1
|
Herder C, Saito Y, Spagnuolo MC, Maalmi H, Shimizu M, Bönhof GJ, Suzuki K, Rathmann W, Peters A, Roden M, Ziegler D, Thorand B, Takamura T. Differential associations between selenoprotein P and distal sensorimotor polyneuropathy in people with and without diabetes: KORA F4/FF4 study. Free Radic Biol Med 2024; 223:87-95. [PMID: 39059514 DOI: 10.1016/j.freeradbiomed.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Oxidative stress is a risk factor for distal sensorimotor polyneuropathy (DSPN). Selenoprotein P is a protein with antioxidant properties but has not been investigated in the context of DSPN. This study aimed to assess the associations between selenoprotein P and DSPN in people without and with type 2 diabetes (T2D). METHODS Cross-sectional and prospective analyses were based on 1053 (including 217 with T2D) and 513 participants (including 79 with T2D), respectively, aged 61-82 years from the population-based KORA F4 survey. DSPN at baseline (KORA F4) and in the follow-up survey KORA FF4 was defined based on the Michigan Neuropathy Screening Instrument. Serum levels of full-length selenoprotein P were quantified by ELISA. Associations between selenoprotein P and prevalent or incident DSPN were estimated using logistic regression analysis adjusting for multiple confounders. RESULTS Selenoprotein P levels were not associated with prevalent DSPN in the total sample. However, there was a significant interaction by diabetes status. Higher levels of selenoprotein P were associated with lower odds of prevalent DSPN in individuals without T2D (fully adjusted model: OR 0.825 [95 % CI 0.682, 0.998], p = 0.0476), but not in those with T2D (OR [95 % CI] 1.098 [0.829, 1.454], p = 0.5132; pinteraction = 0.0488). Selenoprotein P levels were not associated with incident DSPN over a follow-up of 6.5 years. CONCLUSION In individuals without T2D from the older general population, lower selenoprotein P levels were associated with a higher prevalence of DSPN. Whether the antioxidant properties of selenoprotein P are responsible for the observed associations remains to be elucidated in future research.
Collapse
Affiliation(s)
- Christian Herder
- German Center for Diabetes Research (DZD), Partner Düsseldorf, 85764, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Maria C Spagnuolo
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Haifa Maalmi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Misaki Shimizu
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, 85764, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Keita Suzuki
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany; Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Partner Düsseldorf, 85764, München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), Partner Neuherberg, 85764, München, Neuherberg, Germany; Institute for Medical Information Processing Biometry and Epidemiology, Ludwig-Maximilians-Universität, 81377, München, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, 85764, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), Partner Neuherberg, 85764, München, Neuherberg, Germany; Institute for Medical Information Processing Biometry and Epidemiology, Ludwig-Maximilians-Universität, 81377, München, Germany
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| |
Collapse
|
2
|
Herder C, Thorand B, Strom A, Rathmann W, Heier M, Koenig W, Morrison H, Ziegler D, Roden M, Peters A, Bönhof GJ, Maalmi H. Associations between multiple neurological biomarkers and distal sensorimotor polyneuropathy: KORA F4/FF4 study. Diabetes Metab Res Rev 2024; 40:e3807. [PMID: 38872492 DOI: 10.1002/dmrr.3807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/25/2024] [Accepted: 04/22/2024] [Indexed: 06/15/2024]
Abstract
AIMS The aim of this study was to assess associations between neurological biomarkers and distal sensorimotor polyneuropathy (DSPN). MATERIALS AND METHODS Cross-sectional analyses were based on 1032 participants aged 61-82 years from the population-based KORA F4 survey, 177 of whom had DSPN at baseline. The prevalence of type 2 diabetes was 20%. Prospective analyses used data from 505 participants without DSPN at baseline, of whom 125 had developed DSPN until the KORA FF4 survey. DSPN was defined based on the examination part of the Michigan Neuropathy Screening Instrument. Serum levels of neurological biomarkers were measured using proximity extension assay technology. Associations between 88 biomarkers and prevalent or incident DSPN were estimated using Poisson regression with robust error variance and are expressed as risk ratios (RR) and 95% CI per 1-SD increase. Results were adjusted for multiple confounders and multiple testing using the Benjamini-Hochberg procedure. RESULTS Higher serum levels of CTSC (cathepsin C; RR [95% CI] 1.23 (1.08; 1.39), pB-H = 0.044) and PDGFRα (platelet-derived growth factor receptor A; RR [95% CI] 1.21 (1.08; 1.35), pB-H = 0.044) were associated with prevalent DSPN in the total study sample. CDH3, JAM-B, LAYN, RGMA and SCARA5 were positively associated with DSPN in the diabetes subgroup, whereas GCP5 was positively associated with DSPN in people without diabetes (all pB-H for interaction <0.05). None of the biomarkers showed an association with incident DSPN (all pB-H>0.05). CONCLUSIONS This study identified multiple novel associations between neurological biomarkers and prevalent DSPN, which may be attributable to functions of these proteins in neuroinflammation, neural development and myelination.
