1
|
Huang J, Yang W, Bao L, Yin B. Effects of Peripubertal Experiences on Competitive Behavior in Male Rats at Different Stages of Adulthood. Dev Psychobiol 2024; 66:e22544. [PMID: 39236223 DOI: 10.1002/dev.22544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
Past studies in animal models have extensively investigated the impact of early life experiences on behavioral development, yet relatively few have specifically examined the implications of peripubertal experiences on the evolution of competitive behavior across distinct stages of adulthood. In the current research, we probed potential differences in competitive behavior during emerging adulthood (3 months old) and middle adulthood (12 months old) in 81 Sprague-Dawley male rats exposed to three different peripubertal (postnatal Days 37-60) environments: an enriched environment (EE), a chronic unpredictable mild stress (CUMS) condition, and a control condition. Anxiety-like behavior served as a positive control in our study. Results revealed significant variations in competitive behavior among the groups during emerging adulthood. The EE group displayed the least anxiety and outperformed their peers in food-reward-oriented competition, whereas the CUMS group excelled in status-driven, agonistic competition. However, these behavioral differentiations gradually attenuated by middle adulthood, at which point the control group began to show an advantage. Our findings suggest that although peripubertal experiences significantly shape competitive behavior in the emerging adulthood stage, this effect diminishes over time and is nearly non-detectable during mid-adulthood, underscoring the fluidity of behavioral development and demonstrating that the effects of peripubertal experiences can be modulated by subsequent life experiences.
Collapse
Affiliation(s)
- Jinkun Huang
- School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| | - Wenjia Yang
- School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| | - Lili Bao
- School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| | - Bin Yin
- School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Seese S, Tinsley CE, Wulffraat G, Hixon JG, Monfils MH. Conspecific interactions predict social transmission of fear in female rats. Sci Rep 2024; 14:7804. [PMID: 38565873 PMCID: PMC10987648 DOI: 10.1038/s41598-024-58258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Social transmission of fear occurs in a subset of individuals, where an Observer displays a fear response to a previously neutral stimulus after witnessing or interacting with a conspecific Demonstrator during memory retrieval. The conditions under which fear can be acquired socially in rats have received attention in recent years, and suggest that social factors modulate social transmission of information. We previously found that one such factor, social rank, impacts fear conditioning by proxy in male rats. Here, we aimed to investigate whether social roles as determined by nape contacts in females, might also have an influence on social transmission of fear. In-line with previous findings in males, we found that social interactions in the home cage can provide insight into the social relationship between female rats and that these relationships predict the degree of fear acquired by-proxy. These results suggest that play behavior affects the social transfer/transmission of information in female rats.
Collapse
Affiliation(s)
- Sydney Seese
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712-1043, USA
| | - Carolyn E Tinsley
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Grace Wulffraat
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712-1043, USA
| | - J Gregory Hixon
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712-1043, USA
| | - Marie-H Monfils
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712-1043, USA.
| |
Collapse
|
3
|
Lopez K, Baker MR, Toth M. Single cell transcriptomic representation of social dominance in prefrontal cortex and the influence of preweaning maternal and postweaning social environment. Sci Rep 2024; 14:2206. [PMID: 38272981 PMCID: PMC10810822 DOI: 10.1038/s41598-024-52200-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Social dominance encompasses winning dyadic contests and gaining priority access to resources and reproduction. Dominance is influenced by environmental factors, particularly during early postnatal life and adolescence. A disinhibitory medial prefrontal cortex (mPFC) microcircuit has been implicated in the expression of dominance in the "tube test" social competition paradigm in mice, but the neuroplasticity underlying dominance is not known. We previously reported that male pups raised by physically active (wheel-running, as opposed to sedentary) dams exhibit tube test dominance and increased reproductive fitness, and here we show that social isolation from weaning also increases dominance. By using single cell transcriptomics, we tested if increased dominance in these models is associated with a specific transcriptional profile in one or more cell-types in the mPFC. The preweaning maternal effect, but not postweaning social isolation, caused gene expression changes in pyramidal neurons. However, both the effect of maternal exercise and social isolation induced the coordinated downregulation of synaptic channel, receptor, and adhesion genes in parvalbumin positive (PV) interneurons, suggesting that development of dominance is accompanied by impaired PV interneuron-mediated inhibition of pyramidal cells. This study may help understand environmentally induced transcriptional plasticity in the PFC and its relationship to tube test dominance.
