1
|
Krasewicz J, Yu WM. Eph and ephrin signaling in the development of the central auditory system. Dev Dyn 2023; 252:10-26. [PMID: 35705527 PMCID: PMC9751234 DOI: 10.1002/dvdy.506] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 01/17/2023] Open
Abstract
Acoustic communication relies crucially on accurate interpretation of information about the intensity, frequency, timing, and location of diverse sound stimuli in the environment. To meet this demand, neurons along different levels of the auditory system form precisely organized neural circuits. The assembly of these precise circuits requires tight regulation and coordination of multiple developmental processes. Several groups of axon guidance molecules have proven critical in controlling these processes. Among them, the family of Eph receptors and their ephrin ligands emerge as one group of key players. They mediate diverse functions at multiple levels of the auditory pathway, including axon guidance and targeting, topographic map formation, as well as cell migration and tissue pattern formation. Here, we review our current knowledge of how Eph and ephrin molecules regulate different processes in the development and maturation of central auditory circuits.
Collapse
Affiliation(s)
| | - Wei-Ming Yu
- Correspondence: Wei-Ming Yu, Department of Biology, Loyola University of Chicago, 1032 W Sheridan Rd, LSB 226, Chicago, IL 60660, , Tel: +1-773-508-3325, Fax: +1-773-508-3646
| |
Collapse
|
2
|
Yu X, Wang Y. Tonotopic differentiation of presynaptic neurotransmitter-releasing machinery in the auditory brainstem during the prehearing period and its selective deficits in Fmr1 knockout mice. J Comp Neurol 2022; 530:3248-3269. [PMID: 36067267 PMCID: PMC9588645 DOI: 10.1002/cne.25406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 11/07/2022]
Abstract
Tonotopic organization is a fundamental feature of the auditory system. In the developing auditory brainstem, the ontogeny and maturation of neurotransmission progress from high to low frequencies along the tonotopic axis. To explore the underlying mechanism of this tonotopic development, we aim to determine whether the presynaptic machinery responsible for neurotransmitter release is tonotopically differentiated during development. In the current study, we examined vesicular neurotransmitter transporters and calcium sensors, two central players responsible for loading neurotransmitter into synaptic vesicles and for triggering neurotransmitter release in a calcium-dependent manner, respectively. Using immunocytochemistry, we characterized the distribution patterns of vesicular glutamate transporters (VGLUTs) 1 and 2, vesicular gamma-aminobutyric acid transporter (VGAT), and calcium sensor synaptotagmin (Syt) 1 and 2 in the developing mouse medial nucleus of the trapezoid body (MNTB). We identified tonotopic gradients of VGLUT1, VGAT, Syt1, and Syt2 in the first postnatal week, with higher protein densities in the more medial (high-frequency) portion of the MNTB. These gradients gradually flattened before the onset of hearing. In contrast, VGLUT2 was distributed relatively uniformly along the tonotopic axis during this prehearing period. In mice lacking Fragile X mental retardation protein, an mRNA-binding protein that regulates synaptic development and plasticity, progress to achieve the mature-like organization was altered for VGLUT1, Syt1, and Syt2, but not for VGAT. Together, our results identified novel organization patterns of selective presynaptic proteins in immature auditory synapses, providing a potential mechanism that may contribute to tonotopic differentiation of neurotransmission during normal and abnormal development.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|
3
|
Hirsch D, Kohl A, Wang Y, Sela-Donenfeld D. Axonal Projection Patterns of the Dorsal Interneuron Populations in the Embryonic Hindbrain. Front Neuroanat 2022; 15:793161. [PMID: 35002640 PMCID: PMC8738170 DOI: 10.3389/fnana.2021.793161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Unraveling the inner workings of neural circuits entails understanding the cellular origin and axonal pathfinding of various neuronal groups during development. In the embryonic hindbrain, different subtypes of dorsal interneurons (dINs) evolve along the dorsal-ventral (DV) axis of rhombomeres and are imperative for the assembly of central brainstem circuits. dINs are divided into two classes, class A and class B, each containing four neuronal subgroups (dA1-4 and dB1-4) that are born in well-defined DV positions. While all interneurons belonging to class A express the transcription factor Olig3 and become excitatory, all class B interneurons express the transcription factor Lbx1 but are diverse in their excitatory or inhibitory fate. Moreover, within every class, each interneuron subtype displays its own specification genes and axonal projection patterns which are required to govern the stage-by-stage assembly of their connectivity toward their target sites. Remarkably, despite the similar genetic landmark of each dINs subgroup along the anterior-posterior (AP) axis of the hindbrain, genetic fate maps of some dA/dB neuronal subtypes uncovered their contribution to different nuclei centers in relation to their rhombomeric origin. Thus, DV and AP positional information has to be orchestrated in each dA/dB subpopulation to form distinct neuronal circuits in the hindbrain. Over the span of several decades, different axonal routes have been well-documented to dynamically emerge and grow throughout the hindbrain DV and AP positions. Yet, the genetic link between these distinct axonal bundles and their neuronal origin is not fully clear. In this study, we reviewed the available data regarding the association between the specification of early-born dorsal interneuron subpopulations in the hindbrain and their axonal circuitry development and fate, as well as the present existing knowledge on molecular effectors underlying the process of axonal growth.
Collapse
Affiliation(s)
- Dana Hirsch
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
4
|
Hoshino N, Altarshan Y, Alzein A, Fernando AM, Nguyen HT, Majewski EF, Chen VCF, William Rochlin M, Yu WM. Ephrin-A3 is required for tonotopic map precision and auditory functions in the mouse auditory brainstem. J Comp Neurol 2021; 529:3633-3654. [PMID: 34235739 PMCID: PMC8490280 DOI: 10.1002/cne.25213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 01/09/2023]
Abstract
Tonotopy is a prominent feature of the vertebrate auditory system and forms the basis for sound discrimination, but the molecular mechanism that underlies its formation remains largely elusive. Ephrin/Eph signaling is known to play important roles in axon guidance during topographic mapping in other sensory systems, so we investigated its possible role in the establishment of tonotopy in the mouse cochlear nucleus. We found that ephrin-A3 molecules are differentially expressed along the tonotopic axis in the cochlear nucleus during innervation. Ephrin-A3 forward signaling is sufficient to repel auditory nerve fibers in a developmental stage-dependent manner. In mice lacking ephrin-A3, the tonotopic map is degraded and isofrequency bands of neuronal activation upon pure tone exposure become imprecise in the anteroventral cochlear nucleus. Ephrin-A3 mutant mice also exhibit a delayed second wave in auditory brainstem responses upon sound stimuli and impaired detection of sound frequency changes. Our findings establish an essential role for ephrin-A3 in forming precise tonotopy in the auditory brainstem to ensure accurate sound discrimination.
