1
|
Tetenborg S, Shihabeddin E, Kumar EOAM, Sigulinsky CL, Dedek K, Lin YP, Echeverry FA, Hoff H, Pereda AE, Jones BW, Ribelayga CP, Ebnet K, Matsuura K, O'Brien J. Uncovering the electrical synapse proteome in retinal neurons via in vivo proximity labeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625481. [PMID: 39651118 PMCID: PMC11623651 DOI: 10.1101/2024.11.26.625481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Through decades of research, we have gained a comprehensive understanding of the protein complexes underlying function and regulation of chemical synapses in the nervous system. Despite the identification of key molecules such as ZO-1 or CaMKII, we currently lack a similar level of insight into the electrical synapse proteome. With the advancement of BioID as a tool for in vivo proteomics, it has become possible to identify complex interactomes of a given protein of interest by combining enzymatic biotinylation with subsequent streptavidin affinity capture. In the present study, we applied different BioID strategies to screen the interactomes of Connexin 36 (mouse) the major neuronal connexin and its zebrafish orthologue Cx35b in retinal neurons. For in vivo proximity labeling in mice, we took advantage of the Cx36-EGFP strain and expressed a GFP-nanobody-TurboID fusion construct selectively in AII amacrine cells. For in vivo BioID in zebrafish, we generated a transgenic line expressing a Cx35b-TurboID fusion under control of the Cx35b promoter. Both two strategies allowed us to capture a plethora of molecules that were associated with electrical synapses and showed a high degree of evolutionary conservation in the proteomes of both species. Besides known interactors of Cx36 such as ZO-1 and ZO-2 we have identified more than 50 new proteins, such as scaffold proteins, adhesion molecules and regulators of the cytoskeleton. We further determined the subcellular localization of these proteins in AII amacrine and tested potential binding interactions with Cx36. Of note, we identified signal induced proliferation associated 1 like 3 (SIPA1L3), a protein that has been implicated in cell junction formation and cell polarity as a new scaffold of electrical synapses. Interestingly, SIPA1L3 was able to interact with ZO-1, ZO-2 and Cx36, suggesting a pivotal role in electrical synapse function. In summary, our study provides a first detailed view of the electrical synapse proteome in retinal neurons.
Collapse
|
2
|
Michel JC, Martin EA, Crow WE, Kissinger JS, Lukowicz-Bedford RM, Horrocks M, Branon TC, Ting AY, Miller AC. Electrical synapse molecular diversity revealed by proximity-based proteomic discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624763. [PMID: 39605535 PMCID: PMC11601576 DOI: 10.1101/2024.11.22.624763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Neuronal circuits are composed of synapses that are either chemical, where signals are transmitted via neurotransmitter release and reception, or electrical, where signals pass directly through interneuronal gap junction channels. While the molecular complexity that controls chemical synapse structure and function is well appreciated, the proteins of electrical synapses beyond the gap-junction-forming Connexins are not well defined. Yet, electrical synapses are expected to be molecularly complex beyond the gap junctions. Connexins are integral membrane proteins requiring vesicular transport and membrane insertion/retrieval to achieve function, homeostasis, and plasticity. Additionally, electron microscopy of neuronal gap junctions reveals neighboring electron dense regions termed the electrical synapse density (ESD). To reveal the molecular complexity of the electrical synapse proteome, we used proximity-dependent biotinylation (TurboID) linked to neural Connexins in zebrafish. Proteomic analysis of developing and mature nervous systems identifies hundreds of Connexin-associated proteins, with overlapping and distinct representation during development and adulthood. The identified protein classes span cell adhesion molecules, cytoplasmic scaffolds, vesicular trafficking, and proteins usually associated with the post synaptic density (PSD) of chemical synapses. Using circuits with stereotyped electrical and chemical synapses, we define molecular sub-synaptic compartments of ESD localizing proteins, we find molecular heterogeneity amongst electrical synapse populations, and we examine the synaptic intermingling of electrical and chemical synapse proteins. Taken together, these results reveal a new complexity of electrical synapse molecular diversity and highlight a novel overlap between chemical and electrical synapse proteomes. Moreover, human homologs of the electrical synapse proteins are associated with autism, epilepsy, and other neurological disorders, providing a novel framework towards understanding neuro-atypical states.
