1
|
Debuysschere C, Nekoua MP, Alidjinou EK, Hober D. The relationship between SARS-CoV-2 infection and type 1 diabetes mellitus. Nat Rev Endocrinol 2024; 20:588-599. [PMID: 38890459 DOI: 10.1038/s41574-024-01004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Environmental factors, in particular viral infections, are thought to have an important role in the pathogenesis of type 1 diabetes mellitus (T1DM). The COVID-19 pandemic reinforced this hypothesis as many observational studies and meta-analyses reported a notable increase in the incidence of T1DM following infection with SARS-CoV-2 as well as an association between SARS-CoV-2 infection and the risk of new-onset T1DM. Experimental evidence suggests that human β-cells express SARS-CoV-2 receptors and that SARS-CoV-2 can infect and replicate in β-cells, resulting in structural or functional alterations of these cells. These alterations include reduced numbers of insulin-secreting granules, impaired pro-insulin (or insulin) secretion, and β-cell transdifferentiation or dedifferentiation. The inflammatory environment induced by local or systemic SARS-CoV-2 infection might result in a set of signals (such as pro-inflammatory cytokines) that lead to β-cell alteration or apoptosis or to a bystander activation of T cells and disruption of peripheral tolerance that triggers autoimmunity. Other mechanisms, such as viral persistence, molecular mimicry and activation of endogenous human retroviruses, are also likely to be involved in the pathogenesis of T1DM following SARS-CoV-2 infection. This Review addresses the issue of the involvement of SARS-CoV-2 infection in the development of T1DM using evidence from epidemiological, clinical and experimental studies.
Collapse
Affiliation(s)
- Cyril Debuysschere
- Université de Lille, CHU Lille, Laboratoire de virologie ULR3610, Lille, France
| | | | | | - Didier Hober
- Université de Lille, CHU Lille, Laboratoire de virologie ULR3610, Lille, France.
| |
Collapse
|
2
|
Bruzzaniti S, Piemonte E, Lepore MT, Galgani M. Anti-viral innate immunity: Is it where type 1 diabetes really begins? Diabetes Metab Res Rev 2023:e3623. [PMID: 36764821 DOI: 10.1002/dmrr.3623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023]
Affiliation(s)
- Sara Bruzzaniti
- Institute Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy
| | - Erica Piemonte
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Teresa Lepore
- Institute Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy
| | - Mario Galgani
- Institute Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Tekin H, Josefsen K, Krogvold L, Dahl-Jørgensen K, Gerling I, Pociot F, Buschard K. PDE12 in type 1 diabetes. Sci Rep 2022; 12:18149. [PMID: 36307540 PMCID: PMC9614732 DOI: 10.1038/s41598-022-22890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/20/2022] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes (T1D) incidence is increased after COVID-19 infection in children under 18 years of age. Interferon-α-activated oligoadenylate synthetase and downstream RNAseL activation degrade pathogen RNA, but can also damage host RNA when RNAseL activity is poorly regulated. One such regulator is PDE12 which degrades 2'-5' oligoadenylate units, thereby decreasing RNAseL activity. We analyzed PDE12 expression in islets from non-diabetic donors, individuals with newly (median disease duration 35 days) and recently (5 years) diagnosed T1D, and individuals with type 2 diabetes (T2D). We also analyzed PDE12 single-nucleotide polymorphisms (SNPs) relative to T1D incidence. PDE12 expression was decreased in individuals with recently diagnosed T1D, in three of five individuals with newly diagnosed T1D, but not in individuals with T2D. Two rare PDE12 SNPs were found to have odds ratios of 1.80 and 1.74 for T1D development. We discuss whether decreased PDE12 expression after COVID-19 infection might be part of the up to 2.5-fold increase in T1D incidence.
