1
|
Pichet Binette A, Mammana A, Wisse L, Rossi M, Strandberg O, Smith R, Mattsson-Carlgren N, Janelidze S, Palmqvist S, Ticca A, Stomrud E, Parchi P, Hansson O. Associations between misfolded alpha-synuclein aggregates and Alzheimer's disease pathology in vivo. Alzheimers Dement 2024. [PMID: 39258841 DOI: 10.1002/alz.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION We examined the relations of misfolded alpha synuclein (α-synuclein) with Alzheimer's disease (AD) biomarkers in two large independent cohorts. METHODS We included Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably Two (BioFINDER-2) and Alzheimer's Disease Neuroimaging Initiative (ADNI) participants (n = 2315, cognitively unimpaired, mild cognitive impairment, AD dementia) who had cross-sectional cerebrospinal fluid (CSF) α-synuclein measurement from seed-amplification assay as well as cross-sectional and longitudinal amyloid beta (Aβ) and tau levels (measured in CSF and/or by positron emission tomography). All analyses were adjusted for age, sex, and cognitive status. RESULTS Across cohorts, the main biomarker associated with α-synuclein positivity at baseline was higher levels of Aβ pathology (all p values ≤ 0.02), but not tau. Looking at longitudinal measures of AD biomarkers, α-synuclein -positive participants had a statistically significant faster increase of Aβ load, although of modest magnitude (1.11 Centiloid/year, p = 0.02), compared to α-synuclein -negative participants in BioFINDER-2 but not in ADNI. DISCUSSION We showed associations between concurrent misfolded α-synuclein and Aβ levels, providing in vivo evidence of links between these two molecular disease pathways in humans. HIGHLIGHTS Amyloid beta (Aβ), but not tau, was associated with alpha-synuclein (α-synuclein) positivity. Such association was consistent across two cohorts, beyond the effect of age, sex, and cognitive status. α-synuclein-positive participants had a small, statistically significant faster increase in Aβ positron emission tomography levels in one of the two cohorts.
Collapse
Grants
- NIA NIH HHS
- Alzheimer's Association
- 2022-00775 GHR Foundation, Swedish Research Council
- 2021-02219 GHR Foundation, Swedish Research Council
- 2018-02052 GHR Foundation, Swedish Research Council
- ERAPERMED2021-184 ERA PerMed
- 2022-0231 Knut and Alice Wallenberg foundation
- AF-980907 Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson's disease) at Lund University, Swedish Alzheimer Foundation
- AF-980832 Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson's disease) at Lund University, Swedish Alzheimer Foundation
- AF-993465 Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson's disease) at Lund University, Swedish Alzheimer Foundation
- AF-939981 Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson's disease) at Lund University, Swedish Alzheimer Foundation
- Swedish Brain Foundation
- 1412/22 Parkinson foundation of Sweden
- WASP/DDLS22-066 Cure Alzheimer's fund
- 2019-03401 EU Joint Programme Neurodegenerative Diseases
- FRS-0003 Rönström Family Foundation
- Konung Gustaf V:s och Drottning Victorias Frimurarestiftelse
- 2020-O000028 Skåne University Hospital Foundation
- 2022-1259 Regionalt Forskningsstöd
- Swedish federal government under the ALF agreement
- Italian Ministero della Salute
- Alzheimer's Disease Neuroimaging Initiative
- NIH HHS
- NIBIB NIH HHS
- Alzheimer's Drug Discovery Foundation
- Araclon Biotech
- BioClinica, Inc.
- Biogen; BristolMyers Squibb Company
- CereSpir, Inc.
- Cogstate
- Eisai Inc.
- Elan Pharmaceuticals, Inc.
- Eli Lilly and Company; EuroImmun
- F. Hoffmann-LaRoche Ltdand its affiliated company Genentech, Inc.
- Fujirebio
- GE Healthcare
- IXICO Ltd.
- Janssen Alzheimer Immunotherapy Research & Development
- Johnson & Johnson Pharmaceutical Research & Development LLC
- Lumosity; Lundbeck
- Merck & Co., Inc.
- MesoScale Diagnostics
- LLC
- NeuroRxResearch
- Neurotrack Technologies
- Novartis Pharmaceuticals Corporation
- Pfizer Inc.
