1
|
Wu L, Liu C, Hu W. Comprehensive investigation of matrix metalloproteinases in skin cutaneous melanoma: diagnostic, prognostic, and therapeutic insights. Sci Rep 2025; 15:2152. [PMID: 39820824 PMCID: PMC11739484 DOI: 10.1038/s41598-025-85887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
The dysregulation of matrix metalloproteinases (MMPs) in skin cutaneous melanoma (SKCM) represents a critical aspect of tumorigenesis. In this study, we investigated the diagnostic, prognostic, and therapeutic aspects of the MMPs in SKCM. Thirteen SKCM cell lines and seven normal skin cell lines were cultured under standard conditions for experimental analyses. RNA and DNA were extracted, followed by RT-qPCR to assess MMP expression and promoter methylation analysis to determine methylation levels. Functional assays, including cell proliferation, colony formation, and wound healing, were conducted post-MMP7 knockdown using siRNA in A375 cells. Databases like GEPIA2, HPA, MEXPRESS, and miRNet were employed for expression, survival, methylation, and miRNA-mRNA network analyses. We investigated the expression and promoter methylation landscape of MMPs in SKCM cell lines, revealing significant (p-value < 0.05) up-regulation of MMP1, MMP7, MMP9, MMP10, MMP11, MMP12, MMP13, MMP14, and MMP25, alongside down-regulation of MMP2, MMP3, and MMP21. Furthermore, our analysis demonstrated a significant (p-value < 0.05) inverse correlation between MMP expression levels and promoter methylation status, suggesting a potential regulatory role of DNA methylation in MMP dysregulation. Notably, MMP7, MMP11, and MMP14 exhibited significant (p-value < 0.05) associations with the overall survival of SKCM patients, emphasizing their prognostic significance. Additionally, Receiver operating characteristic (ROC) curve analysis highlighted the significant (p-value < 0.05) diagnostic potential of MMP7, MMP11, and MMP14 in distinguishing SKCM from normal individuals. Subsequent validation across multiple cohorts confirmed significant (p-value < 0.05) elevated MMP expression levels in SKCM tissues, particularly in advanced disease stages, further emphasizing their role in tumor progression. Furthermore, we elucidated potential regulatory pathways involving miR-22-3p, which targets MMP7, MMP11, and MMP14 genes in SKCM. Our findings also revealed associations between MMP expression and immune modulation, drug sensitivity, and functional states of SKCM cells. Lastly, MMP7 knockdown in A375 cells significantly significant (p-value < 0.05) impacted several characteristics, including cell proliferation, colony formation, and wound healing. Our findings highlight the diagnostic, prognostic, and therapeutic potential of MMP7, MMP11, and MMP14 in SKCM. These MMPs could serve as biomarkers for early detection and targets for therapy. Future efforts should focus on preclinical and clinical validation to translate these insights into personalized diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Lingxia Wu
- Dermatology, Changzhi Second People's Hospital, Changzhi, 046000, Shanxi, China
| | - Chenxiaoxiao Liu
- The First Clinical Institute, Zunyi Medical University, Zunyi, 520300, Guizhou, China
| | - Weicai Hu
- Dermatology, Changzhi Second People's Hospital, Changzhi, 046000, Shanxi, China.
