1
|
Yang D, Yu W, Qu J, Shen Y, Yu J, Meng R, Tao Z, Chen J, Du W, Sun HZ, Zhang Y, Chen Y, Zhao M. Environmentally relevant exposure to cotinine induces neurobehavioral toxicity in zebrafish (Danio rerio): A study using neurobehavioral and metabolomic approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123826. [PMID: 38513941 DOI: 10.1016/j.envpol.2024.123826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
As an important psychoactive substance, cotinine is ubiquitous in aquatic environment and poses a threat to aquatic organisms. However, the mechanism of its adverse health impacts remains unclear. We evaluated the effects of cotinine exposure at environmentally relevant concentrations on the development and locomotor behavior of zebrafish (Danio rerio) larvae using neurotransmitters and whole endogenous metabolism. Mild developmental toxicity and significant neurobehavior disorder, such as spontaneous movement (1-1000 μg/L), 48 hpf tactile response (50, 100, and 1000 μg/L), and 144 hpf swimming speed (1, 10, 100, 500, and 1000 μg/L), were observed in zebrafish. Exposure to cotinine led to significant alterations in 11 neurotransmitters, including homogentisic acid, serotonin, glutamic acid and aspartic acid, etc. 298 metabolites were identified and two pathways - linoleic acid metabolism and taurine and hypotaurine metabolism - were delineated. In addition, amino acid neurotransmitters were significantly correlated with metabolites such as arachidonic acid as well as its derivatives, steroidal compounds, and amino acids. Serotonin demonstrates a noteworthy correlation with 31 out of 40 differentially expressed neurotransmitters, encompassing lipids, amino acids, and other compounds. These novel findings contribute to a comprehensive understanding of the ecological risks associated with cotinine contamination in surface waters.
Collapse
Affiliation(s)
- Dan Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Wenfei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Jiajia Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yuexing Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Jingtong Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Ruirui Meng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Zhen Tao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Jiangfei Chen
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming, 650500, PR China
| | - Haitong Zhe Sun
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK; Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Yunhui Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang, 324400, PR China.
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| |
Collapse
|
2
|
O'Donnell BL, Penuela S. Skin in the game: pannexin channels in healthy and cancerous skin. Biochem J 2023; 480:1929-1949. [PMID: 38038973 DOI: 10.1042/bcj20230176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
The skin is a highly organized tissue composed of multiple layers and cell types that require coordinated cell to cell communication to maintain tissue homeostasis. In skin cancer, this organized structure and communication is disrupted, prompting the malignant transformation of healthy cells into melanoma, basal cell carcinoma or squamous cell carcinoma tumours. One such family of channel proteins critical for cellular communication is pannexins (PANX1, PANX2, PANX3), all of which are present in the skin. These heptameric single-membrane channels act as conduits for small molecules and ions like ATP and Ca2+ but have also been shown to have channel-independent functions through their interacting partners or action in signalling pathways. Pannexins have diverse roles in the skin such as in skin development, aging, barrier function, keratinocyte differentiation, inflammation, and wound healing, which were discovered through work with pannexin knockout mice, organotypic epidermis models, primary cells, and immortalized cell lines. In the context of cutaneous cancer, PANX1 is present at high levels in melanoma tumours and functions in melanoma carcinogenesis, and both PANX1 and PANX3 expression is altered in non-melanoma skin cancer. PANX2 has thus far not been implicated in any skin cancer. This review will discuss pannexin isoforms, structure, trafficking, post-translational modifications, interactome, and channel activity. We will also outline the expression, localization, and function of pannexin channels within the diverse cell types of the epidermis, dermis, hypodermis, and adnexal structures of the skin, and how these properties are exploited or abrogated in instances of skin cancer.
Collapse
Affiliation(s)
- Brooke L O'Donnell
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
- Department of Oncology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
3
|
Güiza J, Solís F, Valenzuela B, Arancibia D, Zamorano P, González J, Saavedra J, Neely A, Salgado M, Martínez AD, Sáez JC, Vega JL. Unnexin is a protein subunit of a large-pore channel expressed by unicellular organisms. Proc Natl Acad Sci U S A 2023; 120:e2307898120. [PMID: 37487087 PMCID: PMC10400985 DOI: 10.1073/pnas.2307898120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Cells of vertebrate and invertebrate organisms express proteins specialized in membrane channel-based cell-cell communication that are absent in unicellular organisms. We recently described the prediction of some members of the large-pore channel family in kinetoplastids, consisting of proteins called unnexins, which share several structural features with innexin and pannexin proteins. Here, we demonstrated that the unnexin1 protein (Unx1) is delivered to the cell membrane, displaying a topology consisting of four transmembrane domains with C and N termini on the cytoplasmic side and form large-pore channels that are permeable to small molecules. Low extracellular Ca2+/Mg2+ levels or extracellular alkalinization, but not mechanical stretching, increases channel activity. The Unx1 channel mediates the influx of Ca2+ and does not form intercellular dye coupling between HeLa Unx1 transfected cells. Unx1 channel function was further evidenced by its ability to mediate ionic currents when expressed in Xenopus oocytes. Downregulation of Unx1 mRNA with morpholine contains Trypanosoma cruzi invasion. Phylogenetic analysis revealed the presence of Unx1 homologs in other protozoan parasites, suggesting a conserved function for these channel parasites in other protists. Our data demonstrate that Unx1 forms large-pore membrane channels, which may serve as a diffusional pathway for ions and small molecules that are likely to be metabolic substrates or waste products, and signaling autocrine and paracrine molecules that could be involved in cell invasion. As morpholinos-induced downregulation of Unx1 reduces the infectivity of trypomastigotes, the Unx1 channels might be an attractive target for developing trypanocide drugs.