Collapse
Affiliation(s)
- Hasim Tekin
- grid.475435.4The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Knud Josefsen
- grid.475435.4The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Lars Krogvold
- grid.55325.340000 0004 0389 8485Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Dahl-Jørgensen
- grid.55325.340000 0004 0389 8485Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ivan Gerling
- grid.267301.10000 0004 0386 9246Department of Medicine, University of Tennessee, Memphis, TN USA
| | - Flemming Pociot
- grid.419658.70000 0004 0646 7285Steno Diabetes Center Copenhagen, Gentofte, Denmark ,grid.5254.60000 0001 0674 042XFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karsten Buschard
- grid.475435.4The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
4
|
Infante M, Fabbri A, Padilla N, Pacifici F, Di Perna P, Vitiello L, Feraco A, Giuliano M, Passeri M, Caprio M, Ricordi C, Della-Morte D, Uccioli L. BNT162b2 mRNA COVID-19 Vaccine Does Not Impact the Honeymoon Phase in Type 1 Diabetes: A Case Report. Vaccines (Basel) 2022; 10:vaccines10071096. [PMID: 35891261 PMCID: PMC9319173 DOI: 10.3390/vaccines10071096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 01/27/2023] Open
Abstract
Type 1 diabetes (T1D), which is caused by the autoimmune destruction of insulin-secreting pancreatic beta cells, represents a high-risk category requiring COVID-19 vaccine prioritization. Although COVID-19 vaccination can lead to transient hyperglycemia (vaccination-induced hyperglycemia; ViHG), its influence on the course of the clinical remission phase of T1D (a.k.a. “honeymoon phase”) is currently unknown. Recently, there has been an increasing concern that COVID-19 vaccination may trigger autoimmune phenomena. We describe the case of a 24-year-old young Italian man with T1D who received two doses of the BNT162b2 mRNA (Pfizer-BioNTech) COVID-19 vaccine during a prolonged honeymoon phase. He experienced a transient impairment in glucose control (as evidenced by continuous glucose monitoring) that was not associated with substantial changes in stimulated C-peptide levels and islet autoantibody titers. Nonetheless, large prospective studies are needed to confirm the safety and the immunometabolic impact of the BNT162b2 vaccine in T1D patients during the honeymoon phase. Thus far, T1D patients who are going to receive COVID-19 vaccination should be warned about the possible occurrence of transient ViHG and should undergo strict postvaccination surveillance.
Collapse
Affiliation(s)
- Marco Infante
- CTO Andrea Alesini Hospital, Division of Endocrinology and Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, 00145 Rome, Italy; (P.D.P.); (M.G.); (M.P.); (L.U.)
- Cell Transplant Center, Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL 33136, USA;
- Section of Diabetology, UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Via Cola di Rienzo 28, 00192 Rome, Italy
- Correspondence: or or
| | - Andrea Fabbri
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (A.F.); (F.P.); (D.D.-M.)
| | - Nathalia Padilla
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Colonia Centroamérica L-823, Managua 14048, Nicaragua;
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (A.F.); (F.P.); (D.D.-M.)
| | - Pasquale Di Perna
- CTO Andrea Alesini Hospital, Division of Endocrinology and Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, 00145 Rome, Italy; (P.D.P.); (M.G.); (M.P.); (L.U.)
| | - Laura Vitiello
- Laboratory of Flow Cytometry, IRCCS San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy;
| | - Alessandra Feraco
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy; (A.F.); (M.C.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Maria Giuliano
- CTO Andrea Alesini Hospital, Division of Endocrinology and Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, 00145 Rome, Italy; (P.D.P.); (M.G.); (M.P.); (L.U.)
| | - Marina Passeri
- CTO Andrea Alesini Hospital, Division of Endocrinology and Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, 00145 Rome, Italy; (P.D.P.); (M.G.); (M.P.); (L.U.)
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy; (A.F.); (M.C.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Camillo Ricordi
- Cell Transplant Center, Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL 33136, USA;
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (A.F.); (F.P.); (D.D.-M.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, 1120 NW 14th St, Miami, FL 33136, USA
| | - Luigi Uccioli
- CTO Andrea Alesini Hospital, Division of Endocrinology and Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, 00145 Rome, Italy; (P.D.P.); (M.G.); (M.P.); (L.U.)
| |
Collapse
|