| |
Collapse
|
2
|
Saadh MJ, Ahmed HH, Kareem RA, Jain V, Ballal S, Singh A, Sharma GC, Devi A, Nasirov A, Sameer HN, Yaseen A, Athab ZH, Adil M. In Silico design and molecular dynamics analysis of imidazole derivatives as selective cyclooxygenase-2 inhibitors. Comput Biol Chem 2025; 115:108341. [PMID: 39808951 DOI: 10.1016/j.compbiolchem.2025.108341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Cyclooxygenase-2 (COX-2), a key enzyme in the inflammatory pathway, is the target for various nonsteroidal anti-inflammatory drugs (NSAIDs) and selective inhibitors known as coxibs. This study focuses on the development of novel imidazole derivatives as COX-2 inhibitors, utilizing a Structure-Activity Relationship (SAR) approach to enhance binding affinity and selectivity. Molecular docking was performed using Autodock Vina, revealing binding energies of -6.928, -7.187, and -7.244 kJ/mol for compounds 5b, 5d, and 5e, respectively. Molecular dynamics simulations using GROMACS provided insights into the stability and conformational changes of the protein-ligand complexes. Key metrics such as RMSD, RMSF, Rg, SASA, and hydrogen bond analysis were employed to assess the interactions. The binding free energy of the inhibitors was estimated using the MMPBSA method, highlighting compound 5b (N-[(3-benzyl-2-methylsulfonylimidazol-4-yl)methyl]-4-methoxyaniline) with the lowest binding energy of -162.014 kcal/mol. ADMET analysis revealed that compound 5b exhibited the most favorable pharmacokinetic properties and safety profile. Overall, this investigation underscores the potential of these novel imidazole derivatives as effective COX-2 inhibitors, with compound 5b emerging as the most promising candidate for further development.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Vicky Jain
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - Abdulaziz Nasirov
- Department of Psychiatry, narcology and pediatric narcology, medical psychology and psychotherapy, Tashkent Pediatric Medical Institute, Bogishamol Street 223, Tashkent 100140, Uzbekistan
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
3
|
Khalid T, Malik A, Rasool N, Kanwal A, Nawaz H, Almas I. Cracking the code: the clinical and molecular impact of aminopyridines; a review (2019-2024). RSC Adv 2025; 15:688-711. [PMID: 39781020 PMCID: PMC11708541 DOI: 10.1039/d4ra07438f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Aminopyridines belong to a class of compounds that are monoamino and diamino derivatives of pyridine. They work primarily by blocking voltage-gated potassium channels in a dose-dependent manner. Essential heterocycles used extensively in synthetic, natural products, and medicinal chemistry are aminopyridine and its derivatives. A vast array of biological and pharmacological effects can result from the interaction of aminopyridine rings with different enzymes and receptors, due to their unique structural properties. Aminopyridine research is continually growing, and there are now greater expectations for how it may aid in the treatment of numerous disorders. This review article will serve as an innovative platform for researchers investigating aminopyridine compounds, intending thoroughly to examine both traditional and novel synthesis strategies in addition to investigating the various biological characteristics displayed by these adaptable heterocycles. We attempt to provide valuable insights that will contribute to further progress in the synthesis and utilization of aminopyridines in various fields.
Collapse
Affiliation(s)
- Tahira Khalid
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Ayesha Malik
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Aqsa Kanwal
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Hamna Nawaz
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Iffat Almas
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| |
Collapse
|
4
|
Abdelhalim WA, Rabee AR, Soliman SM, Hagar M, Moneer EA, Bakr BA, Barakat A, Haukka M, Rasheed HA. New formyl indole derivatives based on thiobarbituric acid and their nano-formulations; synthesis, characterization, parasitology and histopathology investigations. Sci Rep 2025; 15:299. [PMID: 39747136 PMCID: PMC11696224 DOI: 10.1038/s41598-024-81683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
New formyl indole derivatives based on thiobarbituric acid were designed for targeting parasitological applications. The new compounds (5-((1H-indol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (3a), and 5-((1-benzyl-1H-indol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (3b) were synthesized as thioxodihydropyrimidine derivatives via aldol condensation reaction. The structures of the synthesized compounds were confirmed based on their spectral data via FT-IR, 1H and 13C NMR spectral characterization. In addition, the structure of 3a is confirmed using X-ray crystallography. The synthesized compounds were prepared in nm scale via chitosan as a matrix, and their size was measured via scanning electronic microscope. Interestingly, the newly synthesized nano formulations show higher positive zeta potential (mV) values + 29.6 and + 26.1 for compounds NP-3a, and NP-3b; respectively. These compounds were tested for their parasitological activity. The results revealed that 3b had a great activity against cryptosporidium infection. Moreover, the nano formulation of compound 3b showed a significant reduction percent of oocyst count of cryptosporidium infected mice representing 66%. Furthermore, these compounds were screened by in-vitro hemolytic activity assay (IC50) values (cytotoxicity on RBCs) to assess their cytotoxic potentials and safety profiles.