- Piramal Imaging
- Takeda Pharmaceutical Company; and Transition Therapeutics
- 298314 Fonds de Recherche en Santé Québec
- ADG-101096455 H2020 European Research Council
Collapse
Affiliation(s)
- Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Angela Mammana
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Laura Wisse
- Diagnostic Radiology Unit, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Marcello Rossi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Alice Ticca
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
2
|
Bali D, Hansson O, Janelidze S. Effects of certain pre-analytical factors on the performance of plasma phospho-tau217. Alzheimers Res Ther 2024; 16:31. [PMID: 38331843 PMCID: PMC10851521 DOI: 10.1186/s13195-024-01391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Pre-analytical factors can cause substantial variability in the measurements of cerebrospinal fluid (CSF) and plasma biomarkers of Alzheimer's disease (AD). However, their effects on the performance of one of the most promising plasma AD biomarkers, phosphorylated tau (p-tau)217, are not known. METHODS We included 50 amyloid-β positive (Aβ+) and 50 Aβ- participants from the Swedish BioFINDER-1 study. Plasma and CSF p-tau217 were measured using an immunoassay developed by Lilly Research Laboratories. We examined the effect of four plasma handling conditions, i.e., (1) thawing at room temperature (RT) with no centrifugation, (2) thawing at RT followed by centrifugation, (3) thawing on ice with no centrifugation, and (4) thawing on ice followed by centrifugation. In addition, we also tested the effects of up to 3 freeze-thaw cycles on the associations of plasma p-tau217 with AD-related pathologies measured with CSF p-tau217 and CSF Aβ42/Aβ40. RESULTS In the whole cohort (combining Aβ+ and Aβ- participants), we found significant correlations between plasma p-tau217 and both CSF p-tau217 (Rrange, 0.614-0.717, p < 0.001) and CSF Aβ42/Aβ40 (Spearman Rrange, - 0.515 to - 0.652, p < 0.001) for each of the four tested conditions. Correlations between plasma and CSF p-tau217 were also significant for all conditions in the Aβ+ group (Rrange, 0.506-0.579, p < 0.001). However, in this Aβ+ subgroup, correlations with CSF Aβ42/Aβ40 were only significant for centrifuged samples (thawed at RT, R = - 0.394, p = 0.010; thawed on ice, R = - 0.406; p = 0.007). In Aβ- participants, correlations between plasma and CSF p-tau217 were again significant only for centrifuged samples (thawed at RT, R = 0.394, p = 0.007; thawed on ice, R = 0.334; p = 0.022), with no correlations seen between plasma p-tau217 and CSF Aβ42/Aβ40 for any of the conditions. While the accuracy of plasma p-tau217 to identify individuals with abnormal CSF Aβ42/Aβ40 or CSF p-tau217 status was high, the AUCs for samples thawed at RT and analyzed without centrifugation were numerically lower than the AUCs of other conditions (CSF Aβ42/Aβ40 = 0.845 vs 0.872-0.884; CSF p-tau217 = 0.866 vs 0.908-0.924, pdiff > 0.11). P-tau217 concentration was consistently higher in non-centrifuged samples than in centrifuged samples (p ≤ 0.021). There were no differences between samples freeze-thawed once, twice, or three times. CONCLUSION Centrifugation improved the performance of plasma p-tau217, but thawing temperatures and up to three freeze-thaw cycles did not have a significant impact. These results may inform the future development of standardized sample-handling protocols for AD biomarkers.
Collapse
Affiliation(s)
- Divya Bali
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Sölvegatan 19, BMC B11, 22184, Lund, Sweden.
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Sölvegatan 19, BMC B11, 22184, Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502, Malmö, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Sölvegatan 19, BMC B11, 22184, Lund, Sweden.
| |
Collapse
|
3
|
Giangrande C, Delatour V, Andreasson U, Blennow K, Gobom J, Zetterberg H. Harmonization and standardization of biofluid-based biomarker measurements for AT(N) classification in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12465. [PMID: 37600860 PMCID: PMC10432775 DOI: 10.1002/dad2.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 07/05/2023] [Indexed: 08/22/2023]
Abstract
Fluid biomarkers are currently measured in cerebrospinal fluid and blood for Alzheimer's disease diagnosis and are promising targets for drug development and for patients' follow-up in clinical trials. These biomarkers have been grouped in an unbiased research framework, the amyloid (Aβ), tau, and neurodegeneration (AT[N]) biomarker system to aid patients' early diagnosis and stratification. Metrological approaches relying on mass spectrometry have been used for the development of reference materials and reference measurement procedures. Despite their excellent performances as clinical tools, fluid biomarkers often present an important between-laboratory variation. Standardization efforts were carried out on the biomarkers currently included in the AT(N) classification system, involving the collaboration of national metrology institutes, clinicians, researchers, and in vitro diagnostic providers. This article provides an overview of current activities towards standardization. These reference methods and reference materials may be used for recalibration of immunoassays and the establishment of standardized cutoff values allowing a better stratification of Alzheimer's disease patients. Highlights The AT(N) biomarker system allows stratifying AD patients on the basis of biomarker profiles.Fluid biomarker measurements often present an important between-laboratory variation preventing the establishment of standardized cutoff values.Overview on the standardization initiatives involving the fluid biomarkers currently included in the AT(N) framework.
Collapse
Affiliation(s)
- Chiara Giangrande
- Laboratoire National de Métrologie et d'Essais (LNE)Department of BioanalysesParis, Cedex 15France
| | - Vincent Delatour
- Laboratoire National de Métrologie et d'Essais (LNE)Department of BioanalysesParis, Cedex 15France
| | - Ulf Andreasson
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of Gothenburg, MölndalGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of Gothenburg, MölndalGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Johan Gobom
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of Gothenburg, MölndalGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of Gothenburg, MölndalGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water BayHong KongChina
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
4
|
Konen FF, Maier HB, Neyazi A, Bleich S, Neumann K, Skripuletz T. Alzheimer's disease biomarkers in cerebrospinal fluid are stable with the Elecsys immunoassay to most pre-analytical influencing factors except freezing at -80 °C. Neurol Res Pract 2023; 5:30. [PMID: 37381021 PMCID: PMC10308606 DOI: 10.1186/s42466-023-00257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Alzheimer´s disease is considered a neurodegenerative disease and is diagnosed by exclusion, while the detection of specific cerebrospinal fluid (CSF) biomarkers, namely amyloid-beta (Aβ) peptides Aβ1-42 (Aß42), phospho-tau (181P; P-tau), and total-tau (T-tau), has been shown to improve diagnostic accuracy. Recently, a new generation of sample tubes (Sarstedt false-bottom tubes) for the Elecsys CSF immunoassay for the determination of Alzheimer´s disease biomarkers in CSF was introduced, promising better measurability. However, the pre-analytic influencing factors have not yet been sufficiently investigated. METHODS In 29 patients without Alzheimer's disease diagnosis, CSF concentrations of Aß42, P-tau and T-tau were examined in native CSF and after different influencing interventions using the Elecsys immunoassay test method. The following influencing factors were analyzed: contamination with blood (10,000 and 20,000 erythrocytes/µl CSF), 14-day storage at 4 °C, blood contamination of CSF and 14-day storage at 4 °C, 14-day freezing at -80 °C in Sarstedt tubes or glass vials, 3-month intermediate storage at -80 °C in glass vials. RESULTS Both storage at -80 °C for 14 days in Sarstedt false-bottom tubes and in glass vials and storage at -80 °C for 3 months in glass vials resulted in significant decreases in Aß42 (13% after 14 days in Sarstedt and 22% in glass vials, 42% after 3 months in glass vials), P-tau (9% after 14 days in Sarstedt and 13% in glass vials, 12% after 3 months in glass vials) and T-tau (12% after 14 days in Sarstedt and 19% in glass vials, 20% after 3 months in glass vials) concentrations in CSF. No significant differences were found for the other pre-analytical influencing factors. CONCLUSIONS Measurements of the concentrations of Aß42, P-tau, and T-tau in CSF with use of the Elecsys immunoassay are robust to the pre-analytical influencing factors of blood contamination and duration of storage. Freezing at -80 °C results in significant reduction of biomarker concentrations regardless of the storage tube and must be considered in retrospective analysis.