Collapse
Affiliation(s)
- Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Diabetes Research (DZD), Partner Neuherberg, Partner Düsseldorf, Munich, Germany
- Institute for Medical Information Processing Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
| | - Wolfgang Rathmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- KORA Study Centre, University Hospital of Augsburg, Augsburg, Germany
| | - Wolfgang Koenig
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site München Heart Alliance, Munich, Germany
| | - Helen Morrison
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Diabetes Research (DZD), Partner Neuherberg, Partner Düsseldorf, Munich, Germany
- Institute for Medical Information Processing Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Haifa Maalmi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
| |
Collapse
|
3
|
Cheng MK, Guo YY, Kang XN, Zhang L, Wang D, Ren HH, Yuan G. Advances in cardiovascular-related biomarkers to predict diabetic peripheral neuropathy. World J Diabetes 2023; 14:1226-1233. [PMID: 37664477 PMCID: PMC10473952 DOI: 10.4239/wjd.v14.i8.1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common chronic complication of diabetes mellitus. One of the most common types is distal symmetric poly-neuropathy, which begins as bilateral symmetry pain and hyperesthesia and gradually progresses into hypoesthesia with nerve fibre disorder and is frequently accompanied by depression and anxiety. Notably, more than half of patients with DPN can be asymptomatic, which tends to delay early detection. Furthermore, the study of adverse outcomes showed that DPN is a prominent risk factor for foot ulceration, gangrene and nontraumatic amputation, which decreases quality of life. Thus, it is essential to develop convenient diagnostic biomarkers with high sensitivity for screening and early intervention. It has been reported that there may be common pathways for microvascular and macrovascular complications of diabetes. The pathogenesis of both disorders involves vascular endothelial dys-function. Emerging evidence indicates that traditional and novel cardiovascular-related biomarkers have the potential to characterize patients by subclinical disease status and improve risk prediction. Additionally, beyond traditional cardiovascular-related biomarkers, novel cardiovascular-related biomarkers have been linked to diabetes and its complications. In this review, we evaluate the association between major traditional and nontraditional car-diovascular-related biomarkers of DPN, such as cardiac troponin T, B-type natriuretic peptide, C-reactive protein, myeloperoxidase, and homocysteine, and assess the evidence for early risk factor-based management strategies to reduce the incidence and slow the progression of DPN.
Collapse
Affiliation(s)
- Meng-Ke Cheng
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| | - Yao-Yao Guo
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| | - Xiao-Nan Kang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| | - Lu Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| | - Dan Wang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| | - Hui-Hui Ren
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
4
|
Sarabhai T, Mastrototaro L, Kahl S, Bönhof GJ, Jonuscheit M, Bobrov P, Katsuyama H, Guthoff R, Wolkersdorfer M, Herder C, Meuth SG, Dreyer S, Roden M. Hyperbaric oxygen rapidly improves tissue-specific insulin sensitivity and mitochondrial capacity in humans with type 2 diabetes: a randomised placebo-controlled crossover trial. Diabetologia 2023; 66:57-69. [PMID: 36178534 PMCID: PMC9729133 DOI: 10.1007/s00125-022-05797-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Hyperbaric oxygen (HBO) therapy may improve hyperglycaemia in humans with type 2 diabetes, but underlying mechanisms are unclear. Our objective was to examine the glucometabolic effects of HBO on whole-body glucose disposal in humans with type 2 diabetes. METHODS In a randomised placebo-controlled crossover trial located at the German Diabetes Center, 12 male individuals with type 2 diabetes (age 18-75 years, BMI <35 kg/m2, HbA1c 42-75 mmol/mol [6-9%]), randomly allocated by one person, underwent 2-h HBO, once with 100% (240 kPa; HBO) and once with 21% oxygen (240 kPa; control, CON). Insulin sensitivity was assessed by hyperinsulinaemic-euglycaemic clamps with D-[6,6-2H2]glucose, hepatic and skeletal muscle energy metabolism were assessed by 1H/31P-magnetic resonance spectroscopy, while high-resolution respirometry measured skeletal muscle and white adipose tissue (WAT) mitochondrial capacity. All participants and people assessing the outcomes were blinded. RESULTS HBO decreased fasting blood glucose by 19% and increased whole-body, hepatic and WAT insulin sensitivity about one-third (p<0.05 vs CON). Upon HBO, hepatic γ-ATP concentrations doubled, mitochondrial respiratory control doubled in skeletal muscle and tripled in WAT (p<0.05 vs CON). HBO increased myocellular insulin-stimulated serine-473/threonine-308 phosphorylation of Akt but decreased basal inhibitory serine-1101 phosphorylation of IRS-1 and endoplasmic reticulum stress (p<0.05 vs CON). CONCLUSIONS/INTERPRETATION HBO-mediated improvement of insulin sensitivity likely results from decreased endoplasmic reticulum stress and increased mitochondrial capacity, possibly leading to low-dose reactive oxygen species-mediated mitohormesis in humans with type 2 diabetes. TRIAL REGISTRATION ClinicalTrials.gov NCT04219215 FUNDING: German Federal Ministry of Health, German Federal Ministry of Education and Research, North-Rhine Westfalia Ministry of Culture and Science, European-Regional-Development-Fund, German-Research-Foundation (DFG), Schmutzler Stiftung.