Collapse
Affiliation(s)
- Walaa Ali Abdelhalim
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Ahmed R Rabee
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt.
| | - Saied M Soliman
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt.
| | - Mohamed Hagar
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt.
| | - Esraa A Moneer
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä, FI-40014, Finland
| | - Hanaa A Rasheed
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| |
Collapse
|
5
|
Tahir S, Iqbal M, Shad S, Nisa S, Ibrar A, Nadeem A, Attia SM, Thebo KH, Ullah K. Biosynthesis of Zr-doped WO 3 nanoparticles: Evaluation of antibacterial, antioxidant, and enzymatic activities. Microb Pathog 2025; 198:107192. [PMID: 39622481 DOI: 10.1016/j.micpath.2024.107192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
Herein, biocompatible pure tungsten oxide (WO3) and zirconium-doped tungsten oxide (Zr-doped WO3) nanoparticles (NPs) were prepared via a green approach from moringa plants with different doping concentrations (3, 5, and 7 %). The as-synthesized materials were morphologically and optically characterized using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier-transform infrared (FTIR), and ultraviolet-visible (UV-Vis) spectroscopy. The FTIR spectra clearly showed that two distinguishing bands at 603 and 674 cm-1 of WO3 were shifted to a higher wavenumber upon doping with zirconium. EDX analysis confirmed the successful synthesis of pure WO3 and Zr-doped WO3 by the green approach. The UV-Vis study exhibited that the bandgap of pure WO3 is blue-shifted upon Zr doping due to the Burstein-Moss effect. The XRD pattern revealed that the crystalline nature of WO3 is increased by increasing the Zr content. Further, the as-synthesized materials were evaluated for enzymatic, antibacterial, and antioxidant activities. The enzymatic results showed that 7 % of Zr-doped WO3 NPs have a higher activity for the α-amylase enzyme. Additionally, 7 % Zr-doped WO3 also showed better antioxidant activity, up to 85 % for free radical scavenging. The antibacterial performance of 7 % Zr-doped WO3 is higher as compared to other corresponding samples for different strains of bacteria. These results demonstrated that this facile and novel synthetic route will open a new door for designing an efficient nanomaterial for biomedical applications.
Collapse
Affiliation(s)
- Sana Tahir
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur, 22620, KPK, Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur, 22620, KPK, Pakistan.
| | - Salma Shad
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur, 22620, KPK, Pakistan
| | - Sobia Nisa
- Department of Microbiology, Faculty of Biological and Biomedical Science, The University of Haripur, Haripur, 22620, KPK, Pakistan
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur, 22620, KPK, Pakistan.
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
| | - Kamran Ullah
- Department of Biology, Faculty of Biological and Biomedical Science, The University of Haripur, Haripur, 22620, KPK, Pakistan
| |
Collapse
|
6
|
Fu Z, Zhang T, Chen C, Wang X, Wang L. Copper-based biomimetic nanozymes with multi-enzyme activity for phosphate detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 329:125599. [PMID: 39700553 DOI: 10.1016/j.saa.2024.125599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Nanozymes are nanoparticles with enzymatic activity, which are widely used in environmental and antibacterial research. Herein, we designed and synthesized novel amorphous nanozyme Cu-Im NPs with multiple enzyme-mimicking activities. Cu-Im NPs have the same active sites as natural laccase. In addition, the active center is similar to that of carbonic hydrolase, replacing the zinc ions with copper ions. Meanwhile, Cu-Im NPs also possess peroxidase-like activity. We reveal the multi-enzyme catalytic mechanisms of Cu-Im NPs. Notably, phosphate inhibits the laccase-like and peroxidase-like activities of Cu-Im NPs while activating their hydrolase activity. Based on these findings, we have developed a sensitive and selective method for detecting phosphate anions.