Collapse
Affiliation(s)
- Katherine Lopez
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Ave, New York, NY, 10065, USA
| | - Madelyn R Baker
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Ave, New York, NY, 10065, USA
| | - Miklos Toth
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Curley JP, Champagne FA. Shaping the development of complex social behavior. Ann N Y Acad Sci 2023; 1530:46-63. [PMID: 37855311 DOI: 10.1111/nyas.15076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Early life experiences can have an enduring impact on the brain and behavior, with implications for stress reactivity, cognition, and social behavior. In particular, the neural systems that contribute to the expression of social behavior are altered by early life social environments. However, paradigms that have been used to alter the social environment during development have typically focused on exposure to stress, adversity, and deprivation of species-typical social stimulation. Here, we explore whether complex social environments can shape the development of complex social behavior. We describe lab-based paradigms for studying early life social complexity in rodents that are generally focused on enriching the social and sensory experiences of the neonatal and juvenile periods of development. The impact of these experiences on social behavior and neuroplasticity is highlighted. Finally, we discuss the degree to which our current approaches for studying social behavior outcomes give insight into "complex" social behavior and how social complexity can be better integrated into lab-based methodologies.
Collapse
Affiliation(s)
- James P Curley
- Department of Psychology, The University of Texas at Austin, Austin, Texas, USA
| | - Frances A Champagne
- Department of Psychology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
5
|
Haave-Audet E, Besson AA, Nakagawa S, Mathot KJ. Differences in resource acquisition, not allocation, mediate the relationship between behaviour and fitness: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2021; 97:708-731. [PMID: 34859575 DOI: 10.1111/brv.12819] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022]
Abstract
Within populations, individuals often show repeatable variation in behaviour, called 'animal personality'. In the last few decades, numerous empirical studies have attempted to elucidate the mechanisms maintaining this variation, such as life-history trade-offs. Theory predicts that among-individual variation in behavioural traits could be maintained if traits that are positively associated with reproduction are simultaneously associated with decreased survival, such that different levels of behavioural expression lead to the same net fitness outcome. However, variation in resource acquisition may also be important in mediating the relationship between individual behaviour and fitness components (survival and reproduction). For example, if certain phenotypes (e.g. dominance or aggressiveness) are associated with higher resource acquisition, those individuals may have both higher reproduction and higher survival, relative to others in the population. When individuals differ in their ability to acquire resources, trade-offs are only expected to be observed at the within-individual level (i.e. for a given amount of resource, if an individual increases its allocation to reproduction, it comes at the cost of allocation to survival, and vice versa), while among individuals traits that are associated with increased survival may also be associated with increased reproduction. We performed a systematic review and meta-analysis, asking: (i) do among-individual differences in behaviour reflect among-individual differences in resource acquisition and/or allocation, and (ii) is the relationship between behaviour and fitness affected by the type of behaviour and the testing environment? Our meta-analysis consisted of 759 estimates from 193 studies. Our meta-analysis revealed a positive correlation between pairs of estimates using both survival and reproduction as fitness proxies. That is, for a given study, behaviours that were associated with increased reproduction were also associated with increased survival, suggesting that variation in behaviour at the among-individual level largely reflects differences among individuals in resource acquisition. Furthermore, we found the same positive correlation between pairs of estimates using both survival and reproduction as fitness proxies at the phenotypic level. This is significant because we also demonstrated that these phenotypic correlations primarily reflect within-individual correlations. Thus, even when accounting for among-individual differences in resource acquisition, we did not find evidence of trade-offs at the within-individual level. Overall, the relationship between behaviour and fitness proxies was not statistically different from zero at the among-individual, phenotypic, and within-individual levels; this relationship was not affected by behavioural category nor by the testing condition. Our meta-analysis highlights that variation in resource acquisition may be more important in driving the relationship between behaviour and fitness than previously thought, including at the within-individual level. We suggest that this may come about via heterogeneity in resource availability or age-related effects, with higher resource availability and/or age leading to state-dependent shifts in behaviour that simultaneously increase both survival and reproduction. We emphasize that future studies examining the mechanisms maintaining behavioural variation in populations should test the link between behavioural expression and resource acquisition - both within and among individuals. Such work will allow the field of animal personality to develop specific predictions regarding the mediating effect of resource acquisition on the fitness consequences of individual behaviour.