Collapse
Affiliation(s)
- Juan Güiza
- Laboratory of Gap Junction Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta1240000, Chile
| | - Francisco Solís
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta1240000, Chile
| | - Bernardita Valenzuela
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta1240000, Chile
| | - Duxan Arancibia
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta1240000, Chile
| | - Pedro Zamorano
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta1240000, Chile
| | - Jorge González
- Departamento de Tecnología Médica, Unidad de Parasitología Molecular, Facultad Ciencias de la Salud, Universidad de Antofagasta, Antofagasta1240000, Chile
| | - Jonathan Saavedra
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| | - Alan Neely
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| | - Magdiel Salgado
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| | - Agustín D. Martínez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| | - Juan C. Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| | - José L. Vega
- Laboratory of Gap Junction Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta1240000, Chile
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta1240000, Chile
| |
Collapse
|
4
|
Chen L, Xu WY, Chen H, Han YQ, Zhang YT. Integrated Metabolomics and Network Pharmacology to Reveal the Mechanisms of Gandouling Tablets Against Copper-Overload-Induced Neuronal Injury in Rats with Wilson's Disease. Drug Des Devel Ther 2023; 17:1763-1782. [PMID: 37333964 PMCID: PMC10276572 DOI: 10.2147/dddt.s409691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023] Open
Abstract
Purpose Gandouling Tablets (GDL), a proprietary Chinese medicine, have shown a preventive effect against Wilson's disease (WD)-induced neuronal damage in previous studies. However, the potential mechanisms need additional investigation. Combining metabonomics and network pharmacology revealed the GDL pathway against WD-induced neuronal damage. Methods The WD rat model with a high copper load was developed, and nerve damage was assessed. Total metabonomics was used to identify distinct hippocampus metabolites and enriched metabolic pathways in MetaboAnalyst. The GDL's possible targets against WD neuron damage were then determined by network pharmacology. Cytoscape constructed compound metabonomics and pharmacology networks. Moreover, molecular docking and Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) validated key targets. Results GDL reduced WD-induced neuronal injury. Twenty-nine GDL-induced metabolites may protect against WD neuron injury. According to network pharmacology, we identified three essential gene clusters, of which genes in cluster 2 had the most significant impact on the metabolic pathway. A comprehensive investigation identified six crucial targets, including UGT1A1, CYP3A4, CYP2E1, CYP1A2, PIK3CB, and LPL, and their associated core metabolites and processes. Four targets reacted strongly with GDL active components. GDL therapy improved five targets' expression. Conclusion This collaborative effort revealed the mechanisms of GDL against WD neuron damage and a way to investigate the potential pharmacological mechanisms of other Traditional Chinese Medicine (TCM).
Collapse
Affiliation(s)
- Li Chen
- The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Wang-Yang Xu
- The College of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Hao Chen
- The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Yan-Quan Han
- The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Yu-Ting Zhang
- The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
5
|
Mechanisms of Pannexin 1 (PANX1) Channel Mechanosensitivity and Its Pathological Roles. Int J Mol Sci 2022; 23:ijms23031523. [PMID: 35163442 PMCID: PMC8836264 DOI: 10.3390/ijms23031523] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Pannexins (PANX) were cloned based on their sequence homology to innexins (Inx), invertebrate gap junction proteins. Although there is no sequence homology between PANX and connexins (Cx), these proteins exhibit similar configurations. The PANX family has three members, PANX1, PANX2 and PANX3. Among them, PANX1 has been the most extensively studied. The PANX1 channels are activated by many factors, including high extracellular K+ ([K+]e), high intracellular Ca2+ ([Ca2+]i), Src family kinase (SFK)-mediated phosphorylation, caspase cleavage and mechanical stimuli. However, the mechanisms mediating this mechanosensitivity of PANX1 remain unknown. Both force-from-lipids and force-from-filaments models are proposed to explain the gating mechanisms of PANX1 channel mechanosensitivity. Finally, both the physiological and pathological roles of mechanosensitive PANX1 are discussed.
Collapse
|
6
|
Adipose Tissue Immunometabolism and Apoptotic Cell Clearance. Cells 2021; 10:cells10092288. [PMID: 34571937 PMCID: PMC8470283 DOI: 10.3390/cells10092288] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
The safe removal of apoptotic debris by macrophages—often referred to as efferocytosis—is crucial for maintaining tissue integrity and preventing self-immunity or tissue damaging inflammation. Macrophages clear tissues of hazardous materials from dying cells and ultimately adopt a pro-resolving activation state. However, adipocyte apoptosis is an inflammation-generating process, and the removal of apoptotic adipocytes by so-called adipose tissue macrophages triggers a sequence of events that lead to meta-inflammation and obesity-associated metabolic diseases. Signals that allow apoptotic cells to control macrophage immune functions are complex and involve metabolites released by the apoptotic cells and also metabolites produced by the macrophages during the digestion of apoptotic cell contents. This review provides a concise summary of the adipocyte-derived metabolites that potentially control adipose tissue macrophage immune functions and, hence, may induce or alleviate adipose tissue inflammation.
Collapse
|
7
|
Mim C, Perkins G, Dahl G. Structure versus function: Are new conformations of pannexin 1 yet to be resolved? J Gen Physiol 2021; 153:e202012754. [PMID: 33835130 PMCID: PMC8042604 DOI: 10.1085/jgp.202012754] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pannexin 1 (Panx1) plays a decisive role in multiple physiological and pathological settings, including oxygen delivery to tissues, mucociliary clearance in airways, sepsis, neuropathic pain, and epilepsy. It is widely accepted that Panx1 exerts its role in the context of purinergic signaling by providing a transmembrane pathway for ATP. However, under certain conditions, Panx1 can also act as a highly selective membrane channel for chloride ions without ATP permeability. A recent flurry of publications has provided structural information about the Panx1 channel. However, while these structures are consistent with a chloride selective channel, none show a conformation with strong support for the ATP release function of Panx1. In this Viewpoint, we critically assess the existing evidence for the function and structure of the Panx1 channel and conclude that the structure corresponding to the ATP permeation pathway is yet to be determined. We also list a set of additional topics needing attention and propose ways to attain the large-pore, ATP-permeable conformation of the Panx1 channel.