Collapse
Affiliation(s)
- Theresia Sarabhai
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Gidon J Bönhof
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Marc Jonuscheit
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Pavel Bobrov
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
| | - Hisayuki Katsuyama
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Rainer Guthoff
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martin Wolkersdorfer
- Department of Production, Hospital Pharmacy, Landesapotheke Salzburg, Salzburg, Austria
| | - Christian Herder
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven Dreyer
- Clinic for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.
| |
Collapse
|
5
|
Then C, Sujana C, Herder C, Then H, Heier M, Meisinger C, Peters A, Koenig W, Rathmann W, Maalmi H, Ritzel K, Roden M, Stumvoll M, Thorand B, Seissler J. Association of C-Terminal Pro-Endothelin-1 with Mortality in the Population-Based KORA F4 Study. Vasc Health Risk Manag 2022; 18:335-346. [PMID: 35535305 PMCID: PMC9078871 DOI: 10.2147/vhrm.s363814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Endothelin-1 and its prohormone C-terminal pro-endothelin-1 (CT-proET-1) have been linked to metabolic alterations, inflammatory responses and cardiovascular events in selected study populations. We analyzed the association of CT-proET-1 with cardiovascular events and mortality, carotid intima-media-thickness as surrogate for early atherosclerotic lesions, biomarkers of subclinical inflammation and adipokines in a population-based study. Methods The cross-sectional and prospective analyses used data from the KORA F4 study with a median follow-up time of 9.1 (8.8–9.4) years. Data on CT-proET-1 and mortality were available for 1554 participants, data on the other outcomes in subgroups (n = 596–1554). The associations were estimated using multivariable linear regression and Cox proportional hazard models adjusted for sex, age, body mass index, estimated glomerular filtration rate, arterial hypertension, diabetes, low-density and high-density lipoprotein cholesterol, current and former smoking and physical activity. The Bonferroni method was used to correct for multiple testing. Results In the fully adjusted model, CT-proET-1 was associated with cardiovascular (hazard ratio (HR) per standard deviation increase: 1.66; 95% confidence interval (CI): 1.10–2.51; p = 0.017) and all-cause mortality (HR: 2.03; 95% CI 1.55–2.67; p < 0.001), but not with cardiovascular events, and was inversely associated with the intima-media thickness (β: −0.09 ± 0.03; p = 0.001). CT-proET-1 was positively associated with five out of ten biomarkers of subclinical inflammation and with two out of five adipokines after correction for multiple testing. After inclusion of biomarkers of subclinical inflammation in the Cox proportional hazard model, the association of CT-proET-1 with all-cause mortality persisted (p < 0.001). Conclusion These results emphasize the complexity of endothelin-1 actions and/or indicator functions of CT-proET-1. CT-proET-1 is a risk marker for all-cause mortality, which is likely independent of vascular endothelin-1 actions, cardiovascular disease and inflammation.
Collapse
Affiliation(s)
- Cornelia Then
- Department of Internal Medicine IV, University Hospital of Ludwigs-Maximilians-University Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Partner Munich-Neuherberg, Munich, Germany
- Correspondence: Cornelia Then, Medizinische Klinik und Poliklinik IV - Klinikum der Ludwig-Maximilians-Universität, Ziemssenstraße 1, München, 80336, Germany, Tel +4989440052111, Fax +4989440054956, Email
| | - Chaterina Sujana
- German Center for Diabetes Research (DZD), Partner Munich-Neuherberg, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, Ludwigs-Maximilians-University Munich, Munich, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Holger Then
- Freie Waldorfschule Augsburg, Augsburg, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- KORA Study Centre, University Hospital Augsburg, Augsburg, Germany
| | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair of Epidemiology, University Hospital Augsburg, Augsburg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Wolfgang Koenig
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
- German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Biometrics and Epidemiology, German Diabetes Center, Leibniz Institute at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Haifa Maalmi
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Katrin Ritzel
- Department of Internal Medicine IV, University Hospital of Ludwigs-Maximilians-University Munich, Munich, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Barbara Thorand
- German Center for Diabetes Research (DZD), Partner Munich-Neuherberg, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jochen Seissler
- Department of Internal Medicine IV, University Hospital of Ludwigs-Maximilians-University Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Partner Munich-Neuherberg, Munich, Germany
| |
Collapse
|
6
|
Xu F, Zhao LH, Wang XH, Wang CH, Yu C, Zhang XL, Ning LY, Huang HY, Su JB, Wang XQ. Plasma 1,5-anhydro-D-glucitol is associated with peripheral nerve function and diabetic peripheral neuropathy in patients with type 2 diabetes and mild-to-moderate hyperglycemia. Diabetol Metab Syndr 2022; 14:24. [PMID: 35093139 PMCID: PMC8800300 DOI: 10.1186/s13098-022-00795-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/17/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Plasma 1,5-anhydro-D-glucitol (1,5-AG) may be a easily accessible marker for glycemic variability under mild-to-moderate hyperglycemia. The present study was to investigate the association of 1,5-AG with peripheral nerve function and diabetic peripheral neuropathy (DPN) in patients with T2D and mild-to-moderate hyperglycemia. METHODS We recruited 574 T2D patients with mild-to-moderate hyperglycemia (HbA1c < 8.0%) for this cross-sectional study, with plasma 1,5-AG synchronously detected. All patients were questioned for neurologic symptoms, examined for neurologic signs and screened for peripheral nerve function. Nerve function included the latency, amplitude and nerve conduction velocity (NCV) of limbs nerves (median, ulnar nerve, common peroneal, superficial peroneal, tibial and sural nerve). Besides, composite Z-score of latency, amplitude and NCV were calculated. DPN was identified as both at least a neurologic symptom/sign and an abnormality of peripheral nerve function. RESULTS Among the recruited patients, 23.9% (n = 137) were identified to be with DPN, and the prevalence of DPN decreased from 36.6%, 24.5%, 21.2%, 13.3% from first (Q1), second (Q2), and third (Q3) to fourth quartile (Q4) of 1,5-AG. Moreover, multivariable linear regression analysis showed 1,5-AG was associated with composite Z-score of nerve latency (β = - 0.18, t = - 3.84, p < 0.001), amplitude(β = 0.26, t = 5.35, p < 0.001) and NCV (β = 0.24, t = 5.61, p < 0.001), respectively. Furthermore, compared to Q4 of 1,5-AG as reference, the adjusted odds ratios and 95% CIs for DPN of Q3, Q2, and Q1 were 1.29(0.59-2.81), 1.85(0.87-3.97), and 2.72(1.16-6.34), respectively. Additionally, receiver operating characteristic analysis revealed that optimal cutoff value of 1,5-AG to indicate DPN was ≤ 30.8 μmol/L, with sensitivity of 56.20% and specificity of 66.36%. CONCLUSIONS Low plasma 1,5-AG is closely associated with impaired peripheral nerve function and DPN in T2D patients under mild-to-moderate hyperglycemia.