Collapse
Affiliation(s)
- Franz Felix Konen
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Department of Psychiatry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Hannah Benedictine Maier
- Department of Psychiatry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Alexandra Neyazi
- Department of Psychiatry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Stefan Bleich
- Department of Psychiatry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Konstantin Neumann
- Institute of Clinical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
5
|
Blennow K, Stomrud E, Zetterberg H, Borlinghaus N, Corradini V, Manuilova E, Müller-Hübner L, Quevenco FC, Rutz S, Hansson O. Second-generation Elecsys cerebrospinal fluid immunoassays aid diagnosis of early Alzheimer's disease. Clin Chem Lab Med 2023; 61:234-244. [PMID: 36282960 DOI: 10.1515/cclm-2022-0516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Timely diagnosis of Alzheimer's disease (AD) is critical for appropriate treatment/patient management. Cerebrospinal fluid (CSF) biomarker analysis is often used to aid diagnosis. We assessed analytical performance of second-generation (Gen II) Elecsys® CSF immunoassays (Roche Diagnostics International Ltd), and adjusted existing cut-offs, to evaluate their potential utility in clinical routine. METHODS Analytical performance was assessed using CSF samples measured with Elecsys CSF Gen II immunoassays on cobas e analyzers. Aβ42 Gen I/Gen II immunoassay method comparisons were performed (Passing-Bablok regression). Cut-off values were adjusted using estimated bias in biomarker levels between BioFINDER protocol aliquots/Gen I immunoassays and Gen II protocol aliquots/immunoassays. Distribution of Gen II immunoassay values was evaluated in AD, mild cognitive impairment (MCI), and cognitively normal cohorts; percentage observations outside the measuring range were derived. RESULTS The Gen II immunoassays demonstrated good analytical performance, including repeatability, intermediate precision, lot-to-lot agreement (Pearson's r: ≥0.999), and platform agreement (Pearson's r: ≥0.995). Aβ42 Gen I/Gen II immunoassay measurements were strongly correlated (Pearson's r: 0.985-0.999). Aβ42 Gen II immunoassay cut-offs were adjusted to 1,030 and 800 ng/L, and pTau181/Aβ42 ratio cut-offs to 0.023 and 0.029, for Gen II and I protocols, respectively. No observations were below the lower limit of the measuring range; above the upper limit, there were none from the AD cohort, and 2.6 and 6.8% from the MCI and cognitively normal cohorts, respectively. CONCLUSIONS Our findings suggest that the Gen II immunoassays have potential utility in clinical routine to aid diagnosis of AD.
Collapse
Affiliation(s)
- Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Erik Stomrud
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Disease, Shatin, N.T., Hong Kong, P.R. China
| | | | | | | | | | | | | | - Oskar Hansson
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
6
|
Delaby C, Teunissen CE, Blennow K, Alcolea D, Arisi I, Amar EB, Beaume A, Bedel A, Bellomo G, Bigot‐Corbel E, Bjerke M, Blanc‐Quintin M, Boada M, Bousiges O, Chapman MD, DeMarco ML, D'Onofrio M, Dumurgier J, Dufour‐Rainfray D, Engelborghs S, Esselmann H, Fogli A, Gabelle A, Galloni E, Gondolf C, Grandhomme F, Grau‐Rivera O, Hart M, Ikeuchi T, Jeromin A, Kasuga K, Keshavan A, Khalil M, Körtvelyessy P, Kulczynska‐Przybik A, Laplanche J, Lewczuk P, Li Q, Lleó A, Malaplate C, Marquié M, Masters CL, Mroczko B, Nogueira L, Orellana A, Otto M, Oudart J, Paquet C, Paoletti FP, Parnetti L, Perret‐Liaudet A, Peoc'h K, Poesen K, Puig‐Pijoan A, Quadrio I, Quillard‐Muraine M, Rucheton B, Schraen S, Schott JM, Shaw LM, Suárez‐Calvet M, Tsolaki M, Tumani H, Udeh‐Momoh CT, Vaudran L, Verbeek MM, Verde F, Vermunt L, Vogelgsang J, Wiltfang J, Zetterberg H, Lehmann S. Clinical reporting following the quantification of cerebrospinal fluid biomarkers in Alzheimer's disease: An international overview. Alzheimers Dement 2022; 18:1868-1879. [PMID: 34936194 PMCID: PMC9787404 DOI: 10.1002/alz.12545] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The current practice of quantifying cerebrospinal fluid (CSF) biomarkers as an aid in the diagnosis of Alzheimer's disease (AD) varies from center to center. For a same biochemical profile, interpretation and reporting of results may differ, which can lead to misunderstandings and raises questions about the commutability of tests. METHODS We obtained a description of (pre-)analytical protocols and sample reports from 40 centers worldwide. A consensus approach allowed us to propose harmonized comments corresponding to the different CSF biomarker profiles observed in patients. RESULTS The (pre-)analytical procedures were similar between centers. There was considerable heterogeneity in cutoff definitions and report comments. We therefore identified and selected by consensus the most accurate and informative comments regarding the interpretation of CSF biomarkers in the context of AD diagnosis. DISCUSSION This is the first time that harmonized reports are proposed across worldwide specialized laboratories involved in the biochemical diagnosis of AD.