Collapse
Affiliation(s)
- Zhendong Fu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - TongJia Zhang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Cong Chen
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiaoyu Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Liping Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Lu J, Yang L, Yang X, Chen B, Liu Z. Investigating the clinical significance of OAS family genes in breast cancer: an in vitro and in silico study. Hereditas 2024; 161:50. [PMID: 39633486 PMCID: PMC11619215 DOI: 10.1186/s41065-024-00353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Breast cancer is the most common malignancy among women worldwide, characterized by complex molecular and cellular heterogeneity. Despite advances in diagnosis and treatment, there is an urgent need to identify reliable biomarkers and therapeutic targets to improve early detection and personalized therapy. The OAS (2'-5'-oligoadenylate synthetase) family genes, known for their roles in antiviral immunity, have emerged as potential regulators in cancer biology. This study aimed to explore the diagnostic and functional relevance of OAS family genes in breast cancer. METHODOLOGY Breast cancer cell lines and controls were cultured under specific conditions, and DNA and RNA were extracted for downstream analyses. RT-qPCR, bisulfite sequencing, and Western blotting were employed to assess gene expression, promoter methylation, and knockdown efficiency of OAS family genes. Functional assays, including CCK-8, colony formation, and wound healing, evaluated cellular behaviors, while bioinformatics tools (UALCAN, GEPIA, HPA, OncoDB, cBioPortal, and others) validated findings and explored correlations with clinical data. RESULTS The OAS family genes (OAS1, OAS2, OAS3, and OASL) were found to be significantly upregulated in breast cancer cell lines and tissues compared to normal controls. This overexpression was strongly associated with reduced promoter methylation. Receiver operating characteristic (ROC) analysis demonstrated high diagnostic accuracy, with area under the curve (AUC) values exceeding 0.93 for all four genes. Increased OAS expression correlated with advanced cancer stages and poor overall survival in breast cancer patients. Functional analysis revealed their involvement in critical biological processes, including immune modulation and oncogenic pathways. Silencing OAS genes in breast cancer cells significantly inhibited cell proliferation and colony formation, while unexpectedly enhancing migratory capacity. Additionally, correlations with immune cell infiltration, molecular subtypes, and drug sensitivity highlighted their potential roles in the tumor microenvironment and therapeutic response. CONCLUSION The findings of this study established OAS family genes as potential biomarkers and key players in breast cancer progression, offering promise as diagnostic biomarkers and therapeutic targets to address unmet clinical needs.
Collapse
Affiliation(s)
- Jinjun Lu
- Department of General Surgery, Nantong Haimen People's Hospital, NanTong, JiangSu, 226100, China
| | - Lu Yang
- Department of Clinical Laboratory, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xinghai Yang
- Department of General Surgery, Nantong Haimen People's Hospital, NanTong, JiangSu, 226100, China
| | - Bin Chen
- Department of General Surgery, Nantong Haimen People's Hospital, NanTong, JiangSu, 226100, China
| | - Zheqi Liu
- Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310000, China.