Collapse
Affiliation(s)
- Elène Haave-Audet
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Bldg, Edmonton, AB, T6G 2E9, Canada
| | - Anne A Besson
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Bldg, Edmonton, AB, T6G 2E9, Canada.,Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Shinichi Nakagawa
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kimberley J Mathot
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Bldg, Edmonton, AB, T6G 2E9, Canada.,Canada Research Chair, Integrative Ecology, Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
6
|
Affiliation(s)
- Barbara Taborsky
- Behavioural Ecology Division Institute of Ecology and Evolution University of Bern Bern Switzerland
| |
Collapse
|
7
|
Bombail V, Brown SM, Hammond TJ, Meddle SL, Nielsen BL, Tivey EKL, Lawrence AB. Crying With Laughter: Adapting the Tickling Protocol to Address Individual Differences Among Rats in Their Response to Playful Handling. Front Vet Sci 2021; 8:677872. [PMID: 34250064 PMCID: PMC8264139 DOI: 10.3389/fvets.2021.677872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/14/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Vincent Bombail
- Physiologie de la Nutrition et du Comportement Alimentaire (PNCA), INRAE, Université Paris-Saclay, Paris, France
| | - Sarah M Brown
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tayla J Hammond
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom.,Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Birte L Nielsen
- Modélisation Systémique Appliquée aux Ruminants (MoSAR), INRAE, Université Paris-Saclay, Paris, France.,Universities Federation for Animal Welfare (UFAW), Wheathampstead, United Kingdom
| | - Emma K L Tivey
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Alistair B Lawrence
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom.,Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| |
Collapse
|
8
|
Andersen SL. Stress, sensitive periods, and substance abuse. Neurobiol Stress 2019; 10:100140. [PMID: 30569003 PMCID: PMC6288983 DOI: 10.1016/j.ynstr.2018.100140] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/18/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Research on the inter-relationship between drug abuse and social stress has primarily focused on the role of stress exposure during adulthood and more recently, adolescence. Adolescence is a time of heightened reward sensitivity, but it is also a time when earlier life experiences are expressed. Exposure to stress early in postnatal life is associated with an accelerated age of onset for drug use. Lifelong addiction is significantly greater if drug use is initiated during early adolescence. Understanding how developmental changes following stress exposure interact with sensitive periods to unfold over the course of maturation is integral to reducing their later impact on substance use. Arousal levels, gender/sex, inflammation, and the timing of stress exposure play a role in the vulnerability of these circuits. The current review focuses on how early postnatal stress impacts brain development during a sensitive period to increase externalizing and internalizing behaviors in adolescence that include social interactions (aggression; sexual activity), working memory impairment, and depression. How stress effects the developmental trajectories of brain circuits that are associated with addiction are discussed for both clinical and preclinical studies.
Collapse
|
9
|
Pohl TT, Young LJ, Bosch OJ. Lost connections: Oxytocin and the neural, physiological, and behavioral consequences of disrupted relationships. Int J Psychophysiol 2018; 136:54-63. [PMID: 29330007 DOI: 10.1016/j.ijpsycho.2017.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/12/2017] [Accepted: 12/29/2017] [Indexed: 12/31/2022]
Abstract
In humans and rodent animal models, the brain oxytocin system is paramount for facilitating social bonds, from the formation and consequences of early-life parent-infant bonds to adult pair bond relationships. In social species, oxytocin also mediates the positive effects of healthy social bonds on the partners' well-being. However, new evidence suggests that the negative consequences of early neglect or partner loss may be mediated by disruptions in the oxytocin system as well. With a focus on oxytocin and its receptor, we review studies from humans and animal models, i.e. mainly from the biparental, socially monogamous prairie vole (Microtus ochrogaster), on the beneficial effects of positive social relationships both between offspring and parents and in adult partners. The abundance of social bonds and benevolent social relationships, in general, are associated with protective effects against psycho- and physiopathology not only in the developing infant, but also during adulthood. Furthermore, we discuss the negative effects on well-being, emotionality and behavior, when these bonds are diminished in quality or are disrupted, for example through parental neglect of the young or the loss of the partner in adulthood. Strikingly, in prairie voles, oxytocinergic signaling plays an important developmental role in the ability to form bonds later in life in the face of early-life neglect, while disruption of oxytocin signaling following partner loss results in the emergence of depressive-like behavior and physiology. This review demonstrates the translational value of animal models for investigating the oxytocinergic mechanisms that underlie the detrimental effects of developmental parental neglect and pair bond disruption, encouraging future translationally relevant studies on this topic that is so central to our daily lives.