Collapse
Affiliation(s)
- Natalia Hoshino
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Yazan Altarshan
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Ahmad Alzein
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Amali M. Fernando
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Hieu T. Nguyen
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Emma F. Majewski
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | | | | | - Wei-Ming Yu
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| |
Collapse
|
5
|
Sitko AA, Goodrich LV. Making sense of neural development by comparing wiring strategies for seeing and hearing. Science 2021; 371:eaaz6317. [PMID: 33414193 PMCID: PMC8034811 DOI: 10.1126/science.aaz6317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to perceive and interact with the world depends on a diverse array of neural circuits specialized for carrying out specific computations. Each circuit is assembled using a relatively limited number of molecules and common developmental steps, from cell fate specification to activity-dependent synaptic refinement. Given this shared toolkit, how do individual circuits acquire their characteristic properties? We explore this question by comparing development of the circuitry for seeing and hearing, highlighting a few examples where differences in each system's sensory demands necessitate different developmental strategies.
Collapse
Affiliation(s)
- A A Sitko
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - L V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Weghorst F, Mirzakhanyan Y, Samimi K, Dhillon M, Barzik M, Cunningham LL, Gershon PD, Cramer KS. Caspase-3 Cleaves Extracellular Vesicle Proteins During Auditory Brainstem Development. Front Cell Neurosci 2020; 14:573345. [PMID: 33281555 PMCID: PMC7689216 DOI: 10.3389/fncel.2020.573345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022] Open
Abstract
Sound localization requires extremely precise development of auditory brainstem circuits, the molecular mechanisms of which are largely unknown. We previously demonstrated a novel requirement for non-apoptotic activity of the protease caspase-3 in chick auditory brainstem development. Here, we used mass spectrometry to identify proteolytic substrates of caspase-3 during chick auditory brainstem development. These auditory brainstem caspase-3 substrates were enriched for proteins previously shown to be cleaved by caspase-3, especially in non-apoptotic contexts. Functional annotation analysis revealed that our caspase-3 substrates were also enriched for proteins associated with several protein categories, including proteins found in extracellular vesicles (EVs), membrane-bound nanoparticles that function in intercellular communication. The proteome of EVs isolated from the auditory brainstem was highly enriched for our caspase-3 substrates. Additionally, we identified two caspase-3 substrates with known functions in axon guidance, namely Neural Cell Adhesion Molecule (NCAM) and Neuronal-glial Cell Adhesion Molecule (Ng-CAM), that were found in auditory brainstem EVs and expressed in the auditory pathway alongside cleaved caspase-3. Taken together, these data suggest a novel developmental mechanism whereby caspase-3 influences auditory brainstem circuit formation through the proteolytic cleavage of extracellular vesicle (EV) proteins.
Collapse
Affiliation(s)
- Forrest Weghorst
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Yeva Mirzakhanyan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Kian Samimi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Mehron Dhillon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Melanie Barzik
- Section on Sensory Cell Biology, NIDCD, NIH, Bethesda, MD, United States
| | - Lisa L. Cunningham
- Section on Sensory Cell Biology, NIDCD, NIH, Bethesda, MD, United States
| | - Paul D. Gershon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Karina S. Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
7
|
Lackey EP, Sillitoe RV. Eph/ephrin Function Contributes to the Patterning of Spinocerebellar Mossy Fibers Into Parasagittal Zones. Front Syst Neurosci 2020; 14:7. [PMID: 32116578 PMCID: PMC7033604 DOI: 10.3389/fnsys.2020.00007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
Purkinje cell microcircuits perform diverse functions using widespread inputs from the brain and spinal cord. The formation of these functional circuits depends on developmental programs and molecular pathways that organize mossy fiber afferents from different sources into a complex and precisely patterned map within the granular layer of the cerebellum. During development, Purkinje cell zonal patterns are thought to guide mossy fiber terminals into zones. However, the molecular mechanisms that mediate this process remain unclear. Here, we used knockout mice to test whether Eph/ephrin signaling controls Purkinje cell-mossy fiber interactions during cerebellar circuit formation. Loss of ephrin-A2 and ephrin-A5 disrupted the patterning of spinocerebellar terminals into discrete zones. Zone territories in the granular layer that normally have limited spinocerebellar input contained ectopic terminals in ephrin-A2 -/-;ephrin-A5 -/- double knockout mice. However, the overall morphology of the cerebellum, lobule position, and Purkinje cell zonal patterns developed normally in the ephrin-A2 -/-;ephrin-A5 -/- mutant mice. This work suggests that communication between Purkinje cell zones and mossy fibers during postnatal development allows contact-dependent molecular cues to sharpen the innervation of sensory afferents into functional zones.
Collapse
Affiliation(s)
- Elizabeth P Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.,Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States.,Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
8
|
Rotschafer SE, Allen-Sharpley MR, Cramer KS. Axonal Cleaved Caspase-3 Regulates Axon Targeting and Morphogenesis in the Developing Auditory Brainstem. Front Neural Circuits 2016; 10:84. [PMID: 27822180 PMCID: PMC5075536 DOI: 10.3389/fncir.2016.00084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/04/2016] [Indexed: 01/13/2023] Open
Abstract
Caspase-3 is a cysteine protease that is most commonly associated with cell death. Recent studies have shown additional roles in mediating cell differentiation, cell proliferation and development of cell morphology. We investigated the role of caspase-3 in the development of chick auditory brainstem nuclei during embryogenesis. Immunofluorescence from embryonic days E6–13 revealed that the temporal expression of cleaved caspase-3 follows the ascending anatomical pathway. The expression is first seen in the auditory portion of VIIIth nerve including central axonal regions projecting to nucleus magnocellularis (NM), then later in NM axons projecting to nucleus laminaris (NL), and subsequently in NL dendrites. To examine the function of cleaved caspase-3 in chick auditory brainstem development, we blocked caspase-3 cleavage in developing chick embryos with the caspase-3 inhibitor Z-DEVD-FMK from E6 to E9, then examined NM and NL morphology and NM axonal targeting on E10. NL lamination in treated embryos was disorganized and the neuropil around NL contained a significant number of glial cells normally excluded from this region. Additionally, NM axons projected into inappropriate portions of NL in Z-DEVD-FMK treated embyros. We found that the presence of misrouted axons was associated with more severe NL disorganization. The effects of axonal caspase-3 inhibition on both NL morphogenesis and NM axon targeting suggest that these developmental processes are coordinated, likely through communication between axons and their targets.