Collapse
Affiliation(s)
- Constance Delaby
- LBPC‐PPCUniv MontpellierCHU MontpellierINSERMMontpellierFrance,Hospital de la Santa Creu i Sant Pau ‐ Biomedical Research Institute Sant Pau ‐ Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Charlotte E. Teunissen
- Neurochemistry LabDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Kaj Blennow
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Daniel Alcolea
- Hospital de la Santa Creu i Sant Pau ‐ Biomedical Research Institute Sant Pau ‐ Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Ivan Arisi
- European Brain Research Institute (EBRI) “Rita Levi‐Montalcini”RomaItaly
| | - Elodie Bouaziz Amar
- Université de ParisCognitive Neurology CenterGHU APHP Nord Lariboisière Fernand‐Widal HospitalParisFrance
| | | | | | - Giovanni Bellomo
- Lab of Clinical NeurochemistrySection of NeurologyDept. of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | | | - Maria Bjerke
- Vrije Universiteit BrusselCenter for Neurosciences and Department of Clinical BiologyClinical Neurochemistry LaboratoryUniversitair Ziekenhuis BrusselBrusselsBelgium,Department of Biomedical Sciences, Institute Born‐BungeUniversity of AntwerpAntwerpBelgium
| | | | - Mercè Boada
- Research Center and Memory ClinicFundació ACEInstitut Català de Neurociències Aplicades and Universitat Internacional de Catalunya (UIC)BarcelonaSpain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Olivier Bousiges
- Laboratoire de Biochimie et Biologie Moléculaire, et CNRSICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg)Team IMISHôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Miles D Chapman
- Department of NeuroimmunologyNational Hospital for Neurology and Neurosurgery, UCL Queen SquareLondonUK
| | - Mari L. DeMarco
- Department of Pathology and Laboratory MedicineSt. Paul's Hospital, Providence Health Care, Vancouver, Canada & Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverCanada
| | - Mara D'Onofrio
- European Brain Research Institute (EBRI) “Rita Levi‐Montalcini”RomaItaly
| | - Julien Dumurgier
- Université de ParisCognitive Neurology CenterGHU APHP Nord Lariboisière Fernand‐Widal HospitalParisFrance
| | | | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, Institute Born‐BungeUniversity of AntwerpAntwerpBelgium,Vrije Universiteit BrusselUniversitair Ziekenhuis BrusselCenter for Neurosciences and Department of NeurologyBrusselsBelgium
| | - Hermann Esselmann
- Department of Psychiatry and PsychotherapyUniversity Medical Center Goettingen (UMGGoettingenGermany
| | - Anne Fogli
- CHU Clermont‐FerrandClermont‐FerrandFrance
| | - Audrey Gabelle
- LBPC‐PPCUniv MontpellierCHU MontpellierINSERMMontpellierFrance
| | | | | | | | - Oriol Grau‐Rivera
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain,Servei de NeurologiaHospital del MarUnitat de deteriorament cognitiu i transtorns del movimentBarcelonaSpain,IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Melanie Hart
- Department of NeuroimmunologyNational Hospital for Neurology and Neurosurgery, UCL Queen SquareLondonUK
| | - Takeshi Ikeuchi
- Dept. of Molecular GeneticsCenter for BioresourcesBrain Research InstituteNiigata UniversityNiigataJapan
| | | | - Kensaku Kasuga
- Dept. of Molecular GeneticsCenter for BioresourcesBrain Research InstituteNiigata UniversityNiigataJapan
| | - Ashvini Keshavan
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
| | | | - Peter Körtvelyessy
- Freie Universität Berlin and Humboldt‐Universität zu BerlinDepartment of NeurologyGerman Center for Neurodegenerative Diseases, Magdeburg, Germany and Charité‐Universitäts medizin BerlinBerlinGermany
| | | | - Jean‐Louis Laplanche
- Université de ParisCognitive Neurology CenterGHU APHP Nord Lariboisière Fernand‐Widal HospitalParisFrance
| | - Piotr Lewczuk
- Department of Neurodegeneration DiagnosticsMedical University of BialystokBialystokPoland,Lab for Clinical Neurochemistry and Neurochemical Dementia DiagnosticsUniversitätsklinikum Erlangen and Friedrich‐Alexander Universität Erlangen‐NürnbergErlangenGermany
| | - Qiao‐Xin Li
- Florey Institute and The University of MelbourneMelbourneVictoriaAustralia
| | - Alberto Lleó
- Hospital de la Santa Creu i Sant Pau ‐ Biomedical Research Institute Sant Pau ‐ Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Catherine Malaplate
- CHRU de NancyLaboratoire de BiochimieBiologie Moléculaire et Nutrition/ Université de LorraineNancyFrance
| | - Marta Marquié
- Research Center and Memory ClinicFundació ACEInstitut Català de Neurociències Aplicades and Universitat Internacional de Catalunya (UIC)BarcelonaSpain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Colin L. Masters
- Florey Institute and The University of MelbourneMelbourneVictoriaAustralia
| | - Barbara Mroczko
- Department of Neurodegeneration DiagnosticsMedical University of BialystokBialystokPoland
| | - Léonor Nogueira
- Laboratoire de Biologie Cellulaire et CytologieCHU PURPANToulouseFrance
| | - Adelina Orellana
- Research Center and Memory ClinicFundació ACEInstitut Català de Neurociències Aplicades and Universitat Internacional de Catalunya (UIC)BarcelonaSpain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Markus Otto
- Department of Neurology and CSF LaboratoryUniversity of UlmUlmGermany
| | | | - Claire Paquet
- Université de ParisCognitive Neurology CenterGHU APHP Nord Lariboisière Fernand‐Widal HospitalParisFrance
| | - Federico Paolini Paoletti
- Lab of Clinical NeurochemistrySection of NeurologyDept. of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Lucilla Parnetti
- Lab of Clinical NeurochemistrySection of NeurologyDept. of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Armand Perret‐Liaudet
- Lyon Neuroscience Research Center BIORAN Team ‐ CNRS UMR 5292INSERM U1028Lyon University HospitalLyonFrance
| | - Katell Peoc'h
- Université de Paris GHU APHP Nord Beaujon HospitalParisFrance
| | - Koen Poesen