Collapse
Affiliation(s)
- Tobias T Pohl
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, 93053 Regensburg, Germany
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
10
|
Ellis BJ, Bianchi J, Griskevicius V, Frankenhuis WE. Beyond Risk and Protective Factors: An Adaptation-Based Approach to Resilience. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2017; 12:561-587. [DOI: 10.1177/1745691617693054] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
How does repeated or chronic childhood adversity shape social and cognitive abilities? According to the prevailing deficit model, children from high-stress backgrounds are at risk for impairments in learning and behavior, and the intervention goal is to prevent, reduce, or repair the damage. Missing from this deficit approach is an attempt to leverage the unique strengths and abilities that develop in response to high-stress environments. Evolutionary-developmental models emphasize the coherent, functional changes that occur in response to stress over the life course. Research in birds, rodents, and humans suggests that developmental exposures to stress can improve forms of attention, perception, learning, memory, and problem solving that are ecologically relevant in harsh-unpredictable environments (as per the specialization hypothesis). Many of these skills and abilities, moreover, are primarily manifest in currently stressful contexts where they would provide the greatest fitness-relevant advantages (as per the sensitization hypothesis). This perspective supports an alternative adaptation-based approach to resilience that converges on a central question: “What are the attention, learning, memory, problem-solving, and decision-making strategies that are enhanced through exposures to childhood adversity?” At an applied level, this approach focuses on how we can work with, rather than against, these strengths to promote success in education, employment, and civic life.
Collapse
|
11
|
Perkeybile AM, Bales KL. Intergenerational transmission of sociality: the role of parents in shaping social behavior in monogamous and non-monogamous species. J Exp Biol 2017; 220:114-123. [PMID: 28057834 PMCID: PMC5278619 DOI: 10.1242/jeb.142182] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Social bonds are necessary for many mammals to survive and reproduce successfully. These bonds (i.e. pair-bonds, friendships, filial bonds) are characterized by different periods of development, longevity and strength. Socially monogamous species display certain behaviors not seen in many other mammals, such as adult pair-bonding and male parenting. In our studies of prairie voles (Microtus ochrogaster) and titi monkeys (Callicebus cupreus), we have examined the neurohormonal basis of these bonds. Here, we discuss the evidence from voles that aspects of adolescent and adult social behavior are shaped by early experience, including changes to sensory systems and connections, neuropeptide systems such as oxytocin and vasopressin, and alterations in stress responses. We will compare this with what is known about these processes during development and adulthood in other mammalian species, both monogamous and non-monogamous, and how our current knowledge in voles can be used to understand the development of and variation in social bonds. Humans are endlessly fascinated by the variety of social relationships and family types displayed by animal species, including our own. Social relationships can be characterized by directionality (either uni- or bi-directional), longevity, developmental epoch (infant, juvenile or adult) and strength. Research on the neurobiology of social bonds in animals has focused primarily on 'socially monogamous' species, because of their long-term, strong adult affiliative bonds. In this Review, we attempt to understand how the ability and propensity to form these bonds (or lack thereof), as well as the display of social behaviors more generally, are transmitted both genomically and non-genomically via variation in parenting in monogamous and non-monogamous species.