Collapse
Affiliation(s)
- Carsten Mim
- Department of Biomedical Engineering and Health Systems Royal Institute of Technology, Huddinge, Sweden
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego School of Medicine, La Jolla, CA
| | - Gerhard Dahl
- Department of Physiology, University of Miami School of Medicine, Miami, FL
| |
Collapse
|
8
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2020; 153:129-133. [PMID: 32114634 DOI: 10.1007/s00418-020-01852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|
9
|
Yoshimura R, Suetsugu T, Kawahara A, Nakata K, Shikata M, Tanaka S, Ono T, Fushiki D, Endo Y. Formation of functional innexin hemichannels, as well as gap junctional channels, in an insect cell line, NIAs-AeAl-2, derived from Asian tiger mosquito Aedes albopictus (Diptera: Culicidae): A partial but significant contribution of innexin 2. JOURNAL OF INSECT PHYSIOLOGY 2020; 124:104060. [PMID: 32446763 DOI: 10.1016/j.jinsphys.2020.104060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
In vertebrates, gap junctions and hemichannels consisting of connexins are important cell surface structures for communication with neighboring cells and for the regulation of various cell functions. To date, various gap-junction-related proteins have been found, including innexins in invertebrates and pannexins in vertebrates. Significant contributions of gap junctions by innexins and (hemi-)channels by pannexins to numerous functions have been reported. Verification of the presence and functional significance of innexin hemichannels, however, remains a gap in our knowledge in innexin physiology. In this study, we revealed the localization of an innexin protein (innexin 2) on the cell surface in mosquito tissues and cultured cells. Furthermore, we demonstrated the presence of functional hemichannels, as well as gap junctions, in mosquito cells using dye transfer assays. The inward uptake of fluorescent dye was inhibited by anti-innexin 2 antibody. These results suggest that innexin hemichannels are formed to function in cultured mosquito cells, in at least a partially innexin 2-dependent manner. Although only a few studies on insect hemichannels have been published, innexin-based hemichannels, as well as innexin gap junctions, could also significantly contribute to insect intercellular signal transduction.
Collapse
Affiliation(s)
- Ryoichi Yoshimura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan.
| | - Taeko Suetsugu
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan; Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo 650-0047, Japan
| | - Ai Kawahara
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
| | - Kana Nakata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
| | - Masato Shikata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
| | - Souma Tanaka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
| | - Tsutomu Ono
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
| | - Daisuke Fushiki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
| | - Yasuhisa Endo
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
| |
Collapse
|
10
|
PUFAs supplementation affects the renal expression of pannexin 1 and connexins in diabetic kidney of rats. Histochem Cell Biol 2019; 153:165-175. [PMID: 31858211 DOI: 10.1007/s00418-019-01838-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2019] [Indexed: 12/26/2022]
Abstract
In diabetic nephropathy (DN), intercellular communication is disrupted. Connexins (Cx) have a crucial role in that process. Dietary ratios and supplementation with polyunsaturated fatty acids (PUFAs) can alleviate diabetic complications and cause alterations in Cx levels. Although pannexins (Panx) share similarities with members of the Cx family, their function in diabetic nephropathy has still not been fully determined. We studied the influence of PUFA supplementation on the immunoexpression of Px1 and Cx family members in diabetic kidneys of rats. Four groups of rats in experimental DM1 model were supplemented with different dietary n-6/n-3 ratios; ≈7 in control (C) and diabetic groups (STZ), ≈ 60 in the STZ + N6 group and ≈ 1 (containing 16% EPA and 19% DHA) in the STZ + N3 group. Immunoexpression of Cx40, Cx43, Cx45 and Panx1 was evaluated in the renal tissue of diabetic rats using immunohistochemistry. Diabetes significantly decreased the protein expression of Cx40 and Cx43 and increased Panx1 protein expression in the renal cortex (p < 0.05-p < 0.01). There was a significant impact of diet on Cx and Panx1 immunoexpression. Dietary supplementation with a high n-6/n-3 ratio downregulated the protein expression of Cx45 and Panx1 in diabetic rats (p < 0.05-p < 0.01), while Cx43 immunoexpression was increased in diabetic rats fed with high and low n-6/n-3 ratios (p < 0.01-p < 0.001). Hyperglycaemic conditions in DN interfere with cell-to-cell communication and disturb the connection between cells and their immediate environment due to variations in connexin and pannexin immunoexpression. These variations can be regulated by PUFA dietary intake, suggesting their beneficial effect and possible therapeutic option.
Collapse
|
11
|
Sánchez A, Castro C, Flores DL, Gutiérrez E, Baldi P. Gap Junction Channels of Innexins and Connexins: Relations and Computational Perspectives. Int J Mol Sci 2019; 20:E2476. [PMID: 31109150 PMCID: PMC6566657 DOI: 10.3390/ijms20102476] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/04/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022] Open
Abstract
Gap junction (GJ) channels in invertebrates have been used to understand cell-to-cell communication in vertebrates. GJs are a common form of intercellular communication channels which connect the cytoplasm of adjacent cells. Dysregulation and structural alteration of the gap junction-mediated communication have been proven to be associated with a myriad of symptoms and tissue-specific pathologies. Animal models relying on the invertebrate nervous system have exposed a relationship between GJs and the formation of electrical synapses during embryogenesis and adulthood. The modulation of GJs as a therapeutic and clinical tool may eventually provide an alternative for treating tissue formation-related diseases and cell propagation. This review concerns the similarities between Hirudo medicinalis innexins and human connexins from nucleotide and protein sequence level perspectives. It also sets forth evidence of computational techniques applied to the study of proteins, sequences, and molecular dynamics. Furthermore, we propose machine learning techniques as a method that could be used to study protein structure, gap junction inhibition, metabolism, and drug development.