- Laboratory for Molecular Neurobiomarker Research (LaMoN)Department of NeurosciencesKU LeuvenLeuven Brain InstituteLeuvenBelgium
| | - Albert Puig‐Pijoan
- Servei de NeurologiaHospital del MarUnitat de deteriorament cognitiu i transtorns del movimentBarcelonaSpain,IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | - Isabelle Quadrio
- Lyon Neuroscience Research Center BIORAN Team ‐ CNRS UMR 5292INSERM U1028Lyon University HospitalLyonFrance
| | - Muriel Quillard‐Muraine
- UNIROUENRouen University HospitalDepartment of Clinical biologyBiochemistry laboratoryNormandie UnivRouenFrance
| | | | - Susanna Schraen
- InsermCHU LilleU1172‐LilNCogLICENDLabEx DISTALZUniversité de LilleLilleFrance
| | | | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine HospitalUniversity of PennsylvaniaPennsylvaniaUSA
| | - Marc Suárez‐Calvet
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain,Servei de NeurologiaHospital del MarUnitat de deteriorament cognitiu i transtorns del movimentBarcelonaSpain,IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Magda Tsolaki
- 1st Department of NeurologySchool of MedicineFaculty of Health of SciencesAristotle University of ThessalonikiThessalonikiGreece
| | - Hayrettin Tumani
- Department of Neurology and CSF LaboratoryUniversity of UlmUlmGermany
| | | | | | - Marcel M Verbeek
- Donders Institute for Brain, Cognition and BehaviourRadboud Alzheimer CentreDepartments of Neurology and Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Federico Verde
- Department of Neurology ‐ Stroke Unit and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly,Department of Pathophysiology and Transplantation“Dino Ferrari” Center, Università degli Studi di MilanoMilanItaly
| | - Lisa Vermunt
- Neurochemistry LabDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Jonathan Vogelgsang
- Department of Psychiatry and PsychotherapyUniversity Medical Center Goettingen (UMGGoettingenGermany,McLean HospitalTranslational Neuroscience LaboratoryHarvard Medical SchoolBelmontMassachusettsUSA
| | - Jens Wiltfang
- Department of Psychiatry and PsychotherapyUniversity Medical Center Goettingen (UMGGoettingenGermany,German Center for Neurodegenerative Diseases (DZNE)GoettingenGermany,Neurosciences and Signaling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden,UK Dementia Research Institute at UCLLondonUK,Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | - Sylvain Lehmann
- LBPC‐PPCUniv MontpellierCHU MontpellierINSERMMontpellierFrance
| |
Collapse
|
7
|
Kerwin D, Abdelnour C, Caramelli P, Ogunniyi A, Shi J, Zetterberg H, Traber M. Alzheimer's disease diagnosis and management: Perspectives from around the world. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12334. [PMID: 35898519 PMCID: PMC9309007 DOI: 10.1002/dad2.12334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) and other dementias are a global challenge. Early diagnosis is important to manage the disease. However, there are barriers to diagnosis that differ by region. Researchers from Brazil, China, Nigeria, Spain, and Sweden have identified key barriers to AD diagnosis in their countries. In Brazil, socioeconomic inequalities and poor recognition of dementia by physicians can prevent diagnosis. In China, a very large population and lack of physician training in dementia make diagnosis problematic. In Nigeria, socioeconomic inequalities and cultural stigma can stand in the way of diagnosis. In Spain, patient hesitancy and an overloaded health-care system are barriers to diagnosis. In Sweden, inconsistent use of biomarkers is a prominent barrier to diagnosis of AD. To support diagnosis, more focus is needed on education of patients and physicians, increased use of support services, and improved access to biomarkers to accurately diagnose AD.
Collapse
Affiliation(s)
| | - Carla Abdelnour
- Ace Alzheimer Center Barcelona, Universitat Internacional de CatalunyaBarcelonaSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Paulo Caramelli
- Behavioral and Cognitive Neurology Research Group, Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Jiong Shi
- Lou Ruvo Center for Brain HealthCleveland ClinicLas VegasNevadaUSA
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | | |
Collapse
|
8
|
Beatino MF, De Luca C, Campese N, Belli E, Piccarducci R, Giampietri L, Martini C, Perugi G, Siciliano G, Ceravolo R, Vergallo A, Hampel H, Baldacci F. α-synuclein as an emerging pathophysiological biomarker of Alzheimer's disease. Expert Rev Mol Diagn 2022; 22:411-425. [PMID: 35443850 DOI: 10.1080/14737159.2022.2068952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION α-syn aggregates represent the pathological hallmark of synucleinopathies as well as a frequent copathology (almost 1/3 of cases) in AD. Recent research indicates a potential role of α-syn species, measured in CSF with conventional analytical techniques, in the differential diagnosis between AD and synucleinopathies (such as DLB). Pioneering studies report the detection of α-syn in blood, however, conclusive investigations are controversial. Ultrasensitive seed amplification techniques, enabling the selective quantification of α-syn seeds, may represent an effective solution to identify the α-syn component in AD and facilitate a biomarker-guided stratification. AREAS COVERED We performed a PubMed-based review of the latest findings on α-syn-related biomarkers for AD, focusing on bodily fluids. A dissertation on the role of ultrasensitive seed amplification assays, detecting α-syn seeds from different biological samples, was conducted. EXPERT OPINION α-syn may contribute to progressive AD neurodegeneration through cross-seeding especially with tau protein. Ultrasensitive seed amplification techniques may support a biomarker-drug co-development pathway and may be a pathophysiological candidate biomarker for the evolving ATX(N) system to classify AD and the spectrum of primary NDDs. This would contribute to a precise approach to AD, aimed at implementing disease-modifying treatments.