Collapse
Affiliation(s)
- Sarah E Rotschafer
- Department of Neurobiology and Behavior, University of California Irvine, CA, USA
| | | | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California Irvine, CA, USA
| |
Collapse
|
9
|
Wallace MM, Harris JA, Brubaker DQ, Klotz CA, Gabriele ML. Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem. Hear Res 2016; 335:64-75. [PMID: 26906676 DOI: 10.1016/j.heares.2016.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/02/2016] [Accepted: 02/18/2016] [Indexed: 01/06/2023]
Abstract
Eph-ephrin interactions guide topographic mapping and pattern formation in a variety of systems. In contrast to other sensory pathways, their precise role in the assembly of central auditory circuits remains poorly understood. The auditory midbrain, or inferior colliculus (IC) is an intriguing structure for exploring guidance of patterned projections as adjacent subdivisions exhibit distinct organizational features. The central nucleus of the IC (CNIC) and deep aspects of its neighboring lateral cortex (LCIC, Layer 3) are tonotopically-organized and receive layered inputs from primarily downstream auditory sources. While less is known about more superficial aspects of the LCIC, its inputs are multimodal, lack a clear tonotopic order, and appear discontinuous, terminating in modular, patch/matrix-like distributions. Here we utilize X-Gal staining approaches in lacZ mutant mice (ephrin-B2, -B3, and EphA4) to reveal EphA-ephrinB expression patterns in the nascent IC during the period of projection shaping that precedes hearing onset. We also report early postnatal protein expression in the cochlear nuclei, the superior olivary complex, the nuclei of the lateral lemniscus, and relevant midline structures. Continuous ephrin-B2 and EphA4 expression gradients exist along frequency axes of the CNIC and LCIC Layer 3. In contrast, more superficial LCIC localization is not graded, but confined to a series of discrete ephrin-B2 and EphA4-positive Layer 2 modules. While heavily expressed in the midline, much of the auditory brainstem is devoid of ephrin-B3, including the CNIC, LCIC Layer 2 modular fields, the dorsal nucleus of the lateral lemniscus (DNLL), as well as much of the superior olivary complex and cochlear nuclei. Ephrin-B3 LCIC expression appears complementary to that of ephrin-B2 and EphA4, with protein most concentrated in presumptive extramodular zones. Described tonotopic gradients and seemingly complementary modular/extramodular patterns suggest Eph-ephrin guidance in establishing juxtaposed continuous and discrete neural maps in the developing IC prior to experience.
Collapse
Affiliation(s)
- Matthew M Wallace
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - J Aaron Harris
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - Donald Q Brubaker
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - Caitlyn A Klotz
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - Mark L Gabriele
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA.
| |
Collapse
|
10
|
Cramer KS, Gabriele ML. Axon guidance in the auditory system: multiple functions of Eph receptors. Neuroscience 2014; 277:152-62. [PMID: 25010398 DOI: 10.1016/j.neuroscience.2014.06.068] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/05/2014] [Accepted: 06/28/2014] [Indexed: 11/29/2022]
Abstract
The neural pathways of the auditory system underlie our ability to detect sounds and to transform amplitude and frequency information into rich and meaningful perception. While it shares some organizational features with other sensory systems, the auditory system has some unique functions that impose special demands on precision in circuit assembly. In particular, the cochlear epithelium creates a frequency map rather than a space map, and specialized pathways extract information on interaural time and intensity differences to permit sound source localization. The assembly of auditory circuitry requires the coordinated function of multiple molecular cues. Eph receptors and their ephrin ligands constitute a large family of axon guidance molecules with developmentally regulated expression throughout the auditory system. Functional studies of Eph/ephrin signaling have revealed important roles at multiple levels of the auditory pathway, from the cochlea to the auditory cortex. These proteins provide graded cues used in establishing tonotopically ordered connections between auditory areas, as well as discrete cues that enable axons to form connections with appropriate postsynaptic partners within a target area. Throughout the auditory system, Eph proteins help to establish patterning in neural pathways during early development. This early targeting, which is further refined with neuronal activity, establishes the precision needed for auditory perception.
Collapse
Affiliation(s)
- K S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, United States.
| | - M L Gabriele
- Department of Biology, James Madison University, Harrisonburg, VA 22807, United States
| |
Collapse
|
11
|
Conroy J, McGettigan PA, McCreary D, Shah N, Collins K, Parry-Fielder B, Moran M, Hanrahan D, Deonna TW, Korff CM, Webb D, Ennis S, Lynch SA, King MD. Towards the identification of a genetic basis for Landau-Kleffner syndrome. Epilepsia 2014; 55:858-65. [DOI: 10.1111/epi.12645] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Judith Conroy
- Department of Genetics; Children's University Hospital; Dublin Ireland
- Academic Centre on Rare Diseases; School of Medicine and Medical Science; University College Dublin; Dublin Ireland
| | - Paul A. McGettigan
- Academic Centre on Rare Diseases; School of Medicine and Medical Science; University College Dublin; Dublin Ireland
- School of Agriculture and Food Science; University College Dublin; Dublin Ireland
| | - Dara McCreary
- Department of Neurology; Children's University Hospital; Dublin Ireland
| | - Naisha Shah
- School of Medicine and Medical Science; University College Dublin; Dublin Ireland
| | | | | | - Margaret Moran
- Department of Neurology; Children's University Hospital; Dublin Ireland
- Royal Children's Hospital; Melbourne VIC Australia
| | - Donncha Hanrahan
- Royal Belfast Hospital for Sick Children; Belfast United Kingdom
| | | | | | - David Webb
- Department of Neurology; Our Lady's Children's Hospital Crumlin; Dublin Ireland
| | - Sean Ennis
- Academic Centre on Rare Diseases; School of Medicine and Medical Science; University College Dublin; Dublin Ireland
- The National Centre for Medical Genetics; Our Lady's Children's Hospital Crumlin; Dublin Ireland
| | - Sally A. Lynch
- Department of Genetics; Children's University Hospital; Dublin Ireland
- Academic Centre on Rare Diseases; School of Medicine and Medical Science; University College Dublin; Dublin Ireland
- The National Centre for Medical Genetics; Our Lady's Children's Hospital Crumlin; Dublin Ireland
| | - Mary D. King
- Academic Centre on Rare Diseases; School of Medicine and Medical Science; University College Dublin; Dublin Ireland
- Department of Neurology; Children's University Hospital; Dublin Ireland
| |
Collapse
|
12
|
Morphological and physiological development of auditory synapses. Hear Res 2014; 311:3-16. [PMID: 24508369 DOI: 10.1016/j.heares.2014.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 01/13/2014] [Accepted: 01/20/2014] [Indexed: 02/07/2023]
Abstract
Acoustic communication requires gathering, transforming, and interpreting diverse sound cues. To achieve this, all the spatial and temporal features of complex sound stimuli must be captured in the firing patterns of the primary sensory neurons and then accurately transmitted along auditory pathways for additional processing. The mammalian auditory system relies on several synapses with unique properties in order to meet this task: the auditory ribbon synapses, the endbulb of Held, and the calyx of Held. Each of these synapses develops morphological and electrophysiological characteristics that enable the remarkably precise signal transmission necessary for conveying the miniscule differences in timing that underly sound localization. In this article, we review the current knowledge of how these synapses develop and mature to acquire the specialized features necessary for the sense of hearing.
