital Group, Trollhättan, 461 73, Sweden.
| | - Britt Hedman Ahlström
- Department of Health Sciences, University West, Trollhättan, 461 86, Sweden; Centre for Holistic Psychiatry Research (ChoPy), Mölndal, 431 60, Sweden.
| |
Collapse
|
2
|
Lipschutz R, Powers A, Minton ST, Stenson AF, Ely TD, Stevens JS, Jovanovic T, van Rooij SJ. Smaller hippocampal volume is associated with anxiety symptoms in high-risk Black youth. JOURNAL OF MOOD AND ANXIETY DISORDERS 2024; 7:100065. [PMID: 39391077 PMCID: PMC11466052 DOI: 10.1016/j.xjmad.2024.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Although there is an established link between smaller hippocampal volume and anxiety, the longitudinal relations between hippocampus structure and anxiety in diverse youth are not well understood. The present longitudinal study investigated hippocampal volumes related to anxiety symptoms in a sample of Black 8-14-year-old youth (N = 64), a population historically underrepresented in neuroimaging research. Smaller hippocampal volumes were associated with greater anxiety symptoms independent of age, sex, intracranial volume and trauma exposure. Exploratory longitudinal analyses showed smaller hippocampal volume as a predictor for anxiety symptoms (n = 37) and not a consequence of anxiety symptoms (n = 32), however results were inconclusive as this finding was no longer significant after correcting for baseline anxiety symptoms. Overall, this data increases our understanding of potential neurobiological mechanisms for anxiety in a high-risk sample of Black youth and suggests future directions into studying trajectories of developmental risk.
Collapse
Affiliation(s)
- Rebecca Lipschutz
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Sean T. Minton
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Anais F. Stenson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Timothy D. Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer S. Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Sanne J.H. van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
Pang X, Fan S, Zhang Y, Zhang T, Hou Q, Wu Y, Zhang Y, Tian Y, Wang K. Alterations in neural circuit dynamics between the limbic network and prefrontal/default mode network in patients with generalized anxiety disorder. Neuroimage Clin 2024; 43:103640. [PMID: 39033631 PMCID: PMC11326924 DOI: 10.1016/j.nicl.2024.103640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Widespread functional alterations have been implicated in patients with generalized anxiety disorder (GAD). However, most studies have primarily focused on static brain network features in patients with GAD. The current research focused on exploring the dynamics within functional brain networks among individuals diagnosed with GAD. METHODS Seventy-five participants were divided into patients with GAD and healthy controls (HCs), and resting-state functional magnetic resonance imaging data were collected. The severity of symptoms was measured using the Hamilton Anxiety Scale and the Patient Health Questionnaire. Co-activation pattern (CAP) analysis, centered on the bed nucleus of the stria terminalis, was applied to explore network dynamics. The capability of these dynamic characteristics to distinguish between patients with GAD and HCs was evaluated using a support vector machine. RESULTS Patients with GAD exhibited disruptions in the limbic-prefrontal and limbic-default-mode network circuits. Particularly noteworthy was the marked reduction in dynamic indicators such as occurrence, EntriesFromBaseline, ExitsToBaseline, in-degree, out-degree, and resilience. Moreover, these decreased dynamic features effectively distinguished the GAD group from the HC in this study. CONCLUSIONS The current findings revealed the underlying brain networks associated with compromised emotion regulation in individuals with GAD. The dynamic reduction in connectivity between the limbic-default mode network and limbic-prefrontal networks could potentially act as a biomarker and therapeutic target for GAD in the future.
Collapse
Affiliation(s)
- Xiaonan Pang
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyu Fan
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yulin Zhang
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ting Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiangqiang Hou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Wu
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Yanghua Tian
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China; The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Guo P, Zhou J, Su Y, Wang W, Hua H, Zhao P, Wang Y, Kang S, Liu M. Altered functional connectivity of the default mode network in non-arteritic anterior ischaemic optic neuropathy. Brain Commun 2024; 6:fcae186. [PMID: 38873004 PMCID: PMC11170661 DOI: 10.1093/braincomms/fcae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/20/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
The functional connectivity of the default mode network is important in understanding the neuro-pathophysiological abnormalities in patients with non-arteritic anterior ischaemic optic neuropathy. Independent component analysis can effectively determine within and between network connectivity of different brain components. Therefore, in order to explore the association between the default mode network and other brain regions, we utilized independent component analysis to investigate the alteration of functional connectivity of the default mode network. Thirty-one patients with non-arteritic anterior ischaemic optic neuropathy and 31 healthy controls, matched for age, sex and years of education, were recruited. For patients and healthy controls, functional connectivity within and between the default mode network and other brain regions were evaluated by independent component analysis. Compared with healthy controls, patients with non-arteritic anterior ischaemic optic neuropathy showed reduced functional connectivity within the default mode network in the right cerebellar tonsil and left cerebellum posterior lobe and increased functional connectivity in the left inferior temporal and right middle frontal gyri. Furthermore, patients with non-arteritic anterior ischaemic optic neuropathy showed reduced functional connectivity between the default mode network and other brain regions in the left cerebellar tonsil and increased functional connectivity in the right putamen, left thalamus, right middle temporal and left middle frontal gyri. In conclusion, negative correlations between several clinical parameters and functional connectivity of the default mode network were observed. The study contributes to understanding the mechanism of functional reorganization in non-arteritic anterior ischaemic optic neuropathy.