Collapse
Affiliation(s)
| | - Ciro De Luca
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabetta Belli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Linda Giampietri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Giulio Perugi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Vergallo
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Sorbonne University, Pitié-Salpêtrière Hospital, Boulevard De l'Hôpital, Paris, France
| | - Harald Hampel
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Sorbonne University, Pitié-Salpêtrière Hospital, Boulevard De l'Hôpital, Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Sorbonne University, Pitié-Salpêtrière Hospital, Boulevard De l'Hôpital, Paris, France
| |
Collapse
|
9
|
Ferrer R, Zhu N, Arranz J, Porcel I, El Bounasri S, Sánchez O, Torres S, Julve J, Lleó A, Blanco-Vaca F, Alcolea D, Tondo M. Importance of cerebrospinal fluid storage conditions for the Alzheimer's disease diagnostics on an automated platform. Clin Chem Lab Med 2022; 60:1058-1063. [PMID: 35405043 DOI: 10.1515/cclm-2022-0134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Alzheimer's disease (AD) is considered the most common cause of dementia in older people. Cerebrospinal fluid (CSF) Aβ1-42, Aβ1-40, total Tau (t-Tau), and phospho Tau (p-Tau) are important biomarkers for the diagnosis, however, they are highly dependent on the pre-analytical conditions. Our aim was to investigate the potential influence of different storage conditions on the simultaneous quantification of these biomarkers in a fully-automated platform to accommodate easier pre-analytical conditions for laboratories. METHODS CSF samples were obtained from 11 consecutive patients. Aβ1-42, Aβ1-40, p-Tau, and t-Tau were quantified using the LUMIPULSE G600II automated platform. RESULTS Temperature and storage days significantly influenced Aβ1-42 and Aβ1-40 with concentrations decreasing with days spent at 4 °C. The use of the Aβ1-42/Aβ1-40 ratio could partly compensate it. P-Tau and t-Tau were not affected by any of the tested storage conditions. For conditions involving storage at 4 °C, a correction factor of 1.081 can be applied. Diagnostic agreement was almost perfect in all conditions. CONCLUSIONS Cutoffs calculated in samples stored at -80 °C can be safely used in samples stored at -20 °C for 15-16 days or up to two days at RT and subsequent freezing at -80 °C. For samples stored at 4 °C, cutoffs would require applying a correction factor, allowing to work with the certainty of reaching the same clinical diagnosis.
Collapse
Affiliation(s)
- Rosa Ferrer
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Barcelona, Spain
| | - Nuole Zhu
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Barcelona, Spain
| | - Javier Arranz
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Barcelona, Spain
| | - Inmaculada Porcel
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Barcelona, Spain
| | - Shaimaa El Bounasri
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Barcelona, Spain
| | - Oriol Sánchez
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Barcelona, Spain
| | - Soraya Torres
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Barcelona, Spain
| | - Josep Julve
- Center of Biomedical Investigation Network for Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Francisco Blanco-Vaca
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Barcelona, Spain.,Center of Biomedical Investigation Network for Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Mireia Tondo
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Barcelona, Spain.,Center of Biomedical Investigation Network for Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain.,Comisión de Neuroquímica y Enfermedades Neurológicas, Sociedad Española de Medicina de Laboratorio, Barcelona, Spain
| |
Collapse
|
10
|
Coerver K, Yu MM, D'Abreu A, Wasserman M, Nair KV. Practical Considerations in the Administration of Aducanumab for the Neurologist. Neurol Clin Pract 2021; 12:169-175. [PMID: 35733944 PMCID: PMC9208401 DOI: 10.1212/cpj.0000000000001144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022]
Abstract
Aducanumab (Aduhelm), developed by the biotechnology firm Biogen in Cambridge, MA, was approved using the less common accelerated approval pathway by the Federal Drug Administration (FDA) reserved for treatments that fill a significant unmet need.1 Its approval on June 7, 2021, has been met with an outpouring of opinions from prescribers, insurers, advocacy groups, and hospital systems regarding its risk-benefit profile.2-4 Originally approved for all forms of Alzheimer disease (AD), the FDA updated aducanumab's labeling on July 8, 2021, for “treatment in patients with mild cognitive impairment (MCI) or mild dementia stage of disease, the population in which treatment was initiated in clinical trials.”5 With 6 million people nationally in the United States who suffer from AD and an anticipated one-third of those who may now fulfill the criteria under the revised labeling, the implications of aducanumab's approval continue to generate national interest.6
Collapse
Affiliation(s)
- Katherine Coerver
- Rocky Mountain Neurology (KC), Lone Tree, CO; Baylor College of Medicine (MMY), Houston, TX; University of Virginia (AD), Charlottesville; Blue Sky Neurology (MW), Englewood, CO; Department of Neurology (KVN), School of Medicine, and Department of Clinical Pharmacy (KN), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora
| | - Melissa M Yu
- Rocky Mountain Neurology (KC), Lone Tree, CO; Baylor College of Medicine (MMY), Houston, TX; University of Virginia (AD), Charlottesville; Blue Sky Neurology (MW), Englewood, CO; Department of Neurology (KVN), School of Medicine, and Department of Clinical Pharmacy (KN), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora
| | - Anelyssa D'Abreu
