1
|
Guan R, Kang Z, Li L, Yan X, Gao T. PIK3CA regulates development of diabetes retinopathy through the PI3K/Akt/mTOR pathway. PLoS One 2024; 19:e0295813. [PMID: 38194422 PMCID: PMC10775978 DOI: 10.1371/journal.pone.0295813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024] Open
Abstract
OBJECTIVE To explore their association with the development of diabetes retinopathy (DR), single nucleotide polymorphism (SNP) mutations were screened out by high-throughput sequencing and validated in patients diagnosed with DR. To understand the role of PIK3CA in the pathogenesis of DR and explore the relationship between PIK3CA,phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR),and DR, the effect of PIK3CA.rs17849079 mutation was investigated in a DR cell model. METHODS Twelve patients diagnosed with DR at the Qinghai Provincial People's Hospital from September 2020 to June 2021 were randomly selected as the case group, while 12 healthy subjects of similar age and gender who underwent physical examination in Qinghai Provincial People's Hospital physical examination center during the same period were randomly selected as the control group. Blood samples (2 mL) were collected from both groups using EDTA anticoagulant blood collection vessels and frozen at -20°C for future analysis. SNP mutations were detected by high-throughput sequencing, and the shortlisted candidates were subjected by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The detected SNP candidates were verified by expanding the sample size (first validation: 56 patients in the case group and 58 controls; second validation: 157 patients in the case group and 96 controls). A lentivirus vector carrying mutated or wild-type PIK3CA.rs17849079 was constructed. ARPE-19 cells were cultured in a medium supplemented with 10% fetal bovine serum (FBS) to establish a DR cell model. PIRES2-PIK3CA-MT and PIRES2-PIK3CA-WT vectors were transfected into DR model cells, which were categorized into control, mannitol, model, empty vector, PIK3CA wild-type, and PIK3CA mutant-type groups. Cell activity was detected by the cell counting kit (CCK)-8 assay, and cellular apoptosis was evaluated by flow cytometry. Glucose concentration and levels of cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β were detected using enzyme-linked immunosorbent assay kits. The expression of PIK3CA, AKT1, mTOR, and VEGF genes was detected by real-time quantitative polymerase chain reaction (RT-qPCR), while the expression of PI3K, p-PI3K, AKT1, p-AKT1, mTOR, p-mTOR, and VEGF proteins was detected by western blotting. RESULTS The mutated SNPs were mainly enriched in the PI3K/AKT pathway, calcium ion pathway, and glutamatergic synaptic and cholinergic synaptic signaling pathways. Seven SNPs, including PRKCE.rs1533476, DNAH11.rs10485983, ERAP1.rs149481, KLHL1.rs1318761, APOBEC3C.rs1969643, FYN.rs11963612, and KCTD1.rs7240205, were not related to the development of DR. PIK3CA.rs17849079 was prone to C/T mutation. The risk of DR increased with the presence of the C allele and decreased in the presence of the T allele. High glucose induced the expression of PIK3CA and VEGF mRNAs as well as the expression of PI3K, p-PI3K, p-AKT1, p-mTOR, and VEGF proteins in ARPE-19 cells, which led to secretion of inflammatory factors TNF-αand IL-1, cell apoptosis, and inhibition of cell proliferation. The PIK3CA.rs17849079 C allele accelerated the progression of DR. These biological effects were inhibited when the C allele of PIK3CA.rs17849079 was mutated to T allele. CONCLUSION The mutated SNP sites in patients with DR were mainly enriched in PI3K/AKT, calcium ion, and glutamatergic synaptic and cholinergic synaptic signaling pathways. The rs17849079 allele of PIK3CA is prone to C/T mutation where the C allele increases the risk of DR. High glucose activates the expression of PIK3CA and promotes the phosphorylation of PI3K, which leads to the phosphorylation of AKT and mTOR. These effects consequently increase VEGF expression and accelerate the development of DR. The C to T allele mutation in PIK3CA.rs17849079 can play a protective role and reduce the risk of DR.