Collapse
Affiliation(s)
- Pengde Guo
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Jian Zhou
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Yan Su
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Weixin Wang
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Haiqin Hua
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Pengbo Zhao
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Yan Wang
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Shaohong Kang
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Ming Liu
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| |
Collapse
|
5
|
Bashford-Largo J, Nakua H, Blair RJR, Dominguez A, Hatch M, Blair KS, Dobbertin M, Ameis S, Bajaj S. A Shared Multivariate Brain-Behavior Relationship in a Transdiagnostic Sample of Adolescents. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:377-386. [PMID: 37572936 PMCID: PMC10858974 DOI: 10.1016/j.bpsc.2023.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Internalizing and externalizing psychopathology typically present in early childhood and can have negative implications on general functioning and quality of life. Prior work has linked increased psychopathology symptoms with altered brain structure. Multivariate analysis such as partial least squares correlation can help identify patterns of covariation between brain regions and psychopathology symptoms. This study examined the relationship between gray matter volume (GMV) and psychopathology symptoms in adolescents with various psychiatric diagnoses. METHODS Structural magnetic resonance imaging data were collected from 490 participants with various internalizing and externalizing diagnoses (197 female/293 male; age = 14.68 ± 2.35 years; IQ = 104.05 ± 13.11). Cortical and subcortical volumes were parcellated using the Desikan-Killiany atlas. Partial least squares correlation was used to identify multivariate linear relationships between GMV and the Strength and Difficulties Questionnaire difficulties domains (emotional, peer, conduct, and hyperactivity issues). Resampling approaches were used to determine significance (permutation test), stability (bootstrap resampling), and reproducibility (split-half resampling) of identified relationships. RESULTS We found a significant, stable, and largely reproducible dimension that linked lower Strength and Difficulties Questionnaire scores (less impairment) across all difficulties domains with greater widespread GMV (singular value = 1.17, accounts for 87.1% of the covariance; p < .001). This dimension emphasized the relationship between lower conduct problems and greater GMV in frontotemporal regions. CONCLUSIONS Our results indicate that the most significant and stable brain-behavior relationship in a transdiagnostic sample is a domain-general relationship, linking lower psychopathology symptom scores to greater global GMV. This finding suggests that a shared brain-behavior relationship may be present across adolescents with and without clinically significant psychopathology symptoms.
Collapse
Affiliation(s)
- Johannah Bashford-Largo
- Boys Town National Research Hospital, Boys Town, Nebraska; Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska.
| | - Hajer Nakua
- Center for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - R James R Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Ahria Dominguez
- Clinical Health, Emotion, and Neuroscience Laboratory, Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Melissa Hatch
- Mind and Brain Health Labs. Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Karina S Blair
- Boys Town National Research Hospital, Boys Town, Nebraska
| | - Matthew Dobbertin
- Boys Town National Research Hospital, Boys Town, Nebraska; Child and Adolescent Inpatient Psychiatric Unit, Boys Town National Research Hospital, Boys Town, Nebraska
| | - Stephanie Ameis
- Center for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sahil Bajaj
- Department of Cancer Systems Imaging, University of Texas, MD Anderson Center, Houston, Texas
| |
Collapse
|
6
|
Liu S, Cao L, Li H, Du Y, Wang M, Xiao H, Duan Y, Deng G, Huang X, Qiu C, Gong Q. Trait anxiety mediates the association between hippocampal-insula functional connectivity and anxiety symptom severity in adults with and without generalized anxiety disorder. J Affect Disord 2024; 344:1-7. [PMID: 37802321 DOI: 10.1016/j.jad.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Trait anxiety is a vulnerability factor for the development of generalized anxiety disorder (GAD). The hippocampus has been implicated in trait anxiety in normal and GAD populations. However, the exact neural mechanism of hippocampal functional connectivity (FC) and its association with clinical symptoms and trait anxiety in GAD patients remains unknown. METHODS We recruited 68 participants (37 drug-naïve non-comorbidity GAD patients and 31 matched healthy controls (HC)), assessed their trait and state anxiety, scanned them with structural and resting-state functional magnetic resonance imaging (fMRI), and compared their hippocampal FC and volumes. We explored the relationships between hippocampal FC, clinical symptoms, and trait anxiety using partial correlation analyses; we also investigated the mediating effects of trait anxiety on the association between hippocampal FC and GAD symptom severity. RESULTS The GAD group showed increased right hippocampal FC with left insula, which was positively correlated with the Self-Rating Anxiety Scale (SAS), State Anxiety Inventory (SAI), and Trait Anxiety Inventory (TAI). Trait anxiety mediated the relationship between hippocampal FC and anxiety levels. We found no significant difference in hippocampal volumes between GAD and HC. LIMITATIONS The sample size was moderate. The exclusion of comorbidity may reduce the generalizability of our results in normal clinical settings. CONCLUSIONS The GAD patients showed no structural change but had functional alterations in the hippocampus. More importantly, future psychotherapy for this disorder should consider that trait anxiety might play a crucial role in the altered hippocampal FC in GAD.