Collapse
Affiliation(s)
- Alejandro Sánchez
- Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Baja California 22860, Mexico.
| | - Carlos Castro
- Facultad of Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California 22860, Mexico.
| | - Dora-Luz Flores
- Facultad of Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California 22860, Mexico.
| | - Everardo Gutiérrez
- Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Baja California 22860, Mexico.
| | - Pierre Baldi
- Department of Computer Science, Institute for Genomics and Bioinformatics, and Center for Machine Learning and Intelligent Systems, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
12
|
Güiza J, Barría I, Sáez JC, Vega JL. Innexins: Expression, Regulation, and Functions. Front Physiol 2018; 9:1414. [PMID: 30364195 PMCID: PMC6193117 DOI: 10.3389/fphys.2018.01414] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/18/2018] [Indexed: 01/02/2023] Open
Abstract
The innexin (Inx) proteins form gap junction channels and non-junctional channels (named hemichannels) in invertebrates. These channels participate in cellular communication playing a relevant role in several physiological processes. Pioneer studies conducted mainly in worms and flies have shown that innexins participate in embryo development and behavior. However, recent studies have elucidated new functions of innexins in Arthropoda, Nematoda, Annelida, and Cnidaria, such as immune response, and apoptosis. This review describes emerging data of possible new roles of innexins and summarizes the data available to date.
Collapse
Affiliation(s)
- Juan Güiza
- Laboratorio de Fisiología Experimental, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Iván Barría
- Laboratorio de Fisiología Experimental, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - José L Vega
- Laboratorio de Fisiología Experimental, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
13
|
Wang J, Jackson DG, Dahl G. Cationic control of Panx1 channel function. Am J Physiol Cell Physiol 2018; 315:C279-C289. [PMID: 29719168 DOI: 10.1152/ajpcell.00303.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The sequence and predicted membrane topology of pannexin1 (Panx1) places it in the family of gap junction proteins. However, rather than forming gap junction channels, Panx1 forms channels in the nonjunctional membrane. Panx1 operates in two distinct open states, depending on the mode of stimulation. The exclusively voltage-gated channel has a small conductance (<100 pS) and is highly selective for the flux of chloride ions. The Panx1 channel activated by various physiological stimuli or by increased concentrations of extracellular potassium ions has a large conductance (~500 pS, however, with multiple, long-lasting subconductance states) and is nonselectively permeable to small molecules, including ATP. To test whether the two open conformations also differ pharmacologically, the effects of di-and trivalent cations on the two Panx1 channel conformations were investigated. The rationale for this venture was that, under certain experimental conditions, ATP release from cells can be inhibited by multivalent cations, yet the literature indicates that the ATP release channel Panx1 is not affected by these ions. Consistent with previous reports, the Panx1 channel was not activated by removal of extracellular Ca2+ and the currents through the voltage-activated channel were not altered by Ca2+, Zn2+, Ba2+, or Gd3+. In contrast, the Panx1 channel activated to the large channel conformation by extracellular K+, osmotic stress, or low oxygen was inhibited by the multivalent cations in a dose-dependent way. Thus, monovalent cations activated the Panx1 channel from the closed state to the "large" conformation, while di- and trivalent cations exclusively inhibited this large channel conformation.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Physiology and Biophysics, University of Miami School of Medicine , Miami, Florida
| | - David George Jackson
- Department of Physiology and Biophysics, University of Miami School of Medicine , Miami, Florida
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami School of Medicine , Miami, Florida
| |
Collapse
|
14
|
Willebrords J, Maes M, Crespo Yanguas S, Vinken M. Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol Ther 2017; 180:144-160. [PMID: 28720428 PMCID: PMC5802387 DOI: 10.1016/j.pharmthera.2017.07.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While gap junctions support the exchange of a number of molecules between neighboring cells, connexin hemichannels provide communication between the cytosol and the extracellular environment of an individual cell. The latter equally holds true for channels composed of pannexin proteins, which display an architecture reminiscent of connexin hemichannels. In physiological conditions, gap junctions are usually open, while connexin hemichannels and, to a lesser extent, pannexin channels are typically closed, yet they can be activated by a number of pathological triggers. Several agents are available to inhibit channels built up by connexin and pannexin proteins, including alcoholic substances, glycyrrhetinic acid, anesthetics and fatty acids. These compounds not always strictly distinguish between gap junctions, connexin hemichannels and pannexin channels, and may have effects on other targets as well. An exception lies with mimetic peptides, which reproduce specific amino acid sequences in connexin or pannexin primary protein structure. In this paper, a state-of-the-art overview is provided on inhibitors of cellular channels consisting of connexins and pannexins with specific focus on their mode-of-action and therapeutic potential.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium.
| |
Collapse
|
15
|
Sáez PJ, Vargas P, Shoji KF, Harcha PA, Lennon-Duménil AM, Sáez JC. ATP promotes the fast migration of dendritic cells through the activity of pannexin 1 channels and P2X 7 receptors. Sci Signal 2017; 10:10/506/eaah7107. [PMID: 29162744 DOI: 10.1126/scisignal.aah7107] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Upon its release from injured cells, such as infected, transformed, inflamed, or necrotic cells, extracellular adenosine-5'-triphosphate (ATP) acts as a danger signal that recruits phagocytes, such as neutrophils, macrophages, and dendritic cells (DCs), to the site of injury. The sensing of extracellular ATP occurs through purinergic (P2) receptors. We investigated the cellular mechanisms linking purinergic signaling to DC motility. We found that ATP stimulated fast DC motility through an autocrine signaling loop, which was initiated by the activation of P2X7 receptors and further amplified by pannexin 1 (Panx1) channels. Upon stimulation of the P2X7 receptor by ATP, Panx1 contributed to fast DC motility by increasing the permeability of the plasma membrane, which resulted in supplementary ATP release. In the absence of Panx1, DCs failed to increase their speed of migration in response to ATP, despite exhibiting a normal P2X7 receptor-mediated Ca2+ response. In addition to DC migration, Panx1 channel- and P2X7 receptor-dependent signaling was further required to stimulate the reorganization of the actin cytoskeleton. In vivo, functional Panx1 channels were required for the homing of DCs to lymph nodes, although they were dispensable for DC maturation. These data suggest that P2X7 receptors and Panx1 channels are crucial players in the regulation of DC migration to endogenous danger signals.