Collapse
Affiliation(s)
- Allison M Perkeybile
- Department of Psychology, University of California, Davis, Davis, CA 95616, USA
- The Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
| | - Karen L Bales
- Department of Psychology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
12
|
Johnson SA, Javurek AB, Painter MS, Ellersieck MR, Welsh TH, Camacho L, Lewis SM, Vanlandingham MM, Ferguson SA, Rosenfeld CS. Effects of developmental exposure to bisphenol A on spatial navigational learning and memory in rats: A CLARITY-BPA study. Horm Behav 2016; 80:139-148. [PMID: 26436835 PMCID: PMC4818668 DOI: 10.1016/j.yhbeh.2015.09.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/22/2015] [Accepted: 09/30/2015] [Indexed: 11/23/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous industrial chemical used in the production of a wide variety of items. Previous studies suggest BPA exposure may result in neuro-disruptive effects; however, data are inconsistent across animal and human studies. As part of the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA), we sought to determine whether female and male rats developmentally exposed to BPA demonstrated later spatial navigational learning and memory deficits. Pregnant NCTR Sprague-Dawley rats were orally dosed from gestational day 6 to parturition, and offspring were directly orally dosed until weaning (postnatal day 21). Treatment groups included a vehicle control, three BPA doses (2.5μg/kg body weight (bw)/day-[2.5], 25μg/kg bw/day-[25], and 2500μg/kg bw/day-[2500]) and a 0.5μg/kg/day ethinyl estradiol (EE)-reference estrogen dose. At adulthood, 1/sex/litter was tested for seven days in the Barnes maze. The 2500 BPA group sniffed more incorrect holes on day 7 than those in the control, 2.5 BPA, and EE groups. The 2500 BPA females were less likely than control females to locate the escape box in the allotted time (p value=0.04). Although 2.5 BPA females exhibited a prolonged latency, the effect did not reach significance (p value=0.06), whereas 2.5 BPA males showed improved latency compared to control males (p value=0.04), although the significance of this result is uncertain. No differences in serum testosterone concentration were detected in any male or female treatment groups. Current findings suggest developmental exposure of rats to BPA may disrupt aspects of spatial navigational learning and memory.
Collapse
Affiliation(s)
- Sarah A Johnson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States; Biomedical Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Angela B Javurek
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States; Biomedical Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Michele S Painter
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States; Biomedical Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Mark R Ellersieck
- Agriculture Experimental Station-Statistics, University of Missouri, Columbia, MO 65211, United States
| | - Thomas H Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, United States
| | - Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR 72079, United States
| | - Sherry M Lewis
- Office of Scientific Coordination, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR 72079, United States
| | - Michelle M Vanlandingham
- Division of Biochemical Toxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR 72079, United States
| | - Sherry A Ferguson
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR 72079, United States
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States; Biomedical Sciences, University of Missouri, Columbia, MO 65211, United States; Genetics Area Program, University of Missouri, Columbia, MO 65211, United States; Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
13
|
Hane AA, Fox NA. Early Caregiving and Human Biobehavioral Development: A Comparative Physiology Approach. Curr Opin Behav Sci 2016; 7:82-90. [PMID: 26753173 DOI: 10.1016/j.cobeha.2015.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A large and growing body of evidence demonstrates associations between quality of the early caregiving environment and risk for stress-related illness across the lifespan. The recent research examining associations between early caregiving environments and subsequent development is reviewed, with particular attention to early programming and subsequent malleability of systems underlying stress responsivity. A developmental comparative physiology model is suggested; one in which postnatal programming and phenotypic plasticity act in concert as mechanisms underlying the persisting effects of early care environments for biobehavioral outcomes.
Collapse
|
14
|
Beery AK, McEwen LM, MacIsaac JL, Francis DD, Kobor MS. Natural variation in maternal care and cross-tissue patterns of oxytocin receptor gene methylation in rats. Horm Behav 2016; 77:42-52. [PMID: 26122287 PMCID: PMC4691570 DOI: 10.1016/j.yhbeh.2015.05.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/16/2015] [Accepted: 05/27/2015] [Indexed: 12/27/2022]
Abstract
This article is part of a Special Issue "Parental Care". Since the first report of maternal care effects on DNA methylation in rats, epigenetic modifications of the genome in response to life experience have become the subject of intense focus across many disciplines. Oxytocin receptor expression varies in response to early experience, and both oxytocin signaling and methylation status of the oxytocin receptor gene (Oxtr) in blood have been related to disordered social behavior. It is unknown whether Oxtr DNA methylation varies in response to early life experience, and whether currently employed peripheral measures of Oxtr methylation reflect variation in the brain. We examined the effects of early life rearing experience via natural variation in maternal licking and grooming during the first week of life on behavior, physiology, gene expression, and epigenetic regulation of Oxtr across blood and brain tissues (mononucleocytes, hippocampus, striatum, and hypothalamus). Rats reared by "high" licking-grooming (HL) and "low" licking-grooming (LL) rat dams exhibited differences across study outcomes: LL offspring were more active in behavioral arenas, exhibited lower body mass in adulthood, and showed reduced corticosterone responsivity to a stressor. Oxtr DNA methylation was significantly lower at multiple CpGs in the blood of LL versus HL males, but no differences were found in the brain. Across groups, Oxtr transcript levels in the hypothalamus were associated with reduced corticosterone secretion in response to stress, congruent with the role of oxytocin signaling in this region. Methylation of specific CpGs at a high or low level was consistent across tissues, especially within the brain. However, individual variation in DNA methylation relative to these global patterns was not consistent across tissues. These results suggest that blood Oxtr DNA methylation may reflect early experience of maternal care, and that Oxtr methylation across tissues is highly concordant for specific CpGs, but that inferences across tissues are not supported for individual variation in Oxtr methylation.
Collapse
Affiliation(s)
- Annaliese K Beery
- Department of Psychology, Neuroscience Program, Smith College, Northampton, MA, USA; Robert Wood Johnson Health and Society Scholars Program, University of California, Berkeley and San Francisco, CA, USA.
| | - Lisa M McEwen
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, and Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, and Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Darlene D Francis
- Robert Wood Johnson Health and Society Scholars Program, University of California, Berkeley and San Francisco, CA, USA; School of Public Health, University of California, Berkeley, CA, USA
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, and Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Johnson SA, Javurek AB, Painter MS, Peritore MP, Ellersieck MR, Roberts RM, Rosenfeld CS. Disruption of parenting behaviors in california mice, a monogamous rodent species, by endocrine disrupting chemicals. PLoS One 2015; 10:e0126284. [PMID: 26039462 PMCID: PMC4454565 DOI: 10.1371/journal.pone.0126284] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/31/2015] [Indexed: 12/31/2022] Open
Abstract
The nature and extent of care received by an infant can affect social, emotional and cognitive development, features that endure into adulthood. Here we employed the monogamous, California mouse (Peromyscus californicus), a species, like the human, where both parents invest in offspring care, to determine whether early exposure to endocrine disrupting chemicals (EDC: bisphenol A, BPA; ethinyl estradiol, EE) of one or both parents altered their behaviors towards their pups. Females exposed to either compound spent less time nursing, grooming and being associated with their pups than controls, although there was little consequence on their weight gain. Care of pups by males was less affected by exposure to BPA and EE, but control, non-exposed females appeared able to “sense” a male partner previously exposed to either compound and, as a consequence, reduced their own parental investment in offspring from such pairings. The data emphasize the potential vulnerability of pups born to parents that had been exposed during their own early development to EDC, and that effects on the male, although subtle, also have consequences on overall parental care due to lack of full acceptance of the male by the female partner.