| |
Collapse
|
8
|
Revathi S, Dey N, Thomas A, Issac PK, Shaik MR, Hussain SA, Guru A. Optimization of Achillea millefolium-Infused Chitosan Nanocarriers for Antibacterial and Dye Degradation Applications. Chem Biodivers 2024:e202402150. [PMID: 39607692 DOI: 10.1002/cbdv.202402150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
The demand for plant-based nanocarriers and nanodrugs is increasing due to their versatile nature and compatibility. This research focuses on the optimization of Achillea millefolium-infused chitosan (CS) nanocarriers for antibacterial and dye degradation applications, emphasizing the novelty of this approach. Different dilutions of A. millefolium were loaded into low-molecular (LM)- and high-molecular-weight-CS nanocarriers using the ionotropic gelation method. The synthesized drug-loaded CS nanocarriers were characterized using ultraviolet (UV)-visible (Vis) spectroscopy, scanning electron microscopy, dynamic light scattering, Fourier-Transform Infrared, and high-performance liquid chromatography. The optimized nanocarriers were further analyzed for encapsulation efficiency (EE), antibacterial activity, and dye degradation capacity. The EE of the drug-loaded CS nanocarriers ranged from 15% to 100%. Notably, the LM-weight-CS-based nanocarriers demonstrated a significant dye degradation capacity, achieving an impressive 83% degradation rate for methylene orange (MO). Moreover, these nanoparticles (NPs) exhibited superior efficacy compared to un-immobilized counterparts. The A. millefolium-CS NPs also significantly enhanced the zone of inhibition against Escherichia coli and Staphylococcus aureus, demonstrating strong antibacterial potential. These results underscore the enhanced ability of the CS NP formulation to inhibit microbial growth and effectively degrade dyes. The combination of A. millefolium and CS NPs showcases potential for innovative therapeutic applications, particularly in wastewater treatment and antimicrobial therapies. This study provides novel insights into the development of effective plant-based nanocarriers, paving the way for future research in this field.
Collapse
Affiliation(s)
- Sorimuthu Revathi
- Department of Medical Biotechnology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Nibedita Dey
- Department of Medical Biotechnology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Ashley Thomas
- Department of Medical Biotechnology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Praveen Kumar Issac
- Department of Medical Biotechnology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
9
|
Abbasi SA, Rehman W, Rahim F, Hussain R, Hawsawi MB, Alluhaibi MS, Alharbi M, Taha M, Khan S, Rasheed L, Wadood A, Ali Shah SA. Molecular modeling and synthesis of novel benzimidazole-derived thiazolidinone bearing chalcone derivatives: a promising approach to develop potential anti-diabetic agents. Z NATURFORSCH C 2024:znc-2024-0202. [PMID: 39565952 DOI: 10.1515/znc-2024-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024]
Abstract
Diabetes mellitus (DM) is a disorder which is raised at the alarming level and it is characterized by the hyperglycemia results from the impaired action of insulin, production of insulin or both of these simultaneously. Consequently, it causes problems or failure of different body organs such as kidneys, heart, eyes, nerve system. Since this disease cannot be completely cured until now, we aimed to design series of enzymes inhibitors and tested them for DM treatment. In this series, benzimidazole-based thiazolidinone bearing chalcone derivatives completed in a four step reaction and their structures were confirmed through various spectroscopic techniques. A significant efficacy on antidiabetic enzymes was observed, with IC50 values ranging from 25.05 ± 0.04 to 56.08 ± 0.07 μM for α-amylase and 22.07 ± 0.02 to 53.06 ± 0.07 μM for α-glucosidase. The obtained results were compared to those of the standard glimepiride drug (IC50 = 18.05 ± 0.07 µM for α-amylase and IC50 = 15.02 ± 0 .03 µM for α-glucosidase). The synthesized compounds showed promising antidiabetic potency. Moreover, a molecular docking study was conducted on the most active analogs of the compounds to better understand their interactions with the active sites of the targeted enzymes.