Collapse
Affiliation(s)
- Ruijuan Guan
- Ophthalmology Department, Qinghai Provincial People’s Hospital, Xining, Qinghai Province, China
| | - Zefeng Kang
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Li
- Ophthalmology Department, Qinghai Provincial People’s Hospital, Xining, Qinghai Province, China
| | - Xin Yan
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianpeng Gao
- Ophthalmology Department, Qinghai Provincial People’s Hospital, Xining, Qinghai Province, China
| |
Collapse
|
2
|
Kırça M, Yeşilkaya A. Angiotensin II reduces glyoxalase 1 activity and expression in vascular smooth muscle cells: Implications for diabetic vascular complications. Cell Biochem Funct 2023; 41:1430-1441. [PMID: 37915258 DOI: 10.1002/cbf.3879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
Angiotensin II (Ang II), a key mediator of vascular diseases, is linked to methylglyoxal (MGO) formation, a by-product of glucose metabolism implicated in vascular complications. The glyoxalase system, consisting of glyoxalase 1 (Glo1) and reduced glutathione (GSH), is responsible for detoxifying MGO. This study investigated the effect of Ang II on Glo1 activity and expression in vascular smooth muscle cells (VSMCs). Primary VSMCs were isolated from rat aortas and exposed to Ang II under standard or high glucose conditions. We examined Glo1 activity, expression, intracellular GSH, and methylglyoxal-derived hydroimidazolone 1 (MG-H1) levels. We also analyzed the expressions of nuclear factor-κB (NF-κB) p65 and nuclear factor erythroid 2-related factor 2 (Nrf2) as potential regulators of Glo1 expression. The results demonstrated that Ang II reduced Glo1 activity, expression, and GSH levels while increasing MG-H1 levels in VSMCs. Telmisartan and irbesartan, AT1R blockers, restored Glo1 activity, expression, and GSH levels and alleviated MG-H1 levels. Treatment with AT1R blockers or inhibitors targeting signaling pathways involved in Ang II-induced responses mitigated these effects. High glucose exacerbated the reduction in Glo1 activity and expression. In conclusion, this study provides evidence that Ang II reduces Glo1 activity and expression in VSMCs, which may contribute to developing vascular complications in diabetes. AT1R blockers and inhibitors targeting specific signaling pathways show potential in restoring Glo1 function and mitigating MGO-associated damage. These findings highlight the complex interactions between RAS, MGO, and vascular diseases, highlighting potential therapeutic targets for diabetic vascular complications.
Collapse
Affiliation(s)
- Mustafa Kırça
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Akın Yeşilkaya
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
3
|
Rahmadi M, Nurhan AD, Rahmawati RIA, Damayanti TF, Purwanto DA, Khotib J. Epigallocatechin Gallate Ameliorates Nicotine Withdrawal Conditions-Induced Somatic and Affective Behavior Changes in Mice and Its Molecular Mechanism. Behav Neurol 2023; 2023:5581893. [PMID: 37346971 PMCID: PMC10281828 DOI: 10.1155/2023/5581893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/10/2023] [Accepted: 05/20/2023] [Indexed: 06/23/2023] Open
Abstract
In nicotine withdrawal (NW) conditions, molecular changes, such as increasing corticotropin-releasing factor (CRF) in the amygdala, and melanocortin signaling in the hypothalamus, can occur in the brain, leading to increased feeding behavior and body weight as somatic changes as well as high anxiety-like behavior as an affective changes. Therefore, this research aimed to investigate the effect of epigallocatechin gallate (EGCG), the largest component in green tea, on CRF, pro-opiomelanocortin (POMC), and melanocortin four receptor gene expression in the brain under NW conditions. The 24 Balb/c male mice used were randomly divided into four groups. The doses used included normal saline 1.0 mL/kg as a control group, and nicotine 3.35 mg/kg that was administered subcutaneously three times a day. After NW conditions, EGCG 50 mg/kg was administered intraperitoneally two times a day. Behavior evaluation was performed to measure somatic and affective changes, and the animal was sacrificed for molecular analysis. The results showed that NW conditions significantly increased food intake, body weight, and anxiety-like behavior compared with the normal group. Meanwhile, EGCG significantly decreased food intake, body weight, and anxiety-like behavior compared with NW conditions in mice without EGCG. The polymerase chain reaction results also showed that EGCG decreased the CRF mRNA expression in the amygdala and increased the POMC. This indicated that EGCG improved somatic and affective behavior in NW conditions by decreasing CRF mRNA expression in the amygdala and increasing POMC mRNA expression in the hypothalamus.