Collapse
Affiliation(s)
- Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| | - Li-hua Zhao
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| | - Xiao-hua Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| | - Chun-hua Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| | - Chao Yu
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| | - Xiu-lin Zhang
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| | - Li-yan Ning
- Department of Administration, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| | - Hai-yan Huang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| | - Jian-bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| | - Xue-qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001 China
| |
Collapse
|
7
|
Gar C, Thorand B, Herder C, Sujana C, Heier M, Meisinger C, Peters A, Koenig W, Rathmann W, Roden M, Stumvoll M, Maalmi H, Meitinger T, Then H, Seissler J, Then C. Association of circulating MR-proADM with all-cause and cardiovascular mortality in the general population: Results from the KORA F4 cohort study. PLoS One 2022; 17:e0262330. [PMID: 34990470 PMCID: PMC8735665 DOI: 10.1371/journal.pone.0262330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background and aim Despite its vasodilatory effect, adrenomedullin and its surrogate mid-regional pro-adrenomedullin (MR-proADM) have been found to be positively associated with all-cause and cardiovascular mortality. However, the underlying mechanisms thereof remain unclear and the associations were mostly shown in geriatric cohorts or in patients with chronic diseases. Therefore, we aimed to investigate the possible involvement of abdominal obesity, selected adipokines, and biomarkers of subclinical inflammation in the association of MR-proADM with mortality in a population based study cohort. Methods Prospective analysis of the KORA F4 study; median follow-up 9.1 (8.8–9.4) years. Complete data on MR-proADM and mortality was available for 1551 participants, aged 56.9±12.9 years (mean±SD). Correlation and regression analyses of MR-proADM with overall (BMI) and abdominal obesity (waist circumference), selected adipokines and biomarkers of subclinical inflammation. Cox proportional hazard models on the association of MR-proADM with all-cause and cardiovascular mortality with adjustment for cardiovascular risk factors and selected biomarkers in study subgroups (n = 603–1551). Results MR-proADM associated with all-cause (HR (95%CI): 2.37 (1.72–3.26) and 2.31 (1.67–3.20)) and cardiovascular mortality (4.28 (2.19–8.39) and 4.44 (2.25–8.76)) after adjustment for traditional cardiovascular risk factors including BMI or waist circumference, respectively. MR-proADM was further associated with four out of seven examined adipokines (leptin, retinol-binding protein-4, chemerin, and adiponectin) and with five out of eleven examined biomarkers of subclinical inflammation (high-sensitivity C-reactive protein, interleukin-6, myeloperoxidase, interleukin-22, and interleukin-1 receptor antagonist) after multivariable adjustment and correction for multiple testing. However, only IL-6 substantially attenuated the association of MR-proADM with all-cause mortality. Conclusions We found an association of MR-proADM with (abdominal) obesity, selected adipokines, and biomarkers of subclinical inflammation. However, the association of MR-proADM with mortality was independent of these parameters. Future studies should investigate the role of IL-6 and further characteristics of subclinical inflammation in the association between MR-proADM and all-cause mortality.