Collapse
|
13
|
Kashima DT, Rubel EW, Seidl AH. Pre-target axon sorting in the avian auditory brainstem. J Comp Neurol 2013; 521:2310-20. [PMID: 23239056 DOI: 10.1002/cne.23287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 12/04/2012] [Accepted: 12/11/2012] [Indexed: 11/06/2022]
Abstract
Topographic organization of neurons is a hallmark of brain structure. The establishment of the connections between topographically organized brain regions has attracted much experimental attention, and it is widely accepted that molecular cues guide outgrowing axons to their targets in order to construct topographic maps. In a number of systems afferent axons are organized topographically along their trajectory as well, and it has been suggested that this pre-target sorting contributes to map formation. Neurons in auditory regions of the brain are arranged according to their best frequency (BF), the sound frequency they respond to optimally. This BF changes predictably with position along the so-called tonotopic axis. In the avian auditory brainstem, the tonotopic organization of the second- and third-order auditory neurons in nucleus magnocellularis (NM) and nucleus laminaris (NL) has been well described. In this study we examine whether the decussating NM axons forming the crossed dorsal cochlear tract (XDCT) and innervating the contralateral NL are arranged in a systematic manner. We electroporated dye into cells in different frequency regions of NM to anterogradely label their axons in XDCT. The placement of dye in NM was compared to the location of labeled axons in XDCT. Our results show that NM axons in XDCT are organized in a precise tonotopic manner along the rostrocaudal axis, spanning the entire rostrocaudal extent of both the origin and target nuclei. We propose that in the avian auditory brainstem, this pretarget axon sorting contributes to tonotopic map formation in NL.
Collapse
Affiliation(s)
- Daniel T Kashima
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington 98195-7923, USA
| | | | | |
Collapse
|
14
|
Allen-Sharpley MR, Tjia M, Cramer KS. Differential roles for EphA and EphB signaling in segregation and patterning of central vestibulocochlear nerve projections. PLoS One 2013; 8:e78658. [PMID: 24130906 PMCID: PMC3795076 DOI: 10.1371/journal.pone.0078658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/13/2013] [Indexed: 11/18/2022] Open
Abstract
Auditory and vestibular afferents enter the brainstem through the VIIIth cranial nerve and find targets in distinct brain regions. We previously reported that the axon guidance molecules EphA4 and EphB2 have largely complementary expression patterns in the developing avian VIIIth nerve. Here, we tested whether inhibition of Eph signaling alters central targeting of VIIIth nerve axons. We first identified the central compartments through which auditory and vestibular axons travel. We then manipulated Eph-ephrin signaling using pharmacological inhibition of Eph receptors and in ovo electroporation to misexpress EphA4 and EphB2. Anterograde labeling of auditory afferents showed that inhibition of Eph signaling did not misroute axons to non-auditory target regions. Similarly, we did not find vestibular axons within auditory projection regions. However, we found that pharmacologic inhibition of Eph receptors reduced the volume of the vestibular projection compartment. Inhibition of EphB signaling alone did not affect auditory or vestibular central projection volumes, but it significantly increased the area of the auditory sensory epithelium. Misexpression of EphA4 and EphB2 in VIIIth nerve axons resulted in a significant shift of dorsoventral spacing between the axon tracts, suggesting a cell-autonomous role for the partitioning of projection areas along this axis. Cochlear ganglion volumes did not differ among treatment groups, indicating the changes seen were not due to a gain or loss of cochlear ganglion cells. These results suggest that Eph-ephrin signaling does not specify auditory versus vestibular targets but rather contributes to formation of boundaries for patterning of inner ear projections in the hindbrain.
Collapse
Affiliation(s)
- Michelle R. Allen-Sharpley
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
| | - Michelle Tjia
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
| | - Karina S. Cramer
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Coate TM, Kelley MW. Making connections in the inner ear: recent insights into the development of spiral ganglion neurons and their connectivity with sensory hair cells. Semin Cell Dev Biol 2013; 24:460-9. [PMID: 23660234 PMCID: PMC3690159 DOI: 10.1016/j.semcdb.2013.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/15/2013] [Indexed: 01/18/2023]
Abstract
In mammals, auditory information is processed by the hair cells (HCs) located in the cochlea and then rapidly transmitted to the CNS via a specialized cluster of bipolar afferent connections known as the spiral ganglion neurons (SGNs). Although many anatomical aspects of SGNs are well described, the molecular and cellular mechanisms underlying their genesis, how they are precisely arranged along the cochlear duct, and the guidance mechanisms that promote the innervation of their hair cell targets are only now being understood. Building upon foundational studies of neurogenesis and neurotrophins, we review here new concepts and technologies that are helping to enrich our understanding of the development of the nervous system within the inner ear.
Collapse
Affiliation(s)
- Thomas M Coate
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
16
|
Reeber SL, White JJ, George-Jones NA, Sillitoe RV. Architecture and development of olivocerebellar circuit topography. Front Neural Circuits 2013; 6:115. [PMID: 23293588 PMCID: PMC3534185 DOI: 10.3389/fncir.2012.00115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/12/2012] [Indexed: 11/21/2022] Open
Abstract
The cerebellum has a simple tri-laminar structure that is comprised of relatively few cell types. Yet, its internal micro-circuitry is anatomically, biochemically, and functionally complex. The most striking feature of cerebellar circuit complexity is its compartmentalized topography. Each cell type within the cerebellar cortex is organized into an exquisite map; molecular expression patterns, dendrite projections, and axon terminal fields divide the medial-lateral axis of the cerebellum into topographic sagittal zones. Here, we discuss the mechanisms that establish zones and highlight how gene expression and neural activity contribute to cerebellar pattern formation. We focus on the olivocerebellar system because its developmental mechanisms are becoming clear, its topographic termination patterns are very precise, and its contribution to zonal function is debated. This review deconstructs the architecture and development of the olivocerebellar pathway to provide an update on how brain circuit maps form and function.