Collapse
Affiliation(s)
- Mahardian Rahmadi
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Biomedical Pharmacy Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ahmad D. Nurhan
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Biomedical Pharmacy Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Retno I. A. Rahmawati
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Theresia F. Damayanti
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Djoko A. Purwanto
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Pharmaceutical Analysis Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Biomaterial Translational Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
4
|
Daikohara K, Akanuma SI, Kubo Y, Hosoya KI. Lipopolysaccharide-Induced Functional Alteration of P-glycoprotein in the Ex Vivo Rat Inner Blood-Retinal Barrier. Int J Mol Sci 2022; 23:ijms232415504. [PMID: 36555148 PMCID: PMC9779076 DOI: 10.3390/ijms232415504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
At the inner blood-retinal barrier (BRB), P-glycoprotein (P-gp) contributes to maintaining the homeostasis of substance concentration in the retina by transporting drugs and exogenous toxins from the retina to the circulating blood. Under inflammatory conditions, P-gp activities have been reported to be altered in various tissues. The purpose of this study was to clarify the alterations in P-gp activity at the inner BRB due to lipopolysaccharide (LPS), an inflammatory agent, and the molecular mechanisms of the alterations induced by LPS. Ex vivo P-gp activity was evaluated as luminal accumulation of 7-nitro-2,1,3-benzoxadiazole-cyclosporin A (NBD-CSA), a fluorescent P-gp substrate, in freshly prepared rat retinal capillaries. The luminal NBD-CSA accumulation was significantly decreased in the presence of LPS, indicating that P-gp activity at the inner BRB is reduced by LPS. This LPS-induced attenuation of the luminal NBD-CSA accumulation was abolished by inhibiting toll-like receptor 4 (TLR4), a receptor for LPS. Furthermore, an inhibitor/antagonist of tumor necrosis factor receptor 1, endothelin B receptor, nitric oxide synthase, or protein kinase C (PKC) significantly restored the LPS-induced decrease in the luminal NBD-CSA accumulation. Consequently, it is suggested that the TLR4/PKC pathway is involved in the reduction in P-gp function in the inner BRB by LPS.
Collapse
Affiliation(s)
- Kiyotaka Daikohara
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shin-ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Correspondence: ; Tel.: +81-76-434-7508
| | - Yoshiyuki Kubo
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Kaga 2-11-1, Tokyo 173-8605, Japan
| | - Ken-ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
5
|
Ghasemi-Gojani E, Kovalchuk I, Kovalchuk O. Cannabinoids and terpenes for diabetes mellitus and its complications: from mechanisms to new therapies. Trends Endocrinol Metab 2022; 33:828-849. [PMID: 36280497 DOI: 10.1016/j.tem.2022.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022]
Abstract
The number of people diagnosed with diabetes mellitus and its complications is markedly increasing worldwide, leading to a worldwide epidemic across all age groups, from children to older adults. Diabetes is associated with premature aging. In recent years, it has been found that peripheral overactivation of the endocannabinoid system (ECS), and in particular cannabinoid receptor 1 (CB1R) signaling, plays a crucial role in the progression of insulin resistance, diabetes (especially type 2), and its aging-related comorbidities such as atherosclerosis, nephropathy, neuropathy, and retinopathy. Therefore, it is suggested that peripheral blockade of CB1R may ameliorate diabetes and diabetes-related comorbidities. The use of synthetic CB1R antagonists such as rimonabant has been prohibited because of their psychiatric side effects. In contrast, phytocannabinoids such as cannabidiol (CBD) and tetrahydrocannabivarin (THCV), produced by cannabis, exhibit antagonistic activity on CB1R signaling and do not show any adverse side effects such as psychoactive effects, depression, or anxiety, thereby serving as potential candidates for the treatment of diabetes and its complications. In addition to these phytocannabinoids, cannabis also produces a substantial number of other phytocannabinoids, terpenes, and flavonoids with therapeutic potential against insulin resistance, diabetes, and its complications. In this review, the pathogenesis of diabetes, its complications, and the potential to use cannabinoids, terpenes, and flavonoids for its treatment are discussed.
Collapse
Affiliation(s)
| | - Igor Kovalchuk
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada.
| | - Olga Kovalchuk
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada.