Collapse
Affiliation(s)
- Christina Gar
- Department of Medicine IV, University Hospital, LMU Munich, Germany
- Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- * E-mail:
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Chaterina Sujana
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Ludwig-Maximilians-Universität, Munich, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- KORA Study Centre, University Hospital Augsburg, Augsburg, Germany
| | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair of Epidemiology at University Hospital Augsburg, Augsburg, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Wolfgang Koenig
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- German Diabetes Center, Leibniz Institute at Heinrich Heine University Düsseldorf, Institute of Biometrics and Epidemiology, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Haifa Maalmi
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Meitinger
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Holger Then
- Freie Waldorfschule Augsburg, Augsburg, Germany
| | - Jochen Seissler
- Department of Medicine IV, University Hospital, LMU Munich, Germany
- Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Cornelia Then
- Department of Medicine IV, University Hospital, LMU Munich, Germany
- Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
8
|
Bönhof GJ, Herder C, Ziegler D. Diagnostic Tools, Biomarkers, and Treatments in Diabetic polyneuropathy and Cardiovascular Autonomic Neuropathy. Curr Diabetes Rev 2022; 18:e120421192781. [PMID: 33845748 DOI: 10.2174/1573399817666210412123740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
The various manifestations of diabetic neuropathy, including distal symmetric sensorimotor polyneuropathy (DSPN) and cardiovascular autonomic neuropathy (CAN), are among the most prevalent chronic complications of diabetes. Major clinical complications of diabetic neuropathies, such as neuropathic pain, chronic foot ulcers, and orthostatic hypotension, are associated with considerable morbidity, increased mortality, and diminished quality of life. Despite the substantial individual and socioeconomic burden, the strategies to diagnose and treat diabetic neuropathies remain insufficient. This review provides an overview of the current clinical aspects and recent advances in exploring local and systemic biomarkers of both DSPN and CAN assessed in human studies (such as biomarkers of inflammation and oxidative stress) for better understanding of the underlying pathophysiology and for improving early detection. Current therapeutic options for DSPN are (I) causal treatment, including lifestyle modification, optimal glycemic control, and multifactorial risk intervention, (II) pharmacotherapy derived from pathogenetic concepts, and (III) analgesic treatment against neuropathic pain. Recent advances in each category are discussed, including non-pharmacological approaches, such as electrical stimulation. Finally, the current therapeutic options for cardiovascular autonomic complications are provided. These insights should contribute to a broader understanding of the various manifestations of diabetic neuropathies from both the research and clinical perspectives.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| |
Collapse
|
9
|
Cho NR, Yu Y, Oh CK, Ko DS, Myung K, Lee Y, Na HS, Kim YH. Neuropeptide Y: a potential theranostic biomarker for diabetic peripheral neuropathy in patients with type-2 diabetes. Ther Adv Chronic Dis 2021; 12:20406223211041936. [PMID: 34729143 PMCID: PMC8438932 DOI: 10.1177/20406223211041936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/03/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Diabetic peripheral neuropathy (DPN), the most common microvascular complication of type-2 diabetes mellitus (T2DM), results in nontraumatic lower-limb amputations. When DPN is not detected early, disease progression is irreversible. Thus, biomarkers for diagnosing DPN are needed. Methods: We analyzed three data sets of T2DM DPN: two for mouse models (GSE70852 and GSE34889) and one for a human model (GSE24290). We found common differentially expressed genes (DEGs) in the two mouse data sets and validated them in the human data set. To identify the phenotypic function of the DEGs, we overexpressed them in zebrafish embryos. Clinical information and serum samples of T2DM patients with and without DPN were obtained from the Korea Biobank Network. To assess the plausibility of DEGs as biomarkers of DPN, we performed an enzyme-linked immunosorbent assay. Results: Among the DEGs, only NPY and SLPI were validated in the human data set. As npy is conserved in zebrafish, its mRNA was injected into zebrafish embryos, and it was observed that the branches of the central nervous system became thicker and the number of dendritic branches increased. Baseline characteristics between T2DM patients with and without DPN did not differ, except for the sex ratio. The mean serum NPY level was higher in T2DM patients with DPN than in those without DPN (p = 0.0328), whereas serum SLPI levels did not differ (p = 0.9651). Conclusion: In the pathogenesis of DPN, NPY may play a protective role in the peripheral nervous system and may be useful as a biomarker for detecting T2DM DPN.
Collapse
Affiliation(s)
- Noo Ree Cho
- Department of Anesthesiology and Pain Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Yeuni Yu
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Chang-Kyu Oh
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea
| | - Dai Sik Ko
- Division of Vascular Surgery, Department of Surgery, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Kyungjae Myung
- Department of Anatomy, School of Medicine, Inje University, Busan, Republic of Korea
| | - Yoonsung Lee
- Department of Anatomy, School of Medicine, Inje University, Busan, Republic of Korea
| | - Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yun Hak Kim
- Departments of Anatomy and Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea. Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
10
|
Piona C, Ventrici C, Marcovecchio L, Chiarelli F, Maffeis C, Bonfanti R, Rabbone I. Long-term complications of type 1 diabetes: what do we know and what do we need to understand? Minerva Pediatr (Torino) 2021; 73:504-522. [PMID: 34530587 DOI: 10.23736/s2724-5276.21.06545-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Long-term complications of type 1 diabetes (T1D) include microvascular complications and macrovascular disease. Despite the important advances in the treatment of T1D of the last decades, these complications still represent the leading cause of morbidity and mortality in patients with T1D. Extensive evidence indicates that structural and functional alterations of the kidney, retina, nerves and large arteries occur already in the first years after the onset of diabetes. We performed a comprehensive review of the available evidence on screening, diagnosis, prevention and treatment of vascular complications of T1D. In particular, we focused on three major challenges related to long-term complications of T1D: 1) finding of new biomarkers and diagnostic methods able to identify early signs of complications; 2) identifying specific risk factors for the development of these complications; 3) identifying and implementing new therapeutic strategies able to prevent the development and progression of vascular complications.