Collapse
Affiliation(s)
- Sarah A. Johnson
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, United States of America
- Biomedical Sciences, University of Missouri, Columbia, MO, 65211, United States of America
| | - Angela B. Javurek
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, United States of America
- Biomedical Sciences, University of Missouri, Columbia, MO, 65211, United States of America
| | - Michele S. Painter
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, United States of America
- Biomedical Sciences, University of Missouri, Columbia, MO, 65211, United States of America
| | - Michael P. Peritore
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, United States of America
- Biomedical Sciences, University of Missouri, Columbia, MO, 65211, United States of America
| | - Mark R. Ellersieck
- Agriculture Experimental Station-Statistics, University of Missouri, Columbia, MO, 65211, United States of America
| | - R. Michael Roberts
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, United States of America
- Animal Sciences, University of Missouri, Columbia, MO, 65211, United States of America
- Biochemistry, University of Missouri, Columbia, MO, 65211, United States of America
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, United States of America
| | - Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, United States of America
- Biomedical Sciences, University of Missouri, Columbia, MO, 65211, United States of America
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, United States of America
- * E-mail:
| |
Collapse
|
16
|
Sominsky L, Fuller EA, Hodgson DM. Factors in Early-Life Programming of Reproductive Fitness. Neuroendocrinology 2015; 102:216-25. [PMID: 26043876 DOI: 10.1159/000431378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/14/2015] [Indexed: 11/19/2022]
Abstract
Fertility rates have been declining worldwide, with a growing number of young women suffering from infertility. Infectious and inflammatory diseases are important causes of infertility, and recent evidence points to the critical role of the early-life microbial environment in developmental programming of adult reproductive fitness. Our laboratory and others have demonstrated that acute exposure to an immunological challenge early in life has a profound and prolonged impact on male and female reproductive development. This review presents evidence that perinatal exposure to immunological challenge by a bacterial endotoxin, lipopolysaccharide, acts at all levels of the hypothalamic-pituitary-gonadal axis, resulting in long-lasting changes in reproductive function, suggesting that disposition to infertility may begin early in life.
Collapse
Affiliation(s)
- Luba Sominsky
- Laboratory of Neuroimmunology, School of Psychology, Faculty of Science and IT, The University of Newcastle, Newcastle, N.S.W., Australia
| | | | | |
Collapse
|
17
|
Beery AK, Kaufer D. Stress, social behavior, and resilience: insights from rodents. Neurobiol Stress 2015; 1:116-127. [PMID: 25562050 PMCID: PMC4281833 DOI: 10.1016/j.ynstr.2014.10.004] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/24/2014] [Indexed: 11/20/2022] Open
Abstract
The neurobiology of stress and the neurobiology of social behavior are deeply intertwined. The social environment interacts with stress on almost every front: social interactions can be potent stressors; they can buffer the response to an external stressor; and social behavior often changes in response to stressful life experience. This review explores mechanistic and behavioral links between stress, anxiety, resilience, and social behavior in rodents, with particular attention to different social contexts. We consider variation between several different rodent species and make connections to research on humans and non-human primates.
Collapse
Affiliation(s)
- Annaliese K. Beery
- Department of Psychology, Department of Biology, Neuroscience Program, Smith College, Northampton, MA, USA
| | - Daniela Kaufer
- Department of Integrative Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
18
|
Rosenfeld CS, Johnson SA, Ellersieck MR, Roberts RM. Interactions between parents and parents and pups in the monogamous California mouse (Peromyscus californicus). PLoS One 2013; 8:e75725. [PMID: 24069441 PMCID: PMC3777941 DOI: 10.1371/journal.pone.0075725] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/21/2013] [Indexed: 01/28/2023] Open
Abstract
The California mouse (Peromyscuscalifornicus) may be a valuable animal model to study parenting as it is one of the few monogamous and biparental rodent species. By using automated infra-red imaging and video documentation of established pairs spanning two days prior to birth of the litter until d 5 of post natal development (PND), it was possible to follow interactions between parents and between parents and pups. The paired males were attentive to their partners in the form of grooming and sniffing throughout the time period studied. Both these and other activities of the partners, such as eating and drinking, peaked during late light/ mid-dark period. Beginning the day before birth, and most significantly on PND 0, the female made aggressive attempts to exclude the male from nest-attending, acts that were not reciprocated by the male, although he made repeated attempts to mate his partner during that period. By PND 1, males were permitted to return to the nest, where they initiated grooming, licking, and huddling over the litter, although time spent by the male on parental care was still less than that of the female. Male and female pups were of similar size and grew at the same rate. Pups, which are believed to be exothermic for at least the first two weeks post-natally, maintained a body temperature higher than that of their parents until PND 16. Data are consistent with the inference that the male California mouse parent is important in helping retain pup body heat and permit dams increased time to procure food to accommodate her increased energy needs for lactation. These assessments provide indices that may be used to assess the effects of extrinsic factors, such as endocrine disrupting chemicals, on biparental behaviors and offspring development.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Sarah A. Johnson