- Rocky Mountain Neurology (KC), Lone Tree, CO; Baylor College of Medicine (MMY), Houston, TX; University of Virginia (AD), Charlottesville; Blue Sky Neurology (MW), Englewood, CO; Department of Neurology (KVN), School of Medicine, and Department of Clinical Pharmacy (KN), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora
| | - Marc Wasserman
- Rocky Mountain Neurology (KC), Lone Tree, CO; Baylor College of Medicine (MMY), Houston, TX; University of Virginia (AD), Charlottesville; Blue Sky Neurology (MW), Englewood, CO; Department of Neurology (KVN), School of Medicine, and Department of Clinical Pharmacy (KN), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora
| | - Kavita V Nair
- Rocky Mountain Neurology (KC), Lone Tree, CO; Baylor College of Medicine (MMY), Houston, TX; University of Virginia (AD), Charlottesville; Blue Sky Neurology (MW), Englewood, CO; Department of Neurology (KVN), School of Medicine, and Department of Clinical Pharmacy (KN), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora
| |
Collapse
|
11
|
Verberk IMW, Misdorp EO, Koelewijn J, Ball AJ, Blennow K, Dage JL, Fandos N, Hansson O, Hirtz C, Janelidze S, Kang S, Kirmess K, Kindermans J, Lee R, Meyer MR, Shan D, Shaw LM, Waligorska T, West T, Zetterberg H, Edelmayer RM, Teunissen CE. Characterization of pre-analytical sample handling effects on a panel of Alzheimer's disease-related blood-based biomarkers: Results from the Standardization of Alzheimer's Blood Biomarkers (SABB) working group. Alzheimers Dement 2021; 18:1484-1497. [PMID: 34845818 PMCID: PMC9148379 DOI: 10.1002/alz.12510] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
Introduction Pre‐analytical sample handling might affect the results of Alzheimer's disease blood‐based biomarkers. We empirically tested variations of common blood collection and handling procedures. Methods We created sample sets that address the effect of blood collection tube type, and of ethylene diamine tetraacetic acid plasma delayed centrifugation, centrifugation temperature, aliquot volume, delayed storage, and freeze–thawing. We measured amyloid beta (Aβ)42 and 40 peptides with six assays, and Aβ oligomerization‐tendency (OAβ), amyloid precursor protein (APP)699‐711, glial fibrillary acidic protein (GFAP), neurofilament light (NfL), total tau (t‐tau), and phosphorylated tau181. Results Collection tube type resulted in different values of all assessed markers. Delayed plasma centrifugation and storage affected Aβ and t‐tau; t‐tau was additionally affected by centrifugation temperature. The other markers were resistant to handling variations. Discussion We constructed a standardized operating procedure for plasma handling, to facilitate introduction of blood‐based biomarkers into the research and clinical settings.
Collapse
Affiliation(s)
- Inge M W Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Els O Misdorp
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jannet Koelewijn
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Andrew J Ball
- Quanterix Corporation, Billerica, Massachusetts, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, The Salhgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | | | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Christophe Hirtz
- IRMB-LBPC/PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | | | | | | | - Jana Kindermans
- IRMB-LBPC/PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Ryan Lee
- PeopleBio, Seongnam, South Korea
| | | | - Dandan Shan
- Quanterix Corporation, Billerica, Massachusetts, USA
| | - Leslie M Shaw
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Teresa Waligorska
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tim West
- C2N Diagnostics, St. Louis, Missouri, USA
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, The Salhgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | | | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Alawode DOT, Heslegrave AJ, Ashton NJ, Karikari TK, Simrén J, Montoliu‐Gaya L, Pannee J, O´Connor A, Weston PSJ, Lantero‐Rodriguez J, Keshavan A, Snellman A, Gobom J, Paterson RW, Schott JM, Blennow K, Fox NC, Zetterberg H. Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer's disease. J Intern Med 2021; 290:583-601. [PMID: 34021943 PMCID: PMC8416781 DOI: 10.1111/joim.13332] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is increasingly prevalent worldwide, and disease-modifying treatments may soon be at hand; hence, now, more than ever, there is a need to develop techniques that allow earlier and more secure diagnosis. Current biomarker-based guidelines for AD diagnosis, which have replaced the historical symptom-based guidelines, rely heavily on neuroimaging and cerebrospinal fluid (CSF) sampling. While these have greatly improved the diagnostic accuracy of AD pathophysiology, they are less practical for application in primary care, population-based and epidemiological settings, or where resources are limited. In contrast, blood is a more accessible and cost-effective source of biomarkers in AD. In this review paper, using the recently proposed amyloid, tau and neurodegeneration [AT(N)] criteria as a framework towards a biological definition of AD, we discuss recent advances in biofluid-based biomarkers, with a particular emphasis on those with potential to be translated into blood-based biomarkers. We provide an overview of the research conducted both in CSF and in blood to draw conclusions on biomarkers that show promise. Given the evidence collated in this review, plasma neurofilament light chain (N) and phosphorylated tau (p-tau; T) show particular potential for translation into clinical practice. However, p-tau requires more comparisons to be conducted between its various epitopes before conclusions can be made as to which one most robustly differentiates AD from non-AD dementias. Plasma amyloid beta (A) would prove invaluable as an early screening modality, but it requires very precise tests and robust pre-analytical protocols.