Collapse
Affiliation(s)
- Claudia Piona
- Paediatric Diabetes and Metabolic Disorders Unit, Regional Center for Paediatric Diabetes, University City Hospital of Verona, Italy
| | - Claudia Ventrici
- Paediatric Unit, Hospital of Polistena, Polistena, Reggio Calabria, Italy
| | | | | | - Claudio Maffeis
- Paediatric Diabetes and Metabolic Disorders Unit, Regional Center for Paediatric Diabetes, University City Hospital of Verona, Italy
| | - Riccardo Bonfanti
- Diabetes Research Institute, Department of Pediatrics, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Ivana Rabbone
- Division of Paediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy -
| |
Collapse
|
11
|
Sloan G, Selvarajah D, Tesfaye S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat Rev Endocrinol 2021; 17:400-420. [PMID: 34050323 DOI: 10.1038/s41574-021-00496-z] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
Diabetic sensorimotor peripheral neuropathy (DSPN) is a serious complication of diabetes mellitus and is associated with increased mortality, lower-limb amputations and distressing painful neuropathic symptoms (painful DSPN). Our understanding of the pathophysiology of the disease has largely been derived from animal models, which have identified key potential mechanisms. However, effective therapies in preclinical models have not translated into clinical trials and we have no universally accepted disease-modifying treatments. Moreover, the condition is generally diagnosed late when irreversible nerve damage has already taken place. Innovative point-of-care devices have great potential to enable the early diagnosis of DSPN when the condition might be more amenable to treatment. The management of painful DSPN remains less than optimal; however, studies suggest that a mechanism-based approach might offer an enhanced benefit in certain pain phenotypes. The management of patients with DSPN involves the control of individualized cardiometabolic targets, a multidisciplinary approach aimed at the prevention and management of foot complications, and the timely diagnosis and management of neuropathic pain. Here, we discuss the latest advances in the mechanisms of DSPN and painful DSPN, originating both from the periphery and the central nervous system, as well as the emerging diagnostics and treatments.
Collapse
Affiliation(s)
- Gordon Sloan
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Dinesh Selvarajah
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Human Metabolism, University of Sheffield, Sheffield, UK
| | - Solomon Tesfaye
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| |
Collapse
|
12
|
Fei Z, Gao W, Xu X, Sheng H, Qu S, Cui R. Serum superoxide dismutase activity: a sensitive, convenient, and economical indicator associated with the prevalence of chronic type 2 diabetic complications, especially in men. Free Radic Res 2021; 55:275-281. [PMID: 34082660 DOI: 10.1080/10715762.2021.1937146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To investigate the relationship between serum superoxide dismutase (SOD) activity and the presence of chronic complications in patients with type 2 diabetes mellitus (T2DM). We conducted a retrospective cross-sectional study in patients with T2DM. They were assigned to three groups (Q1, Q2, and Q3) by SOD levels in both sexes. Clinical characteristics, cardiovascular disease, diabetic retinopathy, nephropathy, and peripheral neuropathy were compared. The relationship between the SOD and the prevalence of chronic complications was analyzed by binary logistic regression. Statistical analysis was performed in SPSS 26.0 (SPSS Inc., Chicago, IL). A total of 645 T2DM patients (401 men and 244 women) with complete data for SOD and medical records of complications were included. In men, patients in the Q1 group (lowest serum SOD activity) had the highest prevalence of diabetes with atherosclerosis (AS) (p<.001), DN (p=.029), and DPN (p=.001). In comparison, only DN was found to have the highest prevalence in the Q1 group in women (p=.010). In the multivariate analysis, patients in the Q1 group had a 3.0-, 1.6-, 1.9-, and 2.4-fold risk for the prevalence of AS, DR, DN, and DPN, respectively, compared with the Q3 group. In women, a 7.0-fold risk for the prevalence of DN in the Q1 group was found compared with the Q3 group. After adjusting for the age, duration of T2DM, body mass index, pulse pressure, alanine transaminase, clearance of creatinine, triglyceride, glycosylated hemoglobin, and fasting C-peptide in the models, the differences found in both men and women persisted. SOD activity is related to cardiovascular and microvascular diseases in men and the prevalence of diabetic nephropathy in women in T2DM.
Collapse
Affiliation(s)
- Zhaoliang Fei
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenxue Gao
- Medical Services Section, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaojuan Xu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Sheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ran Cui
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Srivastava R, Tripathi L, Swain SR, Singh J. Neuroprotective validation of pectin in T2DM-induced allodynia and hyperalgesia in diabetic peripheral neuropathic pain. Arch Physiol Biochem 2021:1-12. [PMID: 33618606 DOI: 10.1080/13813455.2021.1884725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIM To validate neuroprotective effect of pectin against neuropathic pain in diabetic rodents. MATERIAL AND METHOD Pectin was isolated and characterised from different sources to validate its neuroprotective effect against T2DM associated neuropathic pain. The antioxidant activity of pectins was done by the DPPH method. Type-2 diabetes mellitus (T2DM) was induced in Wistar albino rats by high-fat diet and high-fat emulsion feeding for 2 weeks followed by a single i.p. of Sterptozotocin in 3rd week. The animals were grouped as positive control and Citrus sinensis (L.) Osbeck peel pectin (CSL-OP) as test group and treated for the next 4 weeks. Body weight and blood glucose were measured up to 8 weeks; however, behavioural assessment was done at the end of 5th to 8th week. RESULT CSL-OP restored the reduced body weight and elevated blood glucose with increased pain threshold and improved walking performance. CONCLUSION CSL-OP prevented progression of early diabetic neuropathy with anti-oxidant activity.