Collapse
Affiliation(s)
- Shiyu Liu
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, China
| | - Lingxiao Cao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hailong Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yang Du
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, China
| | - Mei Wang
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, China
| | - Hongqi Xiao
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, China
| | - Yingxu Duan
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, China
| | - Gaoju Deng
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu 610041, China.
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| |
Collapse
|
7
|
Bashford-Largo J, R Blair RJ, Blair KS, Dobbertin M, Dominguez A, Hatch M, Bajaj S. Identification of structural brain alterations in adolescents with depressive symptomatology. Brain Res Bull 2023; 201:110723. [PMID: 37536609 PMCID: PMC10451038 DOI: 10.1016/j.brainresbull.2023.110723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Depressive symptoms can emerge as early as childhood and may lead to adverse situations in adulthood. Studies have examined structural brain alternations in individuals with depressive symptoms, but findings remain inconclusive. Furthermore, previous studies have focused on adults or used a categorical approach to assess depression. The current study looks to identify grey matter volumes (GMV) that predict depressive symptomatology across a clinically concerning sample of adolescents. METHODS Structural MRI data were collected from 338 clinically concerning adolescents (mean age = 15.30 SD=2.07; mean IQ = 101.01 SD=12.43; 132 F). Depression symptoms were indexed via the Mood and Feelings Questionnaire (MFQ). Freesurfer was used to parcellate the brain into 68 cortical regions and 14 subcortical regions. GMV was extracted from all 82 brain areas. Multiple linear regression was used to look at the relationship between MFQ scores and region-specific GMV parameter. Follow up regressions were conducted to look at potential effects of psychiatric diagnoses and medication intake. RESULTS Our regression analysis produced a significant model (R2 = 0.446, F(86, 251) = 2.348, p < 0.001). Specifically, there was a negative association between GMV of the left parahippocampal (B = -0.203, p = 0.005), right rostral anterior cingulate (B = -0.162, p = 0.049), and right frontal pole (B = -0.147, p = 0.039) and a positive association between GMV of the left bank of the superior temporal sulcus (B = 0.173, p = 0.029). Follow up analyses produced results proximal to the main analysis. CONCLUSIONS Altered regional brain volumes may serve as biomarkers for the development of depressive symptoms during adolescence. These findings suggest a homogeneity of altered cortical structures in adolescents with depressive symptoms.
Collapse
Affiliation(s)
- Johannah Bashford-Largo
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - R James R Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Karina S Blair
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Matthew Dobbertin
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA; Child and Adolescent Inpatient Psychiatric Unit, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Ahria Dominguez
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Melissa Hatch
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Sahil Bajaj
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Inserra A, Piot A, De Gregorio D, Gobbi G. Lysergic Acid Diethylamide (LSD) for the Treatment of Anxiety Disorders: Preclinical and Clinical Evidence. CNS Drugs 2023; 37:733-754. [PMID: 37603260 DOI: 10.1007/s40263-023-01008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 08/22/2023]
Abstract
Anxiety disorders (ADs) represent the sixth leading cause of disability worldwide, resulting in a significant global economic burden. Over 50% of individuals with ADs do not respond to standard therapies, making the identification of more effective anxiolytic drugs an ongoing research priority. In this work, we review the preclinical literature concerning the effects of lysergic acid diethylamide (LSD) on anxiety-like behaviors in preclinical models, and the clinical literature on anxiolytic effects of LSD in healthy volunteers and patients with ADs. Preclinical and clinical findings show that even if LSD may exacerbate anxiety acutely (both in "microdoses" and "full doses"), it induces long-lasting anxiolytic effects. Only two randomized controlled trials combining LSD and psychotherapy have been performed in patients with ADs with and without life-threatening conditions, showing a good safety profile and persisting decreases in anxiety outcomes. The effect of LSD on anxiety may be mediated by serotonin receptors (5-HT1A/1B, 5-HT2A/2C, and 5-HT7) and/or transporter in brain networks and circuits (default mode network, cortico-striato-thalamo-cortical circuit, and prefrontal cortex-amygdala circuit), involved in the modulation of anxiety. It remains unclear whether LSD can be an efficacious treatment alone or only when combined with psychotherapy, and if "microdosing" may elicit the same sustained anxiolytic effects as the "full doses". Further randomized controlled trials with larger sample size cohorts of patients with ADs are required to clearly define the effective regimens, safety profile, efficacy, and feasibility of LSD for the treatment of ADs.