Collapse
Affiliation(s)
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra, 21120, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, 21120, Pakistan
| | - Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra, 21120, Pakistan
| | - Mohammed B Hawsawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Mustafa S Alluhaibi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 19823 1441, Saudi Arabia
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad, Pakistan
| | - Liaqat Rasheed
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Material, School of Material Science and Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Syed Adnan Ali Shah
- Atta-Ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor, 42300, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor, 42300, Malaysia
| |
Collapse
|
10
|
Zhao P, Liu X, Fan Y, Li X, Kheiri AA. Enhancing understanding of stent-induced deformation in MCA aneurysms: a hemodynamic study. Sci Rep 2024; 14:28036. [PMID: 39543290 PMCID: PMC11564735 DOI: 10.1038/s41598-024-78664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
This article provides a comprehensive hemodynamic assessment of two endovascular techniques for treating cerebral aneurysms. Through finite volume simulations of pulsatile blood flow in saccular aneurysms, we evaluated hemodynamic factors under two coiling conditions with varying porosities and deformation stages to determine the most effective treatment for each case. Our analysis shows that stent and coiling treatments are more effective for aneurysms with smaller sac volumes. In particular, stent placement is found to be more effective than coiling for managing saccular aneurysms. The results indicate that stent-induced deformation effectively redirects the main blood flow, significantly lowering the risk of aneurysm rupture near the ostium. Obtained results emphasize the role of deformation and porosity in controlling wall shear stress, which is essential for understanding aneurysm progression and potential rupture risk.
Collapse
Affiliation(s)
- Peng Zhao
- Interventional Vascular Surgery Department, Peking University International Hospital, Beijing, 102206, China
| | - Xiaochao Liu
- Emergency Departrnent, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yulong Fan
- Neurolntervention Center, Mentougou Hospital, Tongren Hospital, Capital Medical University, Beijing, 102300, China
| | - Xuan Li
- Interventional Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, Beijing, 102206, China.
| | - A Alahdadi Kheiri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
11
|
Shi Q, Yang ZY, Wang YH, Yi BX, Gao XH, Ding YJ, Peng D, Chen YL, Liu HR. Discovery of Novel Cholinesterase Inhibitors Easily Crossing the Blood-Brain Barrier via Structure-Property Relationship Investigation: Methylenedioxy-Cinnamicamide Containing Tertiary Amine Side Chain. Chem Biodivers 2024; 21:e202400557. [PMID: 38701359 DOI: 10.1002/cbdv.202400557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
In the present investigation, a series of dimethoxy or methylenedioxy substituted-cinnamamide derivatives containing tertiary amine moiety (N. N-Dimethyl, N, N-diethyl, Pyrrolidine, Piperidine, Morpholine) were synthesized and evaluated for cholinesterase inhibition and blood-brain barrier (BBB) permeability. Although their chemical structures are similar, their biological activities exhibit diversity. The results showed that all compounds except for those containing morpholine group exhibited moderate to potent acetylcholinesterase inhibition. Preliminary screening of BBB permeability shows that methylenedioxy substituted compounds have better brain permeability than the others. Compound 10c, containing methylenedioxy and pyrrolidine side chain, showed a better acetylcholinesterase inhibition (IC50: 1.52±0.19 μmol/L) and good blood-brain barrier permeability. Further pharmacokinetic investigation of compound 10c using ultra high performance liquid chromatography-mass/mass spectrometry (UPLC-MS/MS) in mice showed that compound 10c in brain tissue reached its peak concentration (857.72±93.56 ng/g) after dosing 30 min. Its half-life in the serum is 331 min (5.52 h), and the CBrain/CSerum at various sampling points is ranged from 1.65 to 4.71(Mean: 2.76) within 24 hours. This investigation provides valuable information on the chemistry and pharmacological diversity of cinnamic acid derivatives and may be beneficial for the discovery of central nervous system drugs.