Collapse
Affiliation(s)
- Rajnish Srivastava
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, India
| | | | - Sudhansu Ranjan Swain
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, India
| | - Jagan Singh
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, India
| |
Collapse
|
14
|
Then C, Herder C, Then H, Thorand B, Huth C, Heier M, Meisinger C, Peters A, Koenig W, Rathmann W, Roden M, Stumvoll M, Maalmi H, Meitinger T, Lechner A, Scherberich J, Seissler J. Serum uromodulin is inversely associated with biomarkers of subclinical inflammation in the population-based KORA F4 study. Clin Kidney J 2020; 14:1618-1625. [PMID: 34221377 PMCID: PMC8248959 DOI: 10.1093/ckj/sfaa165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 01/24/2023] Open
Abstract
Background Uromodulin is a kidney-specific glycoprotein synthesized in tubular cells of
Henle’s loop exerting nephroprotective and immunomodulatory
functions in the urinary tract. A small amount of uromodulin is also
released into the systemic circulation, where its physiological role is
unknown. Serum uromodulin (sUmod) has been associated with metabolic risk
factors and with cardiovascular events and mortality, where these
associations were partly stronger in men than in women. In this study, we
investigated the associations of sUmod with biomarkers of subclinical
inflammation in a population-based sample of women and men. Methods Associations of sUmod with 10 biomarkers of subclinical inflammation were
assessed in 1065 participants of the Cooperative Health Research in the
Region of Augsburg (KORA) F4 study aged 62–81 years using
linear regression models adjusted for sex, age, body mass index, estimated
glomerular filtration rate and diabetes. Analyses were performed in the
total study sample and stratified by sex. Results sUmod was inversely associated with white blood cell count, high-sensitive
C-reactive protein, interleukin (IL)-6, tumour necrosis factor-α,
myeloperoxidase, superoxide dismutase-3, IL-1 receptor antagonist and IL-22
after multivariable adjustment and correction for multiple testing
(P < 0.001 for each observation). There was a trend
towards a stronger association of sUmod with pro-inflammatory markers in men
than in women, with a significant P for sex interaction (<0.001)
regarding the relation of sUmod with IL-6. Conclusions sUmod was inversely associated with biomarkers of subclinical inflammation in
older participants of the KORA F4 study. The association of sUmod with IL-6
differed between women and men. Future research should focus on whether the
immunomodulatory properties of sUmod are one explanation for the association
of sUmod with cardiovascular outcomes and mortality.
Collapse
Affiliation(s)
- Cornelia Then
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU, München, Germany.,Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Holger Then
- Mathematics department, Freie Waldorfschule Augsburg, Augsburg, Germany
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Cornelia Huth
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,KORA Study Centre, University Hospital Augsburg, Augsburg, Germany
| | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,Chair of Epidemiology at UNIKAT Augsburg, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Wolfgang Koenig
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany.,Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Diabetes Center, Leibniz Institute at Heinrich Heine University Düsseldorf, Institute of Biometrics and Epidemiology, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | - Haifa Maalmi
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Thomas Meitinger
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Andreas Lechner
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU, München, Germany.,Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Jürgen Scherberich
- Klinikum München-Harlaching, Teaching Hospital of the Ludwig-Maximilians-Universität, Munich, Germany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU, München, Germany.,Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
15
|
The Role of Oxidative Stress in Peripheral Neuropathy. J Mol Neurosci 2020; 70:1009-1017. [PMID: 32103400 DOI: 10.1007/s12031-020-01495-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/05/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathy (PN) is a common disease affecting about 5% of the general population after the age of 50. Causes of PN are numerous and include genetic, diabetes, alcohol, vitamin deficiencies, and gluten sensitivity among others. This systematic review aimed to study the association between oxidative stress and PN in an attempt to better understand PN pathogenesis. A computer-based, systematic search was conducted on the PubMed database, and ensuing data from included articles was analyzed and discussed in this review. Sixty-nine papers were eligible and were used for this review. Peripheral neuropathy is associated with an increase of reactive oxygen species and a decrease in endogenous antioxidants. Genetic predisposition to oxidative damage may be a factor. Antioxidant treatment is promising regarding treatment. Though further research is necessary to better understand the underlying mechanism, it is evident that oxidative stress is implicated in the pathogenesis of - or is at least systematically present in - PN.
Collapse
|
16
|
Herder C, Roden M, Ziegler D. Novel Insights into Sensorimotor and Cardiovascular Autonomic Neuropathy from Recent-Onset Diabetes and Population-Based Cohorts. Trends Endocrinol Metab 2019; 30:286-298. [PMID: 30935671 DOI: 10.1016/j.tem.2019.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 12/19/2022]
Abstract
The most prevalent chronic complications of diabetes are diabetic neuropathies, among which distal sensorimotor polyneuropathy (DSPN) and cardiovascular autonomic neuropathy (CAN) are the best studied. Their major clinical sequelae such as foot ulcers, neuropathic pain, and orthostatic hypotension are associated with lower quality of life and increased risk of mortality. Here we discuss the recent insights into DSPN and CAN focusing on two prospective cohorts; that is, the German Diabetes Study (GDS) including recent-onset diabetes patients and the population-based Cooperative Health Research in the Region of Augsburg, Germany (KORA) surveys. The insights from these studies investigating novel tools for early detection and prediction of (pre)diabetic neuropathy as well as biomarkers of oxidative stress and inflammation should ultimately culminate in improving the health care of patients affected by this serious condition.