Collapse
Affiliation(s)
- Pablo J Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile. .,INSERM U932 Immunité et Cancer, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 12 Rue Lhomond, Paris 75005, France
| | - Pablo Vargas
- INSERM U932 Immunité et Cancer, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 12 Rue Lhomond, Paris 75005, France.,CNRS UMR144, Institut Curie, PSL Research University, 12 Rue Lhomond, Paris 75005, France
| | - Kenji F Shoji
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Paloma A Harcha
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile.,Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso 2360103, Chile
| | - Ana-María Lennon-Duménil
- INSERM U932 Immunité et Cancer, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 12 Rue Lhomond, Paris 75005, France.
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile. .,Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso 2360103, Chile
| |
Collapse
|
16
|
Puebla C, Retamal MA, Acuña R, Sáez JC. Regulation of Connexin-Based Channels by Fatty Acids. Front Physiol 2017; 8:11. [PMID: 28174541 PMCID: PMC5258758 DOI: 10.3389/fphys.2017.00011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/06/2017] [Indexed: 01/29/2023] Open
Abstract
In this mini-review, we briefly summarize the current knowledge about the effects of fatty acids (FAs) on connexin-based channels, as well as discuss the limited information about the impact FAs may have on pannexins (Panxs). FAs regulate diverse cellular functions, some of which are explained by changes in the activity of channels constituted by connexins (Cxs) or Panxs, which are known to play critical roles in maintaining the functional integrity of diverse organs and tissues. Cxs are transmembrane proteins that oligomerize into hexamers to form hemichannels (HCs), which in turn can assemble into dodecamers to form gap junction channels (GJCs). While GJCs communicate the cytoplasm of contacting cells, HCs serve as pathways for the exchange of ions and small molecules between the intra and extracellular milieu. Panxs, as well as Cx HCs, form channels at the plasma membrane that enable the interchange of molecules between the intra and extracellular spaces. Both Cx- and Panx-based channels are controlled by several post-translational modifications. However, the mechanism of action of FAs on these channels has not been described in detail. It has been shown however that FAs frequently decrease GJC-mediated cell-cell communication. The opposite effect also has been described for HC or Panx-dependent intercellular communication, where, the acute FA effect can be reversed upon washout. Additionally, changes in GJCs mediated by FAs have been associated with post-translational modifications (e.g., phosphorylation), and seem to be directly related to chemical properties of FAs (e.g., length of carbon chain and/or degree of saturation), but this possible link remains poorly understood.
Collapse
Affiliation(s)
- Carlos Puebla
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de ChileSantiago, Chile; Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del DesarrolloSantiago, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Rodrigo Acuña
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile; Centro Interdisciplinario de Neurociencias de Valparaíso, Intituto Milenio, Universidad de ValparaísoValparaíso, Chile
| |
Collapse
|
17
|
Gajardo-Gómez R, Labra VC, Orellana JA. Connexins and Pannexins: New Insights into Microglial Functions and Dysfunctions. Front Mol Neurosci 2016; 9:86. [PMID: 27713688 PMCID: PMC5031785 DOI: 10.3389/fnmol.2016.00086] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Under physiological conditions, microglia adopt a resting phenotype associated with the production of anti-inflammatory and neurotrophic factors. In response to a wide variety of insults, these cells shift to an activated phenotype that is necessary for the proper restoration of brain homeostasis. However, when the intensity of a threat is relatively high, microglial activation worsens the progression of damage rather than providing protection, with potentially significant consequences for neuronal survival. Coordinated interactions among microglia and other brain cells, including astrocytes and neurons, are critical for the development of timely and optimal inflammatory responses in the brain parenchyma. Tissue synchronization is in part mediated by connexins and pannexins, which are protein families that form different plasma membrane channels to communicate with neighboring cells. Gap junction channels (which are exclusively formed by connexins in vertebrates) connect the cytoplasm of contacting cells to coordinate electrical and metabolic coupling. Hemichannels (HCs) and pannexons (which are formed by connexins and pannexins, respectively) communicate the intra- and extracellular compartments and serve as diffusion pathways for the exchange of ions and small molecules. In this review article, we discuss the available evidence concerning the functional expression and regulation of connexin- and pannexin-based channels in microglia and their contributions to microglial function and dysfunction. Specifically, we focus on the possible implications of these channels in microglia-to-microglia, microglia-to-astrocyte and neuron-to-microglia interactions in the inflamed brain.
Collapse
Affiliation(s)
- Rosario Gajardo-Gómez
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Valeria C Labra
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
18
|
Dahl G. ATP release through pannexon channels. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0191. [PMID: 26009770 DOI: 10.1098/rstb.2014.0191] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Extracellular adenosine triphosphate (ATP) serves as a signal for diverse physiological functions, including spread of calcium waves between astrocytes, control of vascular oxygen supply and control of ciliary beat in the airways. ATP can be released from cells by various mechanisms. This review focuses on channel-mediated ATP release and its main enabler, Pannexin1 (Panx1). Six subunits of Panx1 form a plasma membrane channel termed 'pannexon'. Depending on the mode of stimulation, the pannexon has large conductance (500 pS) and unselective permeability to molecules less than 1.5 kD or is a small (50 pS), chloride-selective channel. Most physiological and pathological stimuli induce the large channel conformation, whereas the small conformation so far has only been observed with exclusive voltage activation of the channel. The interaction between pannexons and ATP is intimate. The pannexon is not only the conduit for ATP, permitting ATP efflux from cells down its concentration gradient, but the pannexon is also modulated by ATP. The channel can be activated by ATP through both ionotropic P2X as well as metabotropic P2Y purinergic receptors. In the absence of a control mechanism, this positive feedback loop would lead to cell death owing to the linkage of purinergic receptors with apoptotic processes. A control mechanism preventing excessive activation of the purinergic receptors is provided by ATP binding (with low affinity) to the Panx1 protein and gating the channel shut.