Collapse
Affiliation(s)
- Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Avenue des Pins Ouest, Montreal, QC, H3A 1A1, Canada
| | - Alexandre Piot
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Danilo De Gregorio
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Avenue des Pins Ouest, Montreal, QC, H3A 1A1, Canada.
- McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
9
|
Specific and common functional connectivity deficits in drug-free generalized anxiety disorder and panic disorder: A data-driven analysis. Psychiatry Res 2023; 319:114971. [PMID: 36459805 DOI: 10.1016/j.psychres.2022.114971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022]
Abstract
Evidence of comparing neural network differences between anxiety disorder subtypes is limited, while it is crucial to reveal the pathogenesis of anxiety disorders. The present study aimed to investigate specific and common resting-state functional connectivity (FC) networks in generalized anxiety disorder (GAD), panic disorder (PD), and healthy controls (HC). We employed the gRAICAR algorithm to decompose the resting-state fMRI into independent components and align the components across 61 subjects (22 GAD, 18 PD and 21 HC). The default mode network and precuneus network exhibited GAD-specific aberrance, the anterior default mode network showed atypicality specific to PD, and the right fronto-parietal network showed aberrance common to GAD and PD. Between GAD-specific networks, FC between bilateral dorsolateral prefrontal cortex (DLPFC) was positively correlated with interoceptive sensitivity. In the common network, altered FCs between DLPFC and angular gyrus, and between orbitofrontal cortex and precuneus, were positively correlated with anxiety severity and interoceptive sensitivity. The pathological mechanism of PD could closely relate to the dysfunction of prefrontal cortex, while GAD could involve more extensive brain areas, which may be related to fear generalization.
Collapse
|
10
|
Meng L, Zhang Y, Lin H, Mu J, Liao H, Wang R, Jiao S, Ma Z, Miao Z, Jiang W, Wang X. Abnormal hubs in global network as potential neuroimaging marker in generalized anxiety disorder at rest. Front Psychol 2022; 13:1075636. [PMID: 36591087 PMCID: PMC9801974 DOI: 10.3389/fpsyg.2022.1075636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Background Mounting studies have reported altered neuroimaging features in generalized anxiety disorder (GAD). However, little is known about changes in degree centrality (DC) as an effective diagnostic method for GAD. Therefore, we aimed to explore the abnormality of DCs and whether these features can be used in the diagnosis of GAD. Methods Forty-one GAD patients and 45 healthy controls participated in the study. Imaging data were analyzed using DC and receiver operating characteristic (ROC) methods. Results Compared with the control group, increased DC values in bilateral cerebellum and left middle temporal gyrus (MTG), and decreased DC values in the left medial frontal orbital gyrus (MFOG), fusiform gyrus (FG), and bilateral posterior cingulate cortex (PCC). The ROC results showed that the DC value of the left MTG could serve as a potential neuroimaging marker with high sensitivity and specificity for distinguishing patients from healthy controls. Conclusion Our findings demonstrate that abnormal DCs in the left MTG can be observed in GAD, highlighting the importance of GAD pathophysiology.
Collapse
Affiliation(s)
- Lili Meng
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China,Department of Sleep, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Yuandong Zhang
- Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Hang Lin
- Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jingping Mu
- Department of Mental Health, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Heng Liao
- Department of Mental Health, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Runlan Wang
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China,Department of Sleep, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Shufen Jiao
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China,Department of Sleep, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Zilong Ma
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China,Department of Sleep, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Zhuangzhuang Miao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Jiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Wei Jiang,
| | - Xi Wang
- Department of Mental Health, Taihe Hospital, Hubei University of Medicine, Shiyan, China,Xi Wang,
| |
Collapse
|