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Mark R. Ellersieck
- Agriculture Experimental Station-Statistics, University of Missouri, Columbia, Missouri, United States of America
| | - R. Michael Roberts
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
19
|
Borrow AP, Levy MJ, Soehngen EP, Cameron NM. Perinatal testosterone exposure and maternal care effects on the female rat's development and sexual behaviour. J Neuroendocrinol 2013; 25:528-36. [PMID: 23419048 DOI: 10.1111/jne.12035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/26/2013] [Accepted: 02/11/2013] [Indexed: 01/06/2023]
Abstract
Natural variations in maternal care have profound influences on offspring behaviour, brain activity and hormone release. Measuring the amount of time that a rat dam spends licking/grooming (LG) her pups during their first week of life allows for characterisation of distinctive Low, Mid and High LG phenotypes. We have previously found that female offspring of High LG mothers are less sexually receptive, less motivated to mate and show a later onset of puberty relative to Low LG offspring. Given that High LG females are exposed to greater levels of testosterone in utero, we hypothesise that differences in sexual behaviour between High and Low LG female offspring are driven in part by differences in prenatal hormone exposure. To test this hypothesis, pregnant dams pre-characterised as Low, Mid, or High LG mothers were implanted with testosterone or placebo on gestational day (GD) 16. Offspring body weight and anogenital index were assessed at GD 21 and in adulthood. Age of vaginal opening and oestrous cyclicity were assessed to determine the timing of pubertal onset. Testosterone exposure removed the difference between LG phenotypes in pubertal onset by delaying vaginal opening and the appearance of first pro-oestrus. In adulthood, sexual behaviour in a paced mating chamber after sham surgery or ovariectomy with steroid-replacement was examined. Our findings show that Low, Mid and High LG female offspring are differentially affected by perinatal testosterone exposure, and that this exposure removes the precocial pubertal onset of Low LG offspring and increases the sexual proceptivity and receptivity of High LG offspring. These results suggest that maternal programming of the female reproductive system may be mediated, in part, through differences in perinatal testosterone exposure, instead of solely through maternal behaviour.
Collapse
Affiliation(s)
- A P Borrow
- Psychology Department, Center for Development and Behavioral Neuroscience, Binghamton University- SUNY, Binghamton, NY, USA
| | | | | | | |
Collapse
|
20
|
Ward ID, Zucchi FCR, Robbins JC, Falkenberg EA, Olson DM, Benzies K, Metz GA. Transgenerational programming of maternal behaviour by prenatal stress. BMC Pregnancy Childbirth 2013; 13 Suppl 1:S9. [PMID: 23446000 PMCID: PMC3561190 DOI: 10.1186/1471-2393-13-s1-s9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peripartum events hold the potential to have dramatic effects in the programming of physiology and behaviour of offspring and possibly subsequent generations. Here we have characterized transgenerational changes in rat maternal behaviour as a function of gestational and prenatal stress. Pregnant dams of the parental generation were exposed to stress from days 12-18 (F0-S). Their daughters and grand-daughters were either stressed (F1-SS, F2-SSS) or non-stressed (F1-SN, F2-SNN). Maternal antepartum behaviours were analyzed at a time when pregnant dams usually show a high frequency of tail chasing behaviours. F1-SS, F2-SNN and F2-SSS groups showed a significant reduction in tail chasing behaviours when compared with controls. The effects of multigenerational stress (SSS) slightly exceeded those of transgenerational stress (SNN) and resulted in absence of tail chasing behaviour. These findings suggest that antepartum maternal behaviour in rats is programmed by transgenerational inheritance of stress responses. Thus, altered antepartum maternal behaviour may serve as an indicator of an activated stress response during gestation.
Collapse
Affiliation(s)
- Isaac D Ward
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K3M4
| | - Fabíola C R Zucchi
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K3M4
| | - Jerrah C Robbins
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K3M4
| | - Erin A Falkenberg
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K3M4
| | - David M Olson
- Departments of Obstetrics & Gynecology, Pediatrics and Physiology, University of Alberta, 227 HMRC, University of Alberta, Edmonton, AB, Canada T6G2S2
| | - Karen Benzies
- Faculty of Nursing, University of Calgary, 2500 University Dr. NW, Calgary, AB, Canada T2N1N4
| | - Gerlinde A Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K3M4
| |
Collapse
|