Collapse
Affiliation(s)
- Gerhard Dahl
- School of Medicine, University of Miami, 1600 NW 10th Avenue, Miami, FL 33136, USA
| |
Collapse
|
19
|
von Bernhardi R, Eugenín-von Bernhardi J, Flores B, Eugenín León J. Glial Cells and Integrity of the Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:1-24. [PMID: 27714682 DOI: 10.1007/978-3-319-40764-7_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Today, there is enormous progress in understanding the function of glial cells, including astroglia, oligodendroglia, Schwann cells, and microglia. Around 150 years ago, glia were viewed as a glue among neurons. During the course of the twentieth century, microglia were discovered and neuroscientists' views evolved toward considering glia only as auxiliary cells of neurons. However, over the last two to three decades, glial cells' importance has been reconsidered because of the evidence on their involvement in defining central nervous system architecture, brain metabolism, the survival of neurons, development and modulation of synaptic transmission, propagation of nerve impulses, and many other physiological functions. Furthermore, increasing evidence shows that glia are involved in the mechanisms of a broad spectrum of pathologies of the nervous system, including some psychiatric diseases, epilepsy, and neurodegenerative diseases to mention a few. It appears safe to say that no neurological disease can be understood without considering neuron-glia crosstalk. Thus, this book aims to show different roles played by glia in the healthy and diseased nervous system, highlighting some of their properties while considering that the various glial cell types are essential components not only for cell function and integration among neurons, but also for the emergence of important brain homeostasis.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Department of Neurology, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| | - Jaime Eugenín-von Bernhardi
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Pettenkoferstr.12, 80336, Munich, Germany.,Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, 82152, Planegg-Martinsried, Munich, Germany
| | - Betsi Flores
- Department of Neurology, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jaime Eugenín León
- Department of Biology, Faculty of Chemistry and Biology, USACH, Santiago, Chile
| |
Collapse
|
20
|
Kälin S, Heppner FL, Bechmann I, Prinz M, Tschöp MH, Yi CX. Hypothalamic innate immune reaction in obesity. Nat Rev Endocrinol 2015; 11:339-51. [PMID: 25824676 DOI: 10.1038/nrendo.2015.48] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Findings from rodent and human studies show that the presence of inflammatory factors is positively correlated with obesity and the metabolic syndrome. Obesity-associated inflammatory responses take place not only in the periphery but also in the brain. The hypothalamus contains a range of resident glial cells including microglia, macrophages and astrocytes, which are embedded in highly heterogenic groups of neurons that control metabolic homeostasis. This complex neural-glia network can receive information directly from blood-borne factors, positioning it as a metabolic sensor. Following hypercaloric challenge, mediobasal hypothalamic microglia and astrocytes enter a reactive state, which persists during diet-induced obesity. In established mouse models of diet-induced obesity, the hypothalamic vasculature displays angiogenic alterations. Moreover, proopiomelanocortin neurons, which regulate food intake and energy expenditure, are impaired in the arcuate nucleus, where there is an increase in local inflammatory signals. The sum total of these events is a hypothalamic innate immune reactivity, which includes temporal and spatial changes to each cell population. Although the exact role of each participant of the neural-glial-vascular network is still under exploration, therapeutic targets for treating obesity should probably be linked to individual cell types and their specific signalling pathways to address each dysfunction with cell-selective compounds.
Collapse
Affiliation(s)
- Stefanie Kälin
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment &Technische Universität München, 85748, Munich, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Breisacher Str. 64, D-79106 Freiburg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment &Technische Universität München, 85748, Munich, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| |
Collapse
|
21
|
Montero TD, Orellana JA. Hemichannels: new pathways for gliotransmitter release. Neuroscience 2014; 286:45-59. [PMID: 25475761 DOI: 10.1016/j.neuroscience.2014.11.048] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/14/2014] [Accepted: 11/20/2014] [Indexed: 01/16/2023]
Abstract
Growing evidence suggests that glial cells express virtually all known types of neurotransmitter receptors, enabling them to sense neuronal activity and microenvironment changes by responding locally via the Ca(2+)-dependent release of bioactive molecules, known as "gliotransmitters". Several mechanisms of gliotransmitter release have been documented. One of these mechanisms involves the opening of plasma membrane channels, known as hemichannels. These channels are composed of six protein subunits consisting of connexins or pannexins, two highly conserved protein families encoded by 21 or 3 genes, respectively, in humans. Most data indicate that under physiological conditions, glial cell hemichannels have low activity, but this activity is sufficient to ensure the release of relevant quantities of gliotransmitters to the extracellular milieu, including ATP, glutamate, adenosine and glutathione. Nevertheless, it has been suggested that dysregulations of hemichannel properties could be critical in the beginning and during the maintenance of homeostatic imbalances observed in several brain diseases. In this study, we review the current knowledge on the hemichannel-dependent release of gliotransmitters in the physiology and pathophysiology of the CNS.