Collapse
Affiliation(s)
- Stacey L Reeber
- Department of Pathology and Immunology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital Houston, TX, USA ; Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital Houston, TX, USA
| | | | | | | |
Collapse
|
17
|
Synaptic refinement of an inhibitory topographic map in the auditory brainstem requires functional Cav1.3 calcium channels. J Neurosci 2013; 32:14602-16. [PMID: 23077046 DOI: 10.1523/jneurosci.0765-12.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Synaptic refinement via the elimination of inappropriate synapses and strengthening of appropriate ones is crucially important for the establishment of specific, topographic neural circuits. The mechanisms driving these processes are poorly understood, particularly concerning inhibitory projections. Here, we address the refinement of an inhibitory topographic projection in the auditory brainstem in functional and anatomical mapping studies involving patch-clamp recordings in combination with minimal and maximal stimulation, caged glutamate photolysis, and single axon tracing. We demonstrate a crucial dependency of the refinement on Ca(V)1.3 calcium channels: Ca(V)1.3(-/-) mice displayed virtually no elimination of projections up to hearing onset. Furthermore, strengthening was strongly impaired, in line with a reduced number of axonal boutons. The mediolateral topography was less precise and the shift from a mixed GABA/glycinergic to a purely glycinergic transmission before hearing onset did not occur. Together, our findings provide evidence for a Ca(V)1.3-dependent mechanism through which both inhibitory circuit formation and determination of the neurotransmitter phenotype are achieved.
Collapse
|
18
|
Safieddine S, El-Amraoui A, Petit C. The auditory hair cell ribbon synapse: from assembly to function. Annu Rev Neurosci 2012; 35:509-28. [PMID: 22715884 DOI: 10.1146/annurev-neuro-061010-113705] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cochlear inner hair cells (IHCs), the mammalian auditory sensory cells, encode acoustic signals with high fidelity by Graded variations of their membrane potential trigger rapid and sustained vesicle exocytosis at their ribbon synapses. The kinetics of glutamate release allows proper transfer of sound information to the primary afferent auditory neurons. Understanding the physiological properties and underlying molecular mechanisms of the IHC synaptic machinery, and especially its high temporal acuity, which is pivotal to speech perception, is a central issue of auditory science. During the past decade, substantial progress in high-resolution imaging and electrophysiological recordings, as well as the development of genetic approaches both in humans and in mice, has produced major insights regarding the morphological, physiological, and molecular characteristics of this synapse. Here we review this recent knowledge and discuss how it enlightens the way the IHC ribbon synapse develops and functions.
Collapse
Affiliation(s)
- Saaid Safieddine
- Institut Pasteur, Unité de Génétique et Physiologie de l'Audition, F75015, Paris, France.
| | | | | |
Collapse
|
19
|
Allen-Sharpley MR, Cramer KS. Coordinated Eph-ephrin signaling guides migration and axon targeting in the avian auditory system. Neural Dev 2012; 7:29. [PMID: 22908944 PMCID: PMC3515360 DOI: 10.1186/1749-8104-7-29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/26/2012] [Indexed: 12/21/2022] Open
Abstract
Background In the avian sound localization circuit, nucleus magnocellularis (NM) projects bilaterally to nucleus laminaris (NL), with ipsilateral and contralateral NM axon branches directed to dorsal and ventral NL dendrites, respectively. We previously showed that the Eph receptor EphB2 is expressed in NL neuropil and NM axons during development. Here we tested whether EphB2 contributes to NM-NL circuit formation. Results We found that misexpression of EphB2 in embryonic NM precursors significantly increased the number of axon targeting errors from NM to contralateral NL in a cell-autonomous manner when forward signaling was impaired. We also tested the effects of inhibiting forward signaling of different Eph receptor subclasses by injecting soluble unclustered Fc-fusion proteins at stages when NM axons are approaching their NL target. Again we found an increase in axon targeting errors compared to controls when forward signaling was impaired, an effect that was significantly increased when both Eph receptor subclasses were inhibited together. In addition to axon targeting errors, we also observed morphological abnormalities of the auditory nuclei when EphB2 forward signaling was increased by E2 transfection, and when Eph-ephrin forward signaling was inhibited by E6-E8 injection of Eph receptor fusion proteins. Conclusions These data suggest that EphB signaling has distinct functions in axon guidance and morphogenesis. The results provide evidence that multiple Eph receptors work synergistically in the formation of precise auditory circuitry.
Collapse
Affiliation(s)
- Michelle R Allen-Sharpley
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697-4550, USA
| | | |
Collapse
|
20
|
Torii M, Hackett TA, Rakic P, Levitt P, Polley DB. EphA signaling impacts development of topographic connectivity in auditory corticofugal systems. ACTA ACUST UNITED AC 2012; 23:775-85. [PMID: 22490549 DOI: 10.1093/cercor/bhs066] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Auditory stimulus representations are dynamically maintained by ascending and descending projections linking the auditory cortex (Actx), medial geniculate body (MGB), and inferior colliculus. Although the extent and topographic specificity of descending auditory corticofugal projections can equal or surpass that of ascending corticopetal projections, little is known about the molecular mechanisms that guide their development. Here, we used in utero gene electroporation to examine the role of EphA receptor signaling in the development of corticothalamic (CT) and corticocollicular connections. Early in postnatal development, CT axons were restricted to a deep dorsal zone (DDZ) within the MGB that expressed low levels of the ephrin-A ligand. By hearing onset, CT axons had innervated surrounding regions of MGB in control-electroporated mice but remained fixed within the DDZ in mice overexpressing EphA7. In vivo neurophysiological recordings demonstrated a corresponding reduction in spontaneous firing rate, but no changes in sound-evoked responsiveness within MGB regions deprived of CT innervation. Structural and functional CT disruption occurred without gross alterations in thalamocortical connectivity. These data demonstrate a potential role for EphA/ephrin-A signaling in the initial guidance of corticofugal axons and suggest that "genetic rewiring" may represent a useful functional tool to alter cortical feedback without silencing Actx.