Collapse
Affiliation(s)
- D. O. T. Alawode
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - A. J. Heslegrave
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - N. J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of Old Age PsychiatryInstitute of Psychiatry, Psychology & NeuroscienceKing’s College LondonLondonUK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS FoundationLondonUK
| | - T. K. Karikari
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - J. Simrén
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - L. Montoliu‐Gaya
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - J. Pannee
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - A. O´Connor
- UK Dementia Research Institute at UCLLondonUK
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - P. S. J. Weston
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - J. Lantero‐Rodriguez
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - A. Keshavan
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - A. Snellman
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Turku PET CentreUniversity of TurkuTurkuFinland
| | - J. Gobom
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - R. W. Paterson
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - J. M. Schott
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - K. Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - N. C. Fox
- UK Dementia Research Institute at UCLLondonUK
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - H. Zetterberg
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| |
Collapse
|
13
|
Dunphy K, O’Mahoney K, Dowling P, O’Gorman P, Bazou D. Clinical Proteomics of Biofluids in Haematological Malignancies. Int J Mol Sci 2021; 22:ijms22158021. [PMID: 34360786 PMCID: PMC8348619 DOI: 10.3390/ijms22158021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
Since the emergence of high-throughput proteomic techniques and advances in clinical technologies, there has been a steady rise in the number of cancer-associated diagnostic, prognostic, and predictive biomarkers being identified and translated into clinical use. The characterisation of biofluids has become a core objective for many proteomic researchers in order to detect disease-associated protein biomarkers in a minimally invasive manner. The proteomes of biofluids, including serum, saliva, cerebrospinal fluid, and urine, are highly dynamic with protein abundance fluctuating depending on the physiological and/or pathophysiological context. Improvements in mass-spectrometric technologies have facilitated the in-depth characterisation of biofluid proteomes which are now considered hosts of a wide array of clinically relevant biomarkers. Promising efforts are being made in the field of biomarker diagnostics for haematologic malignancies. Several serum and urine-based biomarkers such as free light chains, β-microglobulin, and lactate dehydrogenase are quantified as part of the clinical assessment of haematological malignancies. However, novel, minimally invasive proteomic markers are required to aid diagnosis and prognosis and to monitor therapeutic response and minimal residual disease. This review focuses on biofluids as a promising source of proteomic biomarkers in haematologic malignancies and a key component of future diagnostic, prognostic, and disease-monitoring applications.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Kelly O’Mahoney
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
- Correspondence:
| |
Collapse
|
14
|
Hampel H, Shaw LM, Aisen P, Chen C, Lleó A, Iwatsubo T, Iwata A, Yamada M, Ikeuchi T, Jia J, Wang H, Teunissen CE, Peskind E, Blennow K, Cummings J, Vergallo A. State-of-the-art of lumbar puncture and its place in the journey of patients with Alzheimer's disease. Alzheimers Dement 2021; 18:159-177. [PMID: 34043269 PMCID: PMC8626532 DOI: 10.1002/alz.12372] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023]
Abstract
Recent advances in developing disease‐modifying therapies (DMT) for Alzheimer's disease (AD), and the recognition that AD pathophysiology emerges decades before clinical symptoms, necessitate a paradigm shift of health‐care systems toward biomarker‐guided early detection, diagnosis, and therapeutic decision‐making. Appropriate incorporation of cerebrospinal fluid biomarker analysis in clinical practice is an essential step toward system readiness for accommodating the demand of AD diagnosis and proper use of DMTs—once they become available. However, the use of lumbar puncture (LP) in individuals with suspected neurodegenerative diseases such as AD is inconsistent, and the perception of its utility and safety differs considerably among medical specialties as well as among regions and countries. This review describes the state‐of‐the‐art evidence concerning the safety profile of LP in older adults, discusses the risk factors for LP‐associated adverse events, and provides recommendations and an outlook for optimized use and global implementation of LP in individuals with suspected AD.
Collapse
Affiliation(s)
- Harald Hampel
- Eisai Inc., Neurology Business Group, Woodcliff Lake, New Jersey, USA
| | - Leslie M Shaw
- Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul Aisen
- USC Alzheimer's Therapeutic Research Institute, San Diego, California, USA
| | - Christopher Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alberto Lleó
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau-Biomedical Research Institute Sant Pau-Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsushi Iwata
- Tokyo Metropolitan Geriatric Hospital, 35-2 Sakaecho, Itabashi-ku, Tokyo, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Asahimachi, Niigata, Japan
| | - Jianping Jia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Huali Wang
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing Dementia Key Lab, National Clinical Research Center for Mental Disorders, Beijing, China
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Elaine Peskind
- VA Northwest Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| | - Andrea Vergallo
- Eisai Inc., Neurology Business Group, Woodcliff Lake, New Jersey, USA
| |
Collapse
|
15
|
Hansson O, Batrla R, Brix B, Carrillo MC, Corradini V, Edelmayer RM, Esquivel RN, Hall C, Lawson J, Bastard NL, Molinuevo JL, Nisenbaum LK, Rutz S, Salamone SJ, Teunissen CE, Traynham C, Umek RM, Vanderstichele H, Vandijck M, Wahl S, Weber CJ, Zetterberg H, Blennow K. The Alzheimer's Association international guidelines for handling of cerebrospinal fluid for routine clinical measurements of amyloid β and tau. Alzheimers Dement 2021; 17:1575-1582. [PMID: 33788410 DOI: 10.1002/alz.12316] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/29/2021] [Indexed: 01/01/2023]
Abstract
The core cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers amyloid beta (Aβ42 and Aβ40), total tau, and phosphorylated tau, have been extensively clinically validated, with very high diagnostic performance for AD, including the early phases of the disease. However, between-center differences in pre-analytical procedures may contribute to variability in measurements across laboratories. To resolve this issue, a workgroup was led by the Alzheimer's Association with experts from both academia and industry. The aim of the group was to develop a simplified and standardized pre-analytical protocol for CSF collection and handling before analysis for routine clinical use, and ultimately to ensure high diagnostic performance and minimize patient misclassification rates. Widespread application of the protocol would help minimize variability in measurements, which would facilitate the implementation of unified cut-off levels across laboratories, and foster the use of CSF biomarkers in AD diagnostics for the benefit of the patients.
Collapse
Affiliation(s)
- Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | | | | | | | | | | | | | - John Lawson
- Fujirebio Diagnostics Inc, Malvern, Pennsylvania, USA
| | | | - José Luis Molinuevo
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation Barcelona, Barcelona, Spain.,AD and Other Cognitive Disorders Unit Hospital Clinic, Barcelona, Spain
| | | | | | | | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | - Simone Wahl
- Saladax Biomedical, Inc. Bethlehem, Bethlehem, Pennsylvania, USA
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|