Collapse
Affiliation(s)
- Qing Shi
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhi-Yu Yang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yi-Hui Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bi-Xin Yi
- Hunan Drug Inspection center, Changsha, 410001, China
| | - Xiao-Hui Gao
- College of Pharmacy, Changsha health Vocational College, Changsha, 410600, China
| | - Yu-Jie Ding
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Dian Peng
- College of Pharmacy, Changsha health Vocational College, Changsha, 410600, China
| | - Yan-Ling Chen
- Department of Pharmacy, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, 410199, China
| | - Hao-Ran Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
12
|
QSAR analysis of the acetylcholinesterase inhibitory activity of some tertiary amine derivatives of cinnamic acid. Struct Chem 2021. [DOI: 10.1007/s11224-020-01683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Przybyłowska M, Dzierzbicka K, Kowalski S, Chmielewska K, Inkielewicz-Stepniak I. Therapeutic Potential of Multifunctional Derivatives of Cholinesterase Inhibitors. Curr Neuropharmacol 2021; 19:1323-1344. [PMID: 33342413 PMCID: PMC8719290 DOI: 10.2174/1570159x19666201218103434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/07/2020] [Accepted: 11/29/2020] [Indexed: 11/22/2022] Open
Abstract
The aim of this work is to review tacrine analogues from the last three years, which were not included in the latest review work, donepezil and galantamine hybrids from 2015 and rivastigmine derivatives from 2014. In this account, we summarize the efforts toward the development and characterization of non-toxic inhibitors of cholinesterases based on mentioned drugs with various interesting additional properties such as antioxidant, decreasing β-amyloid plaque aggregation, nitric oxide production, pro-inflammatory cytokines release, monoamine oxidase-B activity, cytotoxicity and oxidative stress in vitro and in animal model that classify these hybrids as potential multifunctional therapeutic agents for Alzheimer's disease. Moreover, herein, we have described the cholinergic hypothesis, mechanisms of neurodegeneration and current pharmacotherapy of Alzheimer's disease based on the restoration of cholinergic function through blocking enzymes that break down acetylcholine.
Collapse
Affiliation(s)
- Maja Przybyłowska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Szymon Kowalski
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Klaudia Chmielewska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
14
|
Lu QQ, Chen YM, Liu HR, Yan JY, Cui PW, Zhang QF, Gao XH, Feng X, Liu YZ. Nitrogen-containing flavonoid and their analogs with diverse B-ring in acetylcholinesterase and butyrylcholinesterase inhibition. Drug Dev Res 2020; 81:1037-1047. [PMID: 32754990 DOI: 10.1002/ddr.21726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
In this study, a series of new flavones (2-phenyl-chromone), 2-naphthyl chromone, 2-anthryl-chromone, or 2-biphenyl-chromone derivatives containing 6 or 7-substituted tertiary amine side chain were designed, synthesized, and evaluated in acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition. The results indicated that the alteration of aromatic ring connecting to chromone scaffold brings about a significant impact on biological activity. Compared with flavones, the inhibitory activity of 2-naphthyl chromone, 2-anthryl-chromone derivatives against AChE significantly decreased, while that of 2-biphenyl chromone derivatives with 7-substituted tertiary amine side chain is better than relative flavones derivatives. For all new synthesized compounds, the position of tertiary amine side chain obviously influenced the activity of inhibiting AChE. The results above provide great worthy information for the further development of new AChE inhibitors. Among the newly synthesized compounds, compound 5a is potent in AChE inhibition (IC50 = 1.29 ± 0.10 μmol/L) with high selectivity for AChE over BChE (selectivity ratio: 27.96). An enzyme kinetic study of compound 5a suggests that it produces a mixed-type inhibitory effect against AChE.