Collapse
Affiliation(s)
- Masaaki Torii
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | | | | | |
Collapse
|
21
|
Coate TM, Raft S, Zhao X, Ryan AK, Crenshaw EB, Kelley MW. Otic mesenchyme cells regulate spiral ganglion axon fasciculation through a Pou3f4/EphA4 signaling pathway. Neuron 2012; 73:49-63. [PMID: 22243746 DOI: 10.1016/j.neuron.2011.10.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2011] [Indexed: 10/14/2022]
Abstract
Peripheral axons from auditory spiral ganglion neurons (SGNs) form an elaborate series of radially and spirally oriented projections that interpret complex aspects of the auditory environment. However, the developmental processes that shape these axon tracts are largely unknown. Radial bundles are comprised of dense SGN fascicles that project through otic mesenchyme to form synapses within the cochlea. Here, we show that radial bundle fasciculation and synapse formation are disrupted when Pou3f4 (DFNX2) is deleted from otic mesenchyme. Further, we demonstrate that Pou3f4 binds to and directly regulates expression of Epha4, Epha4⁻/⁻ mice present similar SGN defects, and exogenous EphA4 promotes SGN fasciculation in the absence of Pou3f4. Finally, Efnb2 deletion in SGNs leads to similar fasciculation defects, suggesting that ephrin-B2/EphA4 interactions are critical during this process. These results indicate a model whereby Pou3f4 in the otic mesenchyme establishes an Eph/ephrin-mediated fasciculation signal that promotes inner radial bundle formation.
Collapse
Affiliation(s)
- Thomas M Coate
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Null mutations in EphB receptors decrease sharpness of frequency tuning in primary auditory cortex. PLoS One 2011; 6:e26192. [PMID: 22022561 PMCID: PMC3192161 DOI: 10.1371/journal.pone.0026192] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/22/2011] [Indexed: 02/04/2023] Open
Abstract
Primary auditory cortex (A1) exhibits a tonotopic representation of characteristic frequency (CF). The receptive field properties of A1 neurons emerge from a combination of thalamic inputs and intracortical connections. However, the mechanisms that guide growth of these inputs during development and shape receptive field properties remain largely unknown. We previously showed that Eph family proteins help establish tonotopy in the auditory brainstem. Moreover, other studies have shown that these proteins shape topography in visual and somatosensory cortices. Here, we examined the contribution of Eph proteins to cortical organization of CF, response thresholds and sharpness of frequency tuning. We examined mice with null mutations in EphB2 and EphB3, as these mice show significant changes in auditory brainstem connectivity. We mapped A1 using local field potential recordings in adult EphB2−/−;EphB3−/− and EphB3−/− mice, and in a central A1 location inserted a 16-channel probe to measure tone-evoked current-source density (CSD) profiles. Based on the shortest-latency current sink in the middle layers, which reflects putative thalamocortical input, we determined frequency receptive fields and sharpness of tuning (Q20) for each recording site. While both mutant mouse lines demonstrated increasing CF values from posterior to anterior A1 similar to wild type mice, we found that the double mutant mice had significantly lower Q20 values than either EphB3−/− mice or wild type mice, indicating broader tuning. In addition, we found that the double mutants had significantly higher CF thresholds and longer onset latency at threshold than mice with wild type EphB2. These results demonstrate that EphB receptors influence auditory cortical responses, and suggest that EphB signaling has multiple functions in auditory system development.
Collapse
|
23
|
Walcher J, Hassfurth B, Grothe B, Koch U. Comparative posthearing development of inhibitory inputs to the lateral superior olive in gerbils and mice. J Neurophysiol 2011; 106:1443-53. [PMID: 21697449 DOI: 10.1152/jn.01087.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interaural intensity differences are analyzed in neurons of the lateral superior olive (LSO) by integration of an inhibitory input from the medial nucleus of the trapezoid body (MNTB), activated by sound from the contralateral ear, with an excitatory input from the ipsilateral cochlear nucleus. The early postnatal refinement of this inhibitory MNTB-LSO projection along the tonotopic axis of the LSO has been extensively studied. However, little is known to what extent physiological changes at these inputs also occur after the onset of sound-evoked activity. Using whole-cell patch-clamp recordings of LSO neurons in acute brain stem slices, we analyzed the developmental changes of inhibitory synaptic currents evoked by MNTB fiber stimulation occurring after hearing onset. We compared these results in gerbils and mice, two species frequently used in auditory research. Our data show that neither the number of presumed input fibers nor the conductance of single fibers significantly changed after hearing onset. Also the amplitude of miniature inhibitory currents remained constant during this developmental period. In contrast, the kinetics of inhibitory synaptic currents greatly accelerated after hearing onset. We conclude that tonotopic refinement of inhibitory projections to the LSO is largely completed before the onset of hearing, whereas acceleration of synaptic kinetics occurs to a large part after hearing onset and might thus be dependent on proper auditory experience. Surprisingly, inhibitory input characteristics, as well as basic membrane properties of LSO neurons, were rather similar in gerbils and mice.
Collapse
Affiliation(s)
- Jan Walcher
- Department Biologie II, Ludwig-Maximilans University München, Martinsried, Germany
| | | | | | | |
Collapse
|
24
|
Mann ZF, Kelley MW. Development of tonotopy in the auditory periphery. Hear Res 2011; 276:2-15. [PMID: 21276841 DOI: 10.1016/j.heares.2011.01.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
Acoustic frequency analysis plays an essential role in sound perception, communication and behavior. The auditory systems of most vertebrates that perceive sounds in air are organized based on the separation of complex sounds into component frequencies. This process begins at the level of the auditory sensory epithelium where specific frequencies are distributed along the tonotopic axis of the mammalian cochlea or the avian/reptilian basilar papilla (BP). Mechanical and electrical mechanisms mediate this process, but the relative contribution of each mechanism differs between species. Developmentally, structural and physiological specializations related to the formation of a tonotopic axis form gradually over an extended period of time. While some aspects of tonotopy are evident at early stages of auditory development, mature frequency discrimination is typically not achieved until after the onset of hearing. Despite the importance of tonotopic organization, the factors that specify unique positional identities along the cochlea or basilar papilla are unknown. However, recent studies of developing systems, including the inner ear provide some clues regarding the signalling pathways that may be instructive for the formation of a tonotopic axis.
Collapse
Affiliation(s)
- Zoe F Mann
- Laboratory of Cochlear Development, NIDCD, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
25
|
Nakamura PA, Cramer KS. Formation and maturation of the calyx of Held. Hear Res 2010; 276:70-8. [PMID: 21093567 DOI: 10.1016/j.heares.2010.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/03/2010] [Accepted: 11/10/2010] [Indexed: 11/24/2022]
Abstract
Sound localization requires precise and specialized neural circuitry. A prominent and well-studied specialization is found in the mammalian auditory brainstem. Globular bushy cells of the ventral cochlear nucleus (VCN) project contralaterally to neurons of the medial nucleus of the trapezoid body (MNTB), where their large axons terminate on cell bodies of MNTB principal neurons, forming the calyces of Held. The VCN-MNTB pathway is necessary for the accurate computation of interaural intensity and time differences; MNTB neurons provide inhibitory input to the lateral superior olive, which compares levels of excitation from the ipsilateral ear to levels of tonotopically matched inhibition from the contralateral ear, and to the medial superior olive, where precise inhibition from MNTB neurons tunes the delays of binaural excitation. Here we review the morphological and physiological aspects of the development of the VCN-MNTB pathway and its calyceal termination, along with potential mechanisms that give rise to its precision. During embryonic development, VCN axons grow towards the midline, cross the midline into the region of the presumptive MNTB and then form collateral branches that will terminate in calyces of Held. In rodents, immature calyces of Held appear in MNTB during the first few days of postnatal life. These calyces mature morphologically and physiologically over the next three postnatal weeks, enabling fast, high fidelity transmission in the VCN-MNTB pathway.
Collapse
Affiliation(s)
- Paul A Nakamura
- Department of Neurobiology and Behavior, University of California, Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550, USA
| | | |
Collapse
|
26
|
Hanganu-Opatz IL. Between molecules and experience: role of early patterns of coordinated activity for the development of cortical maps and sensory abilities. ACTA ACUST UNITED AC 2010; 64:160-76. [PMID: 20381527 DOI: 10.1016/j.brainresrev.2010.03.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/22/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
Sensory systems processing information from the environment rely on precisely formed and refined neuronal networks that build maps of sensory receptor epithelia at different subcortical and cortical levels. These sensory maps share similar principles of function and emerge according to developmental processes common in visual, somatosensory and auditory systems. Whereas molecular cues set the coarse organization of cortico-subcortical topography, its refinement is known to succeed under the influence of experience-dependent electrical activity during critical periods. However, coordinated patterns of activity synchronize the cortico-subcortical networks long before the meaningful impact of environmental inputs on sensory maps. Recent studies elucidated the cellular and network mechanisms underlying the generation of these early patterns of activity and highlighted their similarities across species. Moreover, the experience-independent activity appears to act as a functional template for the maturation of sensory networks and cortico-subcortical maps. A major goal for future research will be to analyze how this early activity interacts with the molecular cues and to determine whether it is permissive or rather supporting for the establishment of sensory topography.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Falkenried 94, Hamburg, Germany.
| |
Collapse
|
27
|
Chen JKC, Chuang AYC, McMahon C, Hsieh JC, Tung TH, Li LPH. Music training improves pitch perception in prelingually deafened children with cochlear implants. Pediatrics 2010; 125:e793-800. [PMID: 20211951 DOI: 10.1542/peds.2008-3620] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The comparatively poor music appreciation in patients with cochlear implants might be ascribed to an inadequate exposure to music; however, the effect of training on music perception in prelingually deafened children with cochlear implants remains unknown. This study aimed to investigate whether previous musical education improves pitch perception ability in these children. METHODS Twenty-seven children with congenital/prelingual deafness of profound degree were studied. Test stimuli consisted of 2 sequential piano tones, ranging from C (256 Hz) to B (495 Hz). Children were asked to identify the pitch relationship between the 2 tones (same, higher, or lower). Effects of musical training duration, pitch-interval size, current age, age of implantation, gender, and type of cochlear implant on accuracy of pitch perception were evaluated. RESULTS The duration of musical training positively correlated with the correct rate of pitch perception. Pitch perception performance was better in children who had a cochlear implant and were older than 6 years than in those who were aged < or =6 years (ie, preschool). Effect of pitch-interval size was insignificant on pitch perception, and there was no correlation between pitch perception and the age of implantation, gender, or type of cochlear implant. CONCLUSIONS Musical training seems to improve pitch perception ability in prelingually deafened children with a cochlear implant. Auditory plasticity might play an important role in such enhancement. This suggests that incorporation of a structured training program on music perception early in life and as part of the postoperative rehabilitation program for prelingually deafened children with cochlear implants would be beneficial. A longitudinal study is needed to show whether improvement of music performance in these children is measurable by use of auditory evoked potentials.
Collapse
Affiliation(s)
- Joshua Kuang-Chao Chen
- National Yang Ming University, Department of Otolaryngology, Cheng Hsin General Hospital, Cheng Hsin St, Pai-Tou, Taipei 112, Taiwan
| | | | | | | | | | | |
Collapse
|
28
|
Kandler K, Clause A, Noh J. Tonotopic reorganization of developing auditory brainstem circuits. Nat Neurosci 2009; 12:711-7. [PMID: 19471270 DOI: 10.1038/nn.2332] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/07/2009] [Indexed: 02/08/2023]
Abstract
A fundamental organizing principle of auditory brain circuits is tonotopy, the orderly representation of the sound frequency to which neurons are most sensitive. Tonotopy arises from the coding of frequency along the cochlea and the topographic organization of auditory pathways. The mechanisms that underlie the establishment of tonotopy are poorly understood. In auditory brainstem pathways, topographic precision is present at very early stages in development, which may suggest that synaptic reorganization contributes little to the construction of precise tonotopic maps. Accumulating evidence from several brainstem nuclei, however, is now changing this view by demonstrating that developing auditory brainstem circuits undergo a marked degree of refinement on both a subcellular and circuit level.
Collapse
Affiliation(s)
- Karl Kandler
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Eye and Ear Institute, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
29
|
Eglen SJ, Gjorgjieva J. Self-organization in the developing nervous system: theoretical models. HFSP JOURNAL 2009; 3:176-85. [PMID: 19639040 DOI: 10.2976/1.3079539] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 01/20/2009] [Indexed: 01/07/2023]
Abstract
Sensory maps in the nervous system often connect to each other in a topographic fashion. This is most strikingly seen in the visual system, where neighboring neurons in the retina project to neighboring neurons in the target structure, such as the superior colliculus. This article discusses the developmental mechanisms that are involved in the formation of topographic maps, with an emphasis on the role of theoretical models in helping us to understand these mechanisms. Recent experimental advances in studying the roles of guidance molecules and patterns of spontaneous activity mean that there are new challenges to be addressed by theoretical models. Key questions include understanding what instructional cues are present in the patterns of spontaneous activity, and how activity and guidance molecules might interact. Our discussion concludes by comparing development of visual maps with development of maps in the olfactory system, where the influence of neural activity seems to differ.