Collapse
|
3
|
Cárdenas-García SP, Ijaz S, Pereda AE. The components of an electrical synapse as revealed by expansion microscopy of a single synaptic contact. eLife 2024; 13:e91931. [PMID: 38994821 PMCID: PMC11333041 DOI: 10.7554/elife.91931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Most nervous systems combine both transmitter-mediated and direct cell-cell communication, known as 'chemical' and 'electrical' synapses, respectively. Chemical synapses can be identified by their multiple structural components. Electrical synapses are, on the other hand, generally defined by the presence of a 'gap junction' (a cluster of intercellular channels) between two neuronal processes. However, while gap junctions provide the communicating mechanism, it is unknown whether electrical transmission requires the contribution of additional cellular structures. We investigated this question at identifiable single synaptic contacts on the zebrafish Mauthner cells, at which gap junctions coexist with specializations for neurotransmitter release and where the contact unequivocally defines the anatomical limits of a synapse. Expansion microscopy of these single contacts revealed a detailed map of the incidence and spatial distribution of proteins pertaining to various synaptic structures. Multiple gap junctions of variable size were identified by the presence of their molecular components. Remarkably, most of the synaptic contact's surface was occupied by interleaving gap junctions and components of adherens junctions, suggesting a close functional association between these two structures. In contrast, glutamate receptors were confined to small peripheral portions of the contact, indicating that most of the synaptic area functions as an electrical synapse. Thus, our results revealed the overarching organization of an electrical synapse that operates with not one, but multiple gap junctions, in close association with structural and signaling molecules known to be components of adherens junctions. The relationship between these intercellular structures will aid in establishing the boundaries of electrical synapses found throughout animal connectomes and provide insight into the structural organization and functional diversity of electrical synapses.
Collapse
Affiliation(s)
- Sandra P Cárdenas-García
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Sundas Ijaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
4
|
Wingrove JS, Wimmer J, Saba Echezarreta VE, Piazza A, Spencer GE. Retinoic acid reduces the formation of, and acutely modulates, invertebrate electrical synapses. J Neurophysiol 2024; 131:965-981. [PMID: 38568843 DOI: 10.1152/jn.00057.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Communication between cells in the nervous system is dependent on both chemical and electrical synapses. Factors that can affect chemical synapses have been well studied, but less is known about factors that influence electrical synapses. Retinoic acid, the vitamin A metabolite, is a known regulator of chemical synapses, but few studies have examined its capacity to regulate electrical synapses. In this study, we determine that retinoic acid is capable of rapidly altering the strength of electrical synapses in an isomer- and cell-dependent manner. Furthermore, we provide evidence that this acute effect might be independent of either the retinoid receptors or the activation of a protein kinase. In addition to the rapid modulatory effects of retinoic acid, we provide data to suggest that retinoic acid is also capable of regulating the formation of electrical synapses. Long-term exposure to both all-trans-retinoic acid or 9-cis-retinoic acid reduced the proportion of cell pairs forming electrical synapses, as well as reduced the strength of electrical synapses that did form. In summary, this study provides insights into the role that retinoids might play in both the formation and modulation of electrical synapses in the central nervous system.NEW & NOTEWORTHY Retinoids are known modulators of chemical synapses and mediate synaptic plasticity in the nervous system, but little is known of their effects on electrical synapses. Here, we show that retinoids selectively reduce electrical synapses in a cell- and isomer-dependent manner. This modulatory action on existing electrical synapses was rapid and nongenomic in nature. We also showed for the first time that longer retinoid exposures inhibit the formation of electrical synapses.
Collapse
Affiliation(s)
- Joel S Wingrove
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Justin Wimmer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | | - Alicia Piazza
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
5
|
Rabinowitch I, Colón-Ramos DA, Krieg M. Understanding neural circuit function through synaptic engineering. Nat Rev Neurosci 2024; 25:131-139. [PMID: 38172626 DOI: 10.1038/s41583-023-00777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Synapses are a key component of neural circuits, facilitating rapid and specific signalling between neurons. Synaptic engineering - the synthetic insertion of new synaptic connections into in vivo neural circuits - is an emerging approach for neural circuit interrogation. This approach is especially powerful for establishing causality in neural circuit structure-function relationships, for emulating synaptic plasticity and for exploring novel patterns of circuit connectivity. Contrary to other approaches for neural circuit manipulation, synaptic engineering targets specific connections between neurons and functions autonomously with no user-controlled external activation. Synaptic engineering has been successfully implemented in several systems and in different forms, including electrical synapses constructed from ectopically expressed connexin gap junction proteins, synthetic optical synapses composed of presynaptic photