1
|
Parise LF, Joseph Burnett C, Russo SJ. Early life stress and altered social behaviors: A perspective across species. Neurosci Res 2023:S0168-0102(23)00200-6. [PMID: 37992997 PMCID: PMC11102940 DOI: 10.1016/j.neures.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/21/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
Childhood and adolescent affiliations guide how individuals engage in social relationships throughout their lifetime and adverse experiences can promote biological alterations that facilitate behavioral maladaptation. Indeed, childhood victims of abuse are more likely to be diagnosed with conduct or mood disorders which are both characterized by altered social engagement. A key domain particularly deserving of attention is aggressive behavior, a hallmark of many disorders characterized by deficits in reward processing. Animal models have been integral in identifying both the short- and long-term consequences of stress exposure and suggest that whether it is disruption to parental care or social isolation, chronic exposure to early life stress increases corticosterone, changes the expression of neurotransmitters and neuromodulators, and facilitates structural alterations to the hypothalamus, hippocampus, and amygdala, influencing how these brain regions communicate with other reward-related substrates. Herein, we describe how adverse early life experiences influence social behavioral outcomes across a wide range of species and highlight the long-term biological mechanisms that are most relevant to maladaptive aggressive behavior.
Collapse
Affiliation(s)
- Lyonna F Parise
- Icahn School of Medicine, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, NY, USA.
| | - C Joseph Burnett
- Icahn School of Medicine, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Scott J Russo
- Icahn School of Medicine, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, NY, USA.
| |
Collapse
|
2
|
Russell LN, Hyatt WS, Gannon BM, Simecka CM, Randolph MM, Fantegrossi WE. Effects of Laboratory Housing Conditions on Core Temperature and Locomotor Activity in Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2021; 60:272-280. [PMID: 33888181 DOI: 10.30802/aalas-jaalas-20-000093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Drug developers worldwide assess compound safety and efficacy using measures that include mouse core temperature and locomotor activity. Subtle differences in animal housing conditions between institutions can alter these values, impacting scientific rigor and reproducibility. In these studies, adult male NIH Swiss mice were surgically implanted with radiotelemetry probes that simultaneously monitored core temperature and locomotor activity across various housing conditions. In the first study, ambient temperature was varied between 20 °C and 28°C in groups of singly housed mice. Additional studies held the mice at a constant ambient temperature and examined the effects of cage density (housing animals singly or in groups of 3 or 6), bedding change and provision of nesting material, and the availability of a running wheel on core temperature and locomotor activity. Mice overwhelmingly maintained species-typical core temperatures across all ambient temperatures, across all housing conditions, when bedding was fresh or old, and with or without the provision of cotton squares as nesting material. However, engaging in wheel running and the combination of fresh bedding and cotton squares transiently increased core temperatures beyond the species-typical range. Similarly, the circadian distribution of locomotor activity was significantly disrupted by placing animals in cages with fresh bedding or nesting material, or by performing both of these manipulations concurrently during the light period. These findings suggest that standard husbandry practices and common housing conditions may transiently affect core temperature in adult mice. Furthermore, these practices may have profound and relatively long-lasting effects on motor activity and the regulation of circadian rhythms.
Collapse
Affiliation(s)
- Lauren N Russell
- Department of Pharmacology and Toxicology, Little Rock, Arkansas
| | - William S Hyatt
- Department of Pharmacology and Toxicology, Little Rock, Arkansas
| | - Brenda M Gannon
- Department of Pharmacology and Toxicology, Little Rock, Arkansas
| | - Christy M Simecka
- Division of Laboratory Animal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mildred M Randolph
- Division of Laboratory Animal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | |
Collapse
|
3
|
Rosin JM, Sinha S, Biernaskie J, Kurrasch DM. A subpopulation of embryonic microglia respond to maternal stress and influence nearby neural progenitors. Dev Cell 2021; 56:1326-1345.e6. [PMID: 33887203 DOI: 10.1016/j.devcel.2021.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/21/2021] [Accepted: 03/11/2021] [Indexed: 12/31/2022]
Abstract
The interplay between hypothalamic neurons and microglia as they integrate stressors to regulate homeostasis is of growing interest. We asked if microglia in the embryonic hypothalamus were likewise stress responsive and, if so, whether their precocious activation perturbs nearby neural stem cell (NSC) programs. We performed single-cell transcriptomics to define embryonic hypothalamic microglia heterogeneity and identified four microglial subsets, including a subpopulation adjacent to NSCs that was responsive to gestational cold stress. Stress exposure elevated CCL3 and CCL4 secretion, but only in male brains, and ex vivo CCL4 treatment of hypothalamic NSCs altered proliferation and differentiation. Concomitantly, gestational stress decreased PVN oxytocin neurons only in male embryos, which was reversed by microglia depletion. Adult offspring exposed to gestational stress displayed altered social behaviors, which was likewise microglia dependent, but only in males. Collectively, immature hypothalamic microglia play an unappreciated role in translating maternal stressors to sexually dimorphic perturbation of neurodevelopmental programs.
Collapse
Affiliation(s)
- Jessica M Rosin
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
4
|
M. Nilsen F, Frank J, S. Tulve N. A Systematic Review and Meta-Analysis Investigating the Relationship between Exposures to Chemical and Non-Chemical Stressors during Prenatal Development and Childhood Externalizing Behaviors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072361. [PMID: 32244397 PMCID: PMC7177257 DOI: 10.3390/ijerph17072361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022]
Abstract
Childhood behavioral outcomes have been linked to low quality intrauterine environments caused by prenatal exposures to both chemical and non-chemical stressors. The effect(s) from the many stressors a child can be prenatally exposed to may be influenced by complex interactive relationships that are just beginning to be understood. Chemical stressors influence behavioral outcomes by affecting the monoamine oxidase A (MAOA) enzyme, which is involved in serotonin metabolism and the neuroendocrine response to stress. Non-chemical stressors, particularly those associated with violence, have been shown to influence and exacerbate the externalizing behavioral outcomes associated with low MAOA activity and slowed serotonin metabolism. The adverse developmental effects associated with high stress and maternal drug use during pregnancy are well documented. However, research examining the combined effects of other non-chemical and chemical stressors on development and childhood outcomes as a result of gestational exposures is scarce but is an expanding field. In this systematic review, we examined the extant literature to explore the interrelationships between exposures to chemical and non-chemical stressors (specifically stressful/traumatic experiences), MAOA characteristics, and childhood externalizing behaviors. We observed that exposures to chemical stressors (recreational drugs and environmental chemicals) are significantly related to externalizing behavioral outcomes in children. We also observed that existing literature examining the interactions between MAOA characteristics, exposures to chemical stressors, and traumatic experiences and their effects on behavioral outcomes is sparse. We propose that maternal stress and cortisol fluctuations during pregnancy may be an avenue to link these concepts. We recommend that future studies investigating childhood behaviors include chemical and non-chemical stressors as well as children’s inherent genetic characteristics to gain a holistic understanding of the relationship between prenatal exposures and childhood behavioral outcomes.
Collapse
Affiliation(s)
- Frances M. Nilsen
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Office of Research and Development, 109 TW Alexander Dr., Research Triangle Park, NC 27709, USA;
- Correspondence:
| | - Jessica Frank
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Office of Research and Development, 109 TW Alexander Dr., Research Triangle Park, NC 27709, USA;
| | - Nicolle S. Tulve
- U.S. Environmental Protection Agency, Office of Research and Development, 109 TW Alexander Dr., Research Triangle Park, NC 27709, USA;
| |
Collapse
|
5
|
Covington HE, Newman EL, Leonard MZ, Miczek KA. Translational models of adaptive and excessive fighting: an emerging role for neural circuits in pathological aggression. F1000Res 2019; 8:F1000 Faculty Rev-963. [PMID: 31281636 PMCID: PMC6593325 DOI: 10.12688/f1000research.18883.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 12/16/2022] Open
Abstract
Aggression is a phylogenetically stable behavior, and attacks on conspecifics are observed in most animal species. In this review, we discuss translational models as they relate to pathological forms of offensive aggression and the brain mechanisms that underlie these behaviors. Quantifiable escalations in attack or the development of an atypical sequence of attacks and threats is useful for characterizing abnormal variations in aggression across species. Aggression that serves as a reinforcer can be excessive, and certain schedules of reinforcement that allow aggression rewards also allow for examining brain and behavior during the anticipation of a fight. Ethological attempts to capture and measure offensive aggression point to two prominent hypotheses for the neural basis of violence. First, pathological aggression may be due to an exaggeration of activity in subcortical circuits that mediate adaptive aggressive behaviors as they are triggered by environmental or endogenous cues at vulnerable time points. Indeed, repeated fighting experiences occur with plasticity in brain areas once considered hardwired. Alternatively, a separate "violence network" may converge on aggression circuitry that disinhibits pathological aggression (for example, via disrupted cortical inhibition). Advancing animal models that capture the motivation to commit pathological aggression remains important to fully distinguish the neural architecture of violence as it differs from adaptive competition among conspecifics.
Collapse
Affiliation(s)
- Herbert E. Covington
- Department of Psychology, Tufts University, Medford, 530 Boston Ave, 02155, MA, USA
| | - Emily L. Newman
- Department of Psychology, Tufts University, Medford, 530 Boston Ave, 02155, MA, USA
| | - Michael Z. Leonard
- Department of Psychology, Tufts University, Medford, 530 Boston Ave, 02155, MA, USA
| | - Klaus A. Miczek
- Department of Psychology, Tufts University, Medford, 530 Boston Ave, 02155, MA, USA
- Department of Neuroscience, Tufts University, Boston, 136 Harrison Ave, 02111, MA, USA
| |
Collapse
|
6
|
Walker SE, Papilloud A, Huzard D, Sandi C. The link between aberrant hypothalamic–pituitary–adrenal axis activity during development and the emergence of aggression—Animal studies. Neurosci Biobehav Rev 2018; 91:138-152. [DOI: 10.1016/j.neubiorev.2016.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022]
|
7
|
Hohmann CF, Odebode G, Naidu L, Koban M. Early Life Stress Alters Adult Inflammatory Responses in a Mouse Model for Depression. ANNALS OF PSYCHIATRY AND MENTAL HEALTH 2017; 5:1095. [PMID: 29657960 PMCID: PMC5898393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Increased levels of pro-inflammatory cytokines and hypothalamic pituitary axis (HPA) activity are strongly associated with depression. Childhood stress and trauma predispose individuals for increased inflammatory tone and major depression in later life, suggesting that early life reprogramming of the stress/immune axis may be involved in the pathogenesis of depression. In this study, we are using a short duration neonatal maternal separation stress (MS) paradigm in mice to test if early life stress can impact plasma and brain inflammatory tone into adulthood. We use ELISA assays to investigate levels of the pro-inflammatory cytokines IL-1beta, IL-2, IL-6 and TNF-alpha, in both plasma and brain tissue of mice exposed to MS (STR), their unseparated littermates (LMC) and unhandled age matched controls (AMC). Cytokine levels are assessed in male and female adult mice with and without a bacterial lipopolysaccharide (LPS) induced immune challenge. We present evidence that stress exposure, during the first week of life, predisposes both male and female mice for increased inflammatory cytokine secretion, peripherally and in brain tissue, upon adult exposure to lipopolysaccharide (LPS).
Collapse
Affiliation(s)
- Christine F. Hohmann
- Corresponding author Christine F. Hohmann, Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore MD 21251, Tel: 443-885-4002, Fax: 443-885-8285, USA,
| | | | | | | |
Collapse
|
8
|
van der Kooij MA, Grosse J, Zanoletti O, Papilloud A, Sandi C. The effects of stress during early postnatal periods on behavior and hippocampal neuroplasticity markers in adult male mice. Neuroscience 2015; 311:508-18. [PMID: 26548415 DOI: 10.1016/j.neuroscience.2015.10.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/23/2015] [Accepted: 10/30/2015] [Indexed: 12/25/2022]
Abstract
Infancy is a critical period for brain development. Emerging evidence indicates that stress experienced during that period can have long-term programming effects on the brain and behavior. However, whether different time periods represent different vulnerabilities to the programming of different neurobehavioral domains is not yet known. Disrupted maternal care is known to interfere with neurodevelopmental processes and may lead to the manifestation of behavioral abnormalities in adulthood. Mouse dams confronted with insufficient bedding/nesting material have been shown to provide fragmented maternal care to their offspring. Here, we compared the impact of this model of early-life stress (ELS) during different developmental periods comprising either postnatal days (PNDs) 2-9 (ELS-early) or PND 10-17 (ELS-late) on behavior and hippocampal cell adhesion molecules in male mice in adulthood. ELS-early treatment caused a permanent reduction in bodyweight, whereas this reduction only occurred transiently during juvenility in ELS-late mice. Anxiety was only affected in ELS-late mice, while cognition and sociability were equally impaired in both ELS-treated groups. We analyzed hippocampal gene expression of the γ2 subunit of the GABAa receptor (Gabrg2) and of genes encoding cell adhesion molecules. Gabrg2 expression was increased in the ventral hippocampus in ELS-late-treated animals and was correlated with anxiety-like behavior in the open-field (OF) test. ELS-early-treated animals exhibited an increase in nectin-1 expression in the dorsal hippocampus, and this increase was associated with the social deficits seen in these animals. Our findings highlight the relevance of developmental age on stress-induced long-term behavioral alterations. They also suggest potential links between early stress-induced alterations in hippocampal Gabrg2 expression and the developmental programming of anxiety and between changes in hippocampal nectin-1 expression and stress-induced social impairments.
Collapse
Affiliation(s)
- M A van der Kooij
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytèchnique Fédérale de Lausanne (EPFL), Switzerland; Johannes Gutenberg University Medical Centre, Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Mainz, Germany
| | - J Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytèchnique Fédérale de Lausanne (EPFL), Switzerland
| | - O Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytèchnique Fédérale de Lausanne (EPFL), Switzerland
| | - A Papilloud
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytèchnique Fédérale de Lausanne (EPFL), Switzerland
| | - C Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytèchnique Fédérale de Lausanne (EPFL), Switzerland.
| |
Collapse
|
9
|
Kasten CR, Boehm SL. Identifying the role of pre-and postsynaptic GABA(B) receptors in behavior. Neurosci Biobehav Rev 2015; 57:70-87. [PMID: 26283074 DOI: 10.1016/j.neubiorev.2015.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/18/2015] [Accepted: 08/09/2015] [Indexed: 12/15/2022]
Abstract
Although many reviews exist characterizing the molecular differences of GABAB receptor isoforms, there is no current review of the in vivo effects of these isoforms. The current review focuses on whether the GABAB1a and GABAB1b isoforms contribute differentially to behaviors in isoform knockout mice. The roles of these receptors have primarily been characterized in cognitive, anxiety, and depressive phenotypes. Currently, the field supports a role of GABAB1a in memory maintenance and protection against an anhedonic phenotype, whereas GABAB1b appears to be involved in memory formation and a susceptibility to developing an anhedonic phenotype. Although GABAB receptors have been strongly implicated in drug abuse phenotypes, no isoform-specific work has been done in this field. Future directions include developing site-specific isoform knockdown to identify the role of different brain regions in behavior, as well as identifying how these isoforms are involved in development of behavioral phenotypes.
Collapse
Affiliation(s)
- Chelsea R Kasten
- Department of Psychology, Indianapolis University Purdue University-Indianapolis, 402N Blackford St LD 124, Indianapolis, IN 46202, United States.
| | - Stephen L Boehm
- Department of Psychology, Indianapolis University Purdue University-Indianapolis, 402N Blackford St LD 124, Indianapolis, IN 46202, United States; Indiana Alcohol Research Center, 545 Barnhill Drive EH 317, Indianapolis, IN, United States.
| |
Collapse
|
10
|
Tsuda MC, Yamaguchi N, Nakata M, Ogawa S. Modification of female and male social behaviors in estrogen receptor beta knockout mice by neonatal maternal separation. Front Neurosci 2014; 8:274. [PMID: 25228857 PMCID: PMC4151037 DOI: 10.3389/fnins.2014.00274] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/14/2014] [Indexed: 01/20/2023] Open
Abstract
Maternal separation (MS) is an animal model mimicking the effects of early life stress on the development of emotional and social behaviors. Recent studies revealed that MS stress increased social anxiety levels in female mice and reduced peri-pubertal aggression in male mice. Estrogen receptor (ER) β plays a pivotal role in the regulation of stress responses and anxiety-related and social behaviors. Behavioral studies using ERβ knockout (βERKO) mice reported increased social investigation and decreased social anxiety in βERKO females, and elevated aggression levels in βERKO males compared to wild-type (WT) mice. In the present study, using βERKO and WT mice, we examined whether ERβ contributes to MS effects on anxiety and social behaviors. βERKO and WT mice were separated from their dam daily (4 h) from postnatal day 1–14 and control groups were left undisturbed. First, MS and ERβ gene deletion individually increased anxiety-related behaviors in the open field test, but only in female mice. Anxiety levels were not further modified in βERKO female mice subjected to MS stress. Second, βERKO female mice showed higher levels of social investigation compared with WT in the social investigation test and long-term social preference test. However, MS greatly reduced social investigation duration and elevated number of stretched approaches in WT and βERKO females in the social investigation test, suggesting elevated levels of social anxiety in both genotypes. Third, peri-pubertal and adult βERKO male mice were more aggressive than WT mice as indicated by heightened aggression duration. On the other hand, MS significantly decreased aggression duration in both genotypes, but only in peri-pubertal male mice. Altogether, these results suggest that βERKO mice are sensitive to the adverse effects of MS stress on subsequent female and male social behaviors, which could then have overrode the ERβ effects on female social anxiety and male aggression.
Collapse
Affiliation(s)
- Mumeko C Tsuda
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba Tsukuba, Japan
| | - Naoko Yamaguchi
- Department of Pharmacology, School of Medicine, Aichi Medical University Nagakute, Japan
| | - Mariko Nakata
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba Tsukuba, Japan
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba Tsukuba, Japan
| |
Collapse
|
11
|
Macrì S, Onori MP, Roessner V, Laviola G. Animal models recapitulating the multifactorial origin of Tourette syndrome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 112:211-37. [PMID: 24295623 DOI: 10.1016/b978-0-12-411546-0.00008-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tourette Syndrome (TS) is a neurological disorder characterized by motor and phonic tics affecting approximately 1% of the pediatric population. Behavioral comorbidities often include obsessive-compulsive behavior and impaired attention. The neurobiological substrates associated with TS generally entail abnormalities in neurotransmitter circuitry regulating basal ganglia activity. The neurotransmitters most often associated with TS are dopamine, serotonin, and GABA. TS origin roots in genetic predisposing factors, and environmental variables favoring tic onset and exacerbation. Among the latter, repeated infections with group A beta-hemolytic Streptococcus and psychosocial stressors encountered during development have been proposed to constitute likely susceptibility factors. In this chapter, we describe how this clinical/epidemiological knowledge has been translated into animal models of TS. Specifically, we review several studies attempting to reproduce TS-like symptoms (tics and behavioral stereotypies) and comorbidities (impaired attention, increased locomotion, and perseverative responding) in laboratory rodents. Additionally, we discuss studies in which the genetic and environmental predisposing factors have been modeled in experimental subjects. Ultimately, we propose a unifying perspective recapitulating dependent and independent variables in the preclinical study of TS and discuss its potential theoretical and heuristic implications.
Collapse
Affiliation(s)
- Simone Macrì
- Section of Behavioural Neuroscience, Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | |
Collapse
|