Collapse
Affiliation(s)
- Stephen J Eglen
- Cambridge Computational Biology Institute, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | | |
Collapse
|
30
|
Tremblay ME, Riad M, Chierzi S, Murai KK, Pasquale EB, Doucet G. Developmental course of EphA4 cellular and subcellular localization in the postnatal rat hippocampus. J Comp Neurol 2009; 512:798-813. [PMID: 19086003 DOI: 10.1002/cne.21922] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
From embryonic development to adulthood, the EphA4 receptor and several of its ephrin-A or -B ligands are expressed in the hippocampus, where they presumably play distinct roles at different developmental stages. To help clarify these diverse roles in the assembly and function of the hippocampus, we examined the cellular and subcellular localization of EphA4 in postnatal rat hippocampus by light and electron microscopic immunocytochemistry. On postnatal day (P) 1, the EphA4 immunostaining was robust in most layers of CA1, CA3, and dentate gyrus and then decreased gradually, until P21, especially in the cell body layers. At the ultrastructural level, focal spots of EphA4 immunoreactivity were detected all over the plasma membrane of pyramidal and granule cells, between P1 and P14, from the perikarya to the dendritic and axonal extremities, including growth cones and filopodia. This cell surface immunoreactivity then became restricted to the synapse-associated dendritic spines and axon terminals by P21. In astrocytes, the EphA4 immunolabeling showed a similar cell surface redistribution, from the perikarya and large processes at P1-P7, to small perisynaptic processes at P14-P21. In both cell types, spots of EphA4 immunoreactivity were also detected, with an incidence decreasing with maturation, on the endoplasmic reticulum, Golgi apparatus, and vesicles, organelles involved in protein synthesis, posttranslational modifications, and transport. The cell surface evolution of EphA4 localization in neuronal and glial cells is consistent with successive involvements in the developmental movements of cell bodies first, followed by process outgrowth and guidance, synaptogenesis, and finally synaptic maintenance and plasticity.
Collapse
Affiliation(s)
- Marie-Eve Tremblay
- Département de Pathologie et Biologie Cellulaire, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Korn MJ, Cramer KS. Distribution of glial-associated proteins in the developing chick auditory brainstem. Dev Neurobiol 2008; 68:1093-106. [PMID: 18498086 DOI: 10.1002/dneu.20645] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the avian brainstem, nucleus magnocellularis (NM) projects bilaterally to nucleus laminaris (NL) in a pathway that facilitates sound localization. The distribution of glia during the development of this pathway has not previously been characterized. Radial glia, astrocytes, and oligodendrocytes facilitate many processes including axon pathfinding, synaptic development, and maturation. Here we determined the spatiotemporal expression patterns of glial cell types in embryonic development of the chick auditory brainstem using glial-specific antibodies and histological markers. We found that vimentin-positive processes are intercalated throughout the NL cell layer. Astrocytes are found in two domains: one in the ventral neuropil region and the other dorsolateral to NM. GFAP-positive processes are primarily distributed along the ventral margin of NL. Astrocytic processes penetrate the NL cell layer following the onset of synaptogenesis, but before pruning and maturation. The dynamic, nonoverlapping expression patterns of GFAP and vimentin suggest that distinct glial populations are found in dorsal versus ventral regions of NL. Myelination occurs after axons have reached their targets. FluoroMyelin and myelin basic protein (MBP) gradually increase along the mediolateral axis of NL starting at E10. Multiple GFAP-positive processes are directly apposed to NM-NL axons and MBP, which suggests a role in early myelinogenesis. Our results show considerable changes in glial development after initial NM-NL connections are made, suggesting that glia may facilitate maturation of the auditory circuit.
Collapse
Affiliation(s)
- Matthew J Korn
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, CA 92697-4550, USA
| | | |
Collapse
|
32
|
Abstract
The study of development has been greatly aided by the use of the chick embryo as an experimental model. The ease of accessibility of the embryo has allowed for experiments to map cell fates using several approaches, including chick quail chimeras and focal dye labeling. In addition, it allows for molecular perturbations of several types, including placement of protein-coated beads and introduction of plasmid DNA using in ovo electroporation. These experiments have yielded important data on the development of the central and peripheral nervous systems. For many of these studies, it is necessary to open the eggshell and reclose it without perturbing the embryo's growth. The embryo can be examined at successive developmental stages by re-opening the eggshell. While there are several excellent methods for opening chicken eggs, in this article we demonstrate one method that has been optimized for long survival times. In this method, the egg rests on its side and a small window is cut in the shell. After the experimental procedure, the shell is used to cover the egg for the duration of its development. Clear plastic tape overlying the eggshell protects the embryo and helps retain hydration during the remainder of the incubation period. This method has been used beginning at two days of incubation and has allowed survival through mature embryonic ages.
Collapse
Affiliation(s)
- Matthew J Korn
- Department of Neurobiology and Behaviour, University of California, Irvine, CA, USA.
| | | |
Collapse
|
33
|
Miko IJ, Henkemeyer M, Cramer KS. Auditory brainstem responses are impaired in EphA4 and ephrin-B2 deficient mice. Hear Res 2007; 235:39-46. [PMID: 17967521 DOI: 10.1016/j.heares.2007.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/20/2007] [Accepted: 09/21/2007] [Indexed: 11/15/2022]
Abstract
The Eph receptor tyrosine kinases and their membrane-anchored ligands, ephrins, are signaling proteins that act as axon guidance molecules during chick auditory brainstem development. We recently showed that Eph proteins also affect patterns of neural activation in the mammalian brainstem. However, functional deficits in the brainstems of mutant mice have not been assessed physiologically. The present study characterizes neural activation in Eph protein deficient mice in the auditory brainstem response (ABR). We recorded the ABR of EphA4 and ephrin-B2 mutant mice, aged postnatal day 18-20, and compared them to wild type controls. The peripheral hearing threshold of EphA4(-/-) mice was 75% higher than that of controls. Waveform amplitudes of peak 1 (P1) were 54% lower in EphA4(-/-) mice than in controls. The peripheral hearing thresholds in ephrin-B2(lacZ/)(+) mice were also elevated, with a mean value 20% higher than that of controls. These ephrin-B2(lacZ/)(+) mice showed a 38% smaller P1 amplitude. Significant differences in latency to waveform peaks were also observed. These elevated thresholds and reduced peak amplitudes provide evidence for hearing deficits in both of these mutant mouse lines, and further emphasize an important role for Eph family proteins in the formation of functional auditory circuitry.
Collapse
Affiliation(s)
- Ilona J Miko
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA
| | | | | |
Collapse
|
34
|
Miko IJ, Nakamura PA, Henkemeyer M, Cramer KS. Auditory brainstem neural activation patterns are altered in EphA4- and ephrin-B2-deficient mice. J Comp Neurol 2007; 505:669-81. [DOI: 10.1002/cne.21530] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|