Collapse
Affiliation(s)
- T D Montero
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
22
|
Sangaletti R, Dahl G, Bianchi L. Mechanosensitive unpaired innexin channels in C. elegans touch neurons. Am J Physiol Cell Physiol 2014; 307:C966-77. [PMID: 25252948 DOI: 10.1152/ajpcell.00246.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Invertebrate innexin proteins share sequence homology with vertebrate pannexins and general membrane topology with both pannexins and connexins. While connexins form gap junctions that mediate intercellular communication, pannexins are thought to function exclusively as plasma membrane channels permeable to both ions and small molecules. Undoubtedly, certain innexins function as gap junction proteins. However, due to sequence similarity to pannexins, it was postulated that innexins also function as plasma membrane channels. Indeed, some of the leech innexins were found to mediate ATP release as unpaired membrane channels with shared pharmacology to pannexin channels. We show here that Caenorhabditis elegans touch-sensing neurons express a mechanically gated innexin channel with a conductance of ∼1 nS and voltage-dependent and K(+)-selective subconductance state. We also show that C. elegans touch neurons take up ethidium bromide through a mechanism that is activated and blocked by innexin activating stimuli and inhibitors, respectively. Finally, we present evidence that touch neurons' innexins are required for cell death induced by chemical ischemia. Our work demonstrates that innexins function as plasma membrane channels in native C. elegans neurons, where they may play a role in pathological cell death.
Collapse
Affiliation(s)
- Rachele Sangaletti
- Department of Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, Florida
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, Florida
| | - Laura Bianchi
- Department of Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
23
|
Sáez PJ, Shoji KF, Aguirre A, Sáez JC. Regulation of hemichannels and gap junction channels by cytokines in antigen-presenting cells. Mediators Inflamm 2014; 2014:742734. [PMID: 25301274 PMCID: PMC4180397 DOI: 10.1155/2014/742734] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/19/2014] [Indexed: 12/13/2022] Open
Abstract
Autocrine and paracrine signals coordinate responses of several cell types of the immune system that provide efficient protection against different challenges. Antigen-presenting cells (APCs) coordinate activation of this system via homocellular and heterocellular interactions. Cytokines constitute chemical intercellular signals among immune cells and might promote pro- or anti-inflammatory effects. During the last two decades, two membrane pathways for intercellular communication have been demonstrated in cells of the immune system. They are called hemichannels (HCs) and gap junction channels (GJCs) and provide new insights into the mechanisms of the orchestrated response of immune cells. GJCs and HCs are permeable to ions and small molecules, including signaling molecules. The direct intercellular transfer between contacting cells can be mediated by GJCs, whereas the release to or uptake from the extracellular milieu can be mediated by HCs. GJCs and HCs can be constituted by two protein families: connexins (Cxs) or pannexins (Panxs), which are present in almost all APCs, being Cx43 and Panx1 the most ubiquitous members of each protein family. In this review, we focus on the effects of different cytokines on the intercellular communication mediated by HCs and GJCs in APCs and their impact on purinergic signaling.
Collapse
Affiliation(s)
- Pablo J. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
| | - Kenji F. Shoji
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
| | - Adam Aguirre
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
| | - Juan C. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
- Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Pasaje Harrington 287, Playa Ancha, 2360103 Valparaíso, Chile
| |
Collapse
|
24
|
da Silva-Souza HA, de Lira MN, Patel NK, Spray DC, Persechini PM, Scemes E. Inhibitors of the 5-lipoxygenase pathway activate pannexin1 channels in macrophages via the thromboxane receptor. Am J Physiol Cell Physiol 2014; 307:C571-9. [PMID: 25080488 DOI: 10.1152/ajpcell.00087.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A multitude of environmental signaling molecules influence monocyte and macrophage innate and adaptive immune responses, including ATP and prostanoids. Interestingly, purinergic (P2) and eicosanoid receptor signaling interact such that the activation of P2 receptors leads to prostanoid production, which can then interfere with P2Y-mediated macrophage migration. Recent studies suggest that blockade of 5-lipoxygenase (5-LOX) in macrophages can activate a permeation pathway involved in the influx of dye and the release of ATP. Here, we provide evidence that pannexin1 (Panx1) is a component of this pathway and present the intracellular signaling molecules linking the thromboxane (TP) receptor to Panx1-mediated dye influx and ATP release. Using pharmacological tools and transgenic mice deficient in Panx1, we show that two 5-LOX pathway inhibitors induce ATP release and influx of dye in a Panx1-dependent manner. Electrophysiological recordings performed in wild-type and Panx1-deficient macrophages confirmed that these 5-LOX pathway inhibitors activate currents characteristic of Panx1 channels. We found that the mechanism by which Panx1 channels are activated under this condition involves activation of the TP receptor that is mediated by the cAMP/PKA pathway. This is to our knowledge the first evidence for the involvement of Panx1 in the TP receptor signaling pathway. Future studies aimed to clarify the contribution of this TP-Panx1 signaling network to macrophage immune responses are likely to be important for targeting inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Hercules A da Silva-Souza
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia de Pesquisa Translacional em Saúde e Ambiente da Região Amazônica-INPeTAm, Rio de Janeiro, Brazil; and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Maria Nathália de Lira
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Naman K Patel
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - David C Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Pedro Muanis Persechini
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia de Pesquisa Translacional em Saúde e Ambiente da Região Amazônica-INPeTAm, Rio de Janeiro, Brazil; and
| | - Eliana Scemes
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
25
|
Verkhratsky A, Burnstock G. Biology of purinergic signalling: its ancient evolutionary roots, its omnipresence and its multiple functional significance. Bioessays 2014; 36:697-705. [PMID: 24782352 DOI: 10.1002/bies.201400024] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The purinergic signalling system, which utilises ATP, related nucleotides and adenosine as transmitter molecules, appeared very early in evolution: release mechanisms and ATP-degrading enzymes are operative in bacteria, and the first specific receptors are present in single cell eukaryotic protozoa and algae. Further evolution of the purinergic signalling system resulted in the development of multiple classes of purinoceptors, several pathways for release of nucleotides and adenosine, and a system of ectonucleotidases controlling extracellular levels of purinergic transmitters. The purinergic signalling system is expressed in virtually all types of tissues and cells, where it mediates numerous physiological reactions and contributes to pathological responses in a variety of diseases.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- School of Biological Sciences, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | | |
Collapse
|
26
|
De Bock M, Decrock E, Wang N, Bol M, Vinken M, Bultynck G, Leybaert L. The dual face of connexin-based astroglial Ca(2+) communication: a key player in brain physiology and a prime target in pathology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2211-32. [PMID: 24768716 DOI: 10.1016/j.bbamcr.2014.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 12/21/2022]
Abstract
For decades, studies have been focusing on the neuronal abnormalities that accompany neurodegenerative disorders. Yet, glial cells are emerging as important players in numerous neurological diseases. Astrocytes, the main type of glia in the central nervous system , form extensive networks that physically and functionally connect neuronal synapses with cerebral blood vessels. Normal brain functioning strictly depends on highly specialized cellular cross-talk between these different partners to which Ca(2+), as a signaling ion, largely contributes. Altered intracellular Ca(2+) levels are associated with neurodegenerative disorders and play a crucial role in the glial responses to injury. Intracellular Ca(2+) increases in single astrocytes can be propagated toward neighboring cells as intercellular Ca(2+) waves, thereby recruiting a larger group of cells. Intercellular Ca(2+) wave propagation depends on two, parallel, connexin (Cx) channel-based mechanisms: i) the diffusion of inositol 1,4,5-trisphosphate through gap junction channels that directly connect the cytoplasm of neighboring cells, and ii) the release of paracrine messengers such as glutamate and ATP through hemichannels ('half of a gap junction channel'). This review gives an overview of the current knowledge on Cx-mediated Ca(2+) communication among astrocytes as well as between astrocytes and other brain cell types in physiology and pathology, with a focus on the processes of neurodegeneration and reactive gliosis. Research on Cx-mediated astroglial Ca(2+) communication may ultimately shed light on the development of targeted therapies for neurodegenerative disorders in which astrocytes participate. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Marijke De Bock
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Elke Decrock
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium.
| | - Nan Wang
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Mélissa Bol
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Center for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, B-1090 Brussels, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine, Laboratory of Molecular and Cellular Signalling, KULeuven, Campus Gasthuisberg O/N-I bus 802, B-3000 Leuven, Belgium
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
27
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|
28
|
Innexin and pannexin channels and their signaling. FEBS Lett 2014; 588:1396-402. [PMID: 24632288 DOI: 10.1016/j.febslet.2014.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/06/2014] [Indexed: 01/24/2023]
Abstract
Innexins are bifunctional membrane proteins in invertebrates, forming gap junctions as well as non-junctional membrane channels (innexons). Their vertebrate analogues, the pannexins, have not only lost the ability to form gap junctions but are also prevented from it by glycosylation. Pannexins appear to form only non-junctional membrane channels (pannexons). The membrane channels formed by pannexins and innexins are similar in their biophysical and pharmacological properties. Innexons and pannexons are permeable to ATP, are present in glial cells, and are involved in activation of microglia by calcium waves in glia. Directional movement and accumulation of microglia following nerve injury, which has been studied in the leech which has unusually large glial cells, involves at least 3 signals: ATP is the "go" signal, NO is the "where" signal and arachidonic acid is a "stop" signal.
Collapse
|
29
|
Abstract
The pannexins (Panxs) are a family of chordate proteins homologous to the invertebrate gap junction forming proteins named innexins. Three distinct Panx paralogs (Panx1, Panx2, and Panx3) are shared among the major vertebrate phyla, but they appear to have suppressed (or even lost) their ability to directly couple adjacent cells. Connecting the intracellular and extracellular compartments is now widely accepted as Panx's primary function, facilitating the passive movement of ions and small molecules along electrochemical gradients. The tissue distribution of the Panxs ranges from pervasive to very restricted, depending on the paralog, and are often cell type-specific and/or developmentally regulated within any given tissue. In recent years, Panxs have been implicated in an assortment of physiological and pathophysiological processes, particularly with respect to ATP signaling and inflammation, and they are now considered to be a major player in extracellular purinergic communication. The following is a comprehensive review of the Panx literature, exploring the historical events leading up to their discovery, outlining our current understanding of their biochemistry, and describing the importance of these proteins in health and disease.
Collapse
Affiliation(s)
- Stephen R Bond
- Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health Bethesda, MD, USA ; Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia Vancouver, BC, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
30
|
Maslieieva V, Thompson RJ. A critical role for pannexin-1 in activation of innate immune cells of the choroid plexus. Channels (Austin) 2014; 8:131-41. [PMID: 24418937 PMCID: PMC4048302 DOI: 10.4161/chan.27653] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Epiplexus cells are a population of innate immune cells in the choroid plexus of the brain ventricles. They are thought to contribute to the immune component of the blood-cerebrospinal-fluid-barrier (BCSFB). Here we have developed a novel technique for studying epiplexus cells in acutely isolated, live and intact choroid plexus. We show that epiplexus cells are potently activated by exogenous ATP, increasing their motility within the tissue. This ATP-induced chemokinesis required activation of pannexin-1 channels, which are expressed by the epithelial cells of the choroid plexus and not the epiplexus cells themselves. Furthermore, ATP acts at least in part through the P2X4 ionotropic purinergic receptor. Thus, the resident immune cells of the choroid plexus appear to be in communication with the epithelial cells through pannexin-1 channels.
Collapse
Affiliation(s)
- Valentyna Maslieieva
- Hotchkiss Brain Institute; Department of Cell Biology and Anatomy; University of Calgary; Calgary, AB Canada
| | - Roger J Thompson
- Hotchkiss Brain Institute; Department of Cell Biology and Anatomy; University of Calgary; Calgary, AB Canada
| |
Collapse
|