Collapse
Affiliation(s)
- Qiao-Qiao Lu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Hu'nan University, Changsha, China
| | - Ya-Ming Chen
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Hu'nan University, Changsha, China
| | - Hao-Ran Liu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Hu'nan University, Changsha, China
| | - Jian-Ye Yan
- Department of Pharmacy, College of Pharmacy, Hu'nan University of Chinese Medicine, Changsha, China
| | - Pei-Wu Cui
- Department of Pharmacy, College of Pharmacy, Hu'nan University of Chinese Medicine, Changsha, China
| | - Qian-Fan Zhang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Hu'nan University, Changsha, China
| | - Xiao-Hui Gao
- Department of Pharmacy, College of Pharmacy, Changsha Medical University, Changsha, China
| | - Xing Feng
- Department of Pharmacy, College of Medicine, Hu'nan Normal University, Changsha, China
| | - Ying-Zi Liu
- Department of Pharmacy, College of Medicine, Hu'nan Normal University, Changsha, China
| |
Collapse
|
15
|
Ciprés-Flores FJ, Farfán-García ED, Andrade-Jorge E, Cuevas-Hernández RI, Tamay-Cach F, Martínez-Archundia M, Trujillo-Ferrara JG, Soriano-Ursúa MA. Identification of two arylimides as cholinesterase inhibitors and testing of propranolol addition on impaired rat memory. Drug Dev Res 2020; 81:256-266. [PMID: 31875337 DOI: 10.1002/ddr.21633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is clearly linked to the decline of acetylcholine (ACh) effects in the brain. These effects are regulated by the hydrolytic action of acetylcholinesterase (AChE). Therefore, a central palliative treatment of AD is the administration of AChE inhibitors although additional mechanisms are currently described and tested for generating advantageous therapeutic strategies. In this work, we tested new arylamides and arylimides as potential inhibitors of AChE using in silico tools. Then, these compounds were tested in vitro, and two selected compounds, C7 and C8, as well as propranolol showed inhibition of AChE. In addition, they demonstrated an advantageous acute toxicity profile compared to that of galantamine as a reference AChE inhibitor. in vivo evaluation of memory performance enhancement was performed in an animal model of cognitive disturbance with each of these compounds and propranolol individually as well as each compound combined with propranolol. Memory improvement was observed in each case, but without a significant additive effect with the combinations.
Collapse
Affiliation(s)
- Fabiola J Ciprés-Flores
- Academia de Fisiología Humana and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Eunice D Farfán-García
- Academia de Fisiología Humana and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
- Departamento de Bioquímica and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Erik Andrade-Jorge
- Departamento de Bioquímica and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Roberto I Cuevas-Hernández
- Departamento de Bioquímica and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Feliciano Tamay-Cach
- Departamento de Bioquímica and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Marlet Martínez-Archundia
- Laboratorio de Modelado Molecular, Bioinformática y diseño de fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - José G Trujillo-Ferrara
- Departamento de Bioquímica and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología Humana and Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| |
Collapse
|
16
|
Zengin Kurt B, Durdagi S, Celebi G, Ekhteiari Salmas R, Sonmez F. Synthesis, anticholinesterase activity and molecular modeling studies of novel carvacrol-substituted amide derivatives. J Biomol Struct Dyn 2019; 38:841-859. [PMID: 30836858 DOI: 10.1080/07391102.2019.1590243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the present study, 23 novel carvacrol derivatives involving the amide moiety as a linker between the alkyl chains and/or the heterocycle nucleus were synthesized and tested in vitro as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. 2-(5-Isopropyl-2-methylphenoxy)-N-(quinolin-8-yl)acetamide (5v) revealed the highest inhibition properties against AChE and BuChE with the IC50 values of 1.93 and 0.05 µM, respectively. The blood-brain barrier (BBB) permeability of the potent inhibitor (5v) was also assessed by the widely used parallel artificial membrane permeability assay (PAMPA-BBB). The results showed that 5v is capable of crossing the BBB. Pharmacokinetic and toxicity profiles of the studied molecule predictions were investigated by MetaCore/MetaDrug comprehensive systems biology analysis suite. Bioactive conformations of the synthesized molecules, their predicted binding energies as well as structural and dynamical profiles of molecules at the binding pockets of AChE and BuChE targets were also investigated using different docking algorithms and molecular dynamics (MD) simulations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Belma Zengin Kurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Gulsen Celebi
- Department of Pharmacology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Ramin Ekhteiari Salmas
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Fatih Sonmez
- Pamukova Vocational High School, Sakarya University of Applied Sciences, Sakarya, Turkey
| |
Collapse
|