Collapse
Affiliation(s)
- Christian Herder
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; These authors contributed equally.
| | - Michael Roden
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dan Ziegler
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; These authors contributed equally.
| |
Collapse
|
17
|
Schlesinger S, Herder C, Kannenberg JM, Huth C, Carstensen-Kirberg M, Rathmann W, Bönhof GJ, Koenig W, Heier M, Peters A, Meisinger C, Roden M, Thorand B, Ziegler D. General and Abdominal Obesity and Incident Distal Sensorimotor Polyneuropathy: Insights Into Inflammatory Biomarkers as Potential Mediators in the KORA F4/FF4 Cohort. Diabetes Care 2019; 42:240-247. [PMID: 30523031 DOI: 10.2337/dc18-1842] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/04/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the associations between different anthropometric measurements and development of distal sensorimotor polyneuropathy (DSPN) considering interaction effects with prediabetes/diabetes and to evaluate subclinical inflammation as a potential mediator. RESEARCH DESIGN AND METHODS This study was conducted among 513 participants from the Cooperative Health Research in the Region of Augsburg (KORA) F4/FF4 cohort (aged 62-81 years). Anthropometry was measured at baseline. Incident DSPN was defined by neuropathic impairments using the Michigan Neuropathy Screening Instrument at baseline and follow-up. Associations between anthropometric measurements and DSPN were estimated by multivariable logistic regression. Potential differences by diabetes status were assessed using interaction terms. Mediation analysis was conducted to determine the mediation effect of subclinical inflammation in these associations. RESULTS After a mean follow-up of 6.5 years, 127 cases with incident DSPN were detected. Both general and abdominal obesity were associated with development of DSPN. The odds ratios (95% CI) of DSPN were 3.06 (1.57; 5.97) for overweight, 3.47 (1.72; 7.00) for obesity (reference: normal BMI), and 1.22 (1.07; 1.38) for 5-cm differences in waist circumference, respectively. Interaction analyses did not indicate any differences by diabetes status. Two chemokines (C-C motif chemokine ligand 7 [CCL7] and C-X-C motif chemokine ligand 10 [CXCL10]) and one neuron-specific marker (Delta/Notch-like epidermal growth factor-related receptor [DNER]) were identified as potential mediators, which explained a proportion of the total effect up to 11% per biomarker. CONCLUSIONS General and abdominal obesity were associated with incident DSPN among individuals with and without diabetes, and this association was partly mediated by inflammatory markers. However, further mechanisms and biomarkers should be investigated as additional mediators to explain the remainder of this association.
Collapse
Affiliation(s)
- Sabrina Schlesinger
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany .,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Christian Herder
- German Center for Diabetes Research, München-Neuherberg, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia M Kannenberg
- German Center for Diabetes Research, München-Neuherberg, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Cornelia Huth
- German Center for Diabetes Research, München-Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Maren Carstensen-Kirberg
- German Center for Diabetes Research, München-Neuherberg, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany.,Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany.,Department of Internal Medicine II-Cardiology, University of Ulm Medical Center, Ulm, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- German Center for Diabetes Research, München-Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christa Meisinger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians-Universität München am UNIKA-T Augsburg, Augsburg, Germany
| | - Michael Roden
- German Center for Diabetes Research, München-Neuherberg, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Barbara Thorand
- German Center for Diabetes Research, München-Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Dan Ziegler
- German Center for Diabetes Research, München-Neuherberg, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
Bönhof GJ, Herder C, Strom A, Papanas N, Roden M, Ziegler D. Emerging Biomarkers, Tools, and Treatments for Diabetic Polyneuropathy. Endocr Rev 2019; 40:153-192. [PMID: 30256929 DOI: 10.1210/er.2018-00107] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022]
Abstract
Diabetic neuropathy, with its major clinical sequels, notably neuropathic pain, foot ulcers, and autonomic dysfunction, is associated with substantial morbidity, increased risk of mortality, and reduced quality of life. Despite its major clinical impact, diabetic neuropathy remains underdiagnosed and undertreated. Moreover, the evidence supporting a benefit for causal treatment is weak at least in patients with type 2 diabetes, and current pharmacotherapy is largely limited to symptomatic treatment options. Thus, a better understanding of the underlying pathophysiology is mandatory for translation into new diagnostic and treatment approaches. Improved knowledge about pathogenic pathways implicated in the development of diabetic neuropathy could lead to novel diagnostic techniques that have the potential of improving the early detection of neuropathy in diabetes and prediabetes to eventually embark on new treatment strategies. In this review, we first provide an overview on the current clinical aspects and illustrate the pathogenetic concepts of (pre)diabetic neuropathy. We then describe the biomarkers emerging from these concepts and novel diagnostic tools and appraise their utility in the early detection and prediction of predominantly distal sensorimotor polyneuropathy. Finally, we discuss the evidence for and limitations of the current and novel therapy options with particular emphasis on lifestyle modification and pathogenesis-derived treatment approaches. Altogether, recent years have brought forth a multitude of emerging biomarkers reflecting different pathogenic pathways such as oxidative stress and inflammation and diagnostic tools for an early detection and prediction of (pre)diabetic neuropathy. Ultimately, these insights should culminate in improving our therapeutic armamentarium against this common and debilitating or even life-threatening condition.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany
| | - Nikolaos Papanas
- Second Department of Internal Medicine, Diabetes Center, Diabetic Foot Clinic, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|