| |
Collapse
|
6
|
Kaur G, Singh NK. The Role of Inflammation in Retinal Neurodegeneration and Degenerative Diseases. Int J Mol Sci 2021; 23:ijms23010386. [PMID: 35008812 PMCID: PMC8745623 DOI: 10.3390/ijms23010386] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
Retinal neurodegeneration is predominantly reported as the apoptosis or impaired function of the photoreceptors. Retinal degeneration is a major causative factor of irreversible vision loss leading to blindness. In recent years, retinal degenerative diseases have been investigated and many genes and genetic defects have been elucidated by many of the causative factors. An enormous amount of research has been performed to determine the pathogenesis of retinal degenerative conditions and to formulate the treatment modalities that are the critical requirements in this current scenario. Encouraging results have been obtained using gene therapy. We provide a narrative review of the various studies performed to date on the role of inflammation in human retinal degenerative diseases such as age-related macular degeneration, inherited retinal dystrophies, retinitis pigmentosa, Stargardt macular dystrophy, and Leber congenital amaurosis. In addition, we have highlighted the pivotal role of various inflammatory mechanisms in the progress of retinal degeneration. This review also offers an assessment of various therapeutic approaches, including gene-therapies and stem-cell-based therapies, for degenerative retinal diseases.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Correspondence:
| |
Collapse
|
7
|
Distinctive Evidence Involved in the Role of Endocannabinoid Signalling in Parkinson's Disease: A Perspective on Associated Therapeutic Interventions. Int J Mol Sci 2020; 21:ijms21176235. [PMID: 32872273 PMCID: PMC7504186 DOI: 10.3390/ijms21176235] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Current pharmacotherapy of Parkinson's disease (PD) is symptomatic and palliative, with levodopa/carbidopa therapy remaining the prime treatment, and nevertheless, being unable to modulate the progression of the neurodegeneration. No available treatment for PD can enhance the patient's life-quality by regressing this diseased state. Various studies have encouraged the enrichment of treatment possibilities by discovering the association of the effects of the endocannabinoid system (ECS) in PD. These reviews delineate the reported evidence from the literature on the neuromodulatory role of the endocannabinoid system and expression of cannabinoid receptors in symptomatology, cause, and treatment of PD progression, wherein cannabinoid (CB) signalling experiences alterations of biphasic pattern during PD progression. Published papers to date were searched via MEDLINE, PubMed, etc., using specific key words in the topic of our manuscript. Endocannabinoids regulate the basal ganglia neuronal circuit pathways, synaptic plasticity, and motor functions via communication with dopaminergic, glutamatergic, and GABAergic signalling systems bidirectionally in PD. Further, gripping preclinical and clinical studies demonstrate the context regarding the cannabinoid compounds, which is supported by various evidence (neuroprotection, suppression of excitotoxicity, oxidative stress, glial activation, and additional benefits) provided by cannabinoid-like compounds (much research addresses the direct regulation of cannabinoids with dopamine transmission and other signalling pathways in PD). More data related to endocannabinoids efficacy, safety, and pharmacokinetic profiles need to be explored, providing better insights into their potential to ameliorate or even regress PD.
Collapse
|
8
|
Tao D, Mai X, Zhang T, Mei Y. Association between the RAGE (receptor for advanced glycation end-products) -374T/A gene polymorphism and diabetic retinopathy in T2DM. ACTA ACUST UNITED AC 2018; 63:971-977. [PMID: 29451661 DOI: 10.1590/1806-9282.63.11.971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/07/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Interaction between advanced glycation end-products (AGEs) and receptor for AGEs (RAGE) in cells could affect both extracellular and intracellular structure and function, which plays a pivotal role in diabetic microvascular complications. The results from previous epidemiological studies on the association between RAGE gene -374T/A polymorphism and diabetic retinopathy (DR) risk were inconsistent. Thus, we conducted this meta-analysis to summarize the possible association between RAGE -374T/A polymorphism and DR risk. METHOD We searched all relevant articles on the association between RAGE -374T/A polymorphism and DR risk from PubMed, Cochrane Library, ScienceDirect, Wanfang, VIP and Chinese National Knowledge Infrastructure (CNKI) web databases up to August 2016. Odds ratio (OR) with 95% confidence interval (CI) were calculated to assess those associations. All analyses were performed using the Review Manager software. RESULTS Nine case-control studies, including 1,705 DR cases and 2,236 controls were enrolled, and the results showed that the A allele of RAGE -374T/A polymorphism was significantly associated with increased DR risk in dominant model (TA/AA vs. TT: OR=1.22, 95CI 1.05-1.41, p=0.006) and heterozygote model (TA vs. TT: OR=1.26, 95CI 1.07-1.47, p=0.005). The subgroup analysis by ethnicity showed that significantly increased DR risk was found in both Asian and Caucasian populations. CONCLUSION This meta-analysis reveals that the A allele of RAGE -374T/A polymorphism probably increase DR risk.
Collapse
Affiliation(s)
- Dan Tao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,Kunming Children's Hospital, Kunming, China
| | - Xuancheng Mai
- The First People's Hospital of Yunnan Province, Kunming, China
| | | | - Yan Mei
- The First People's Hospital of Yunnan Province, Kunming, China.,Faculty of Medicine, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
9
|
Cui N, Feng X, Zhao Z, Zhang J, Xu Y, Wang L, Hao G. Restored Plasma Anandamide and Endometrial Expression of Fatty Acid Amide Hydrolase in Women With Polycystic Ovary Syndrome by the Combination Use of Diane-35 and Metformin. Clin Ther 2017; 39:751-758. [DOI: 10.1016/j.clinthera.2017.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 01/24/2023]
|
10
|
Aizpurua-Olaizola O, Elezgarai I, Rico-Barrio I, Zarandona I, Etxebarria N, Usobiaga A. Targeting the endocannabinoid system: future therapeutic strategies. Drug Discov Today 2017; 22:105-110. [DOI: 10.1016/j.drudis.2016.08.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/07/2016] [Accepted: 08/11/2016] [Indexed: 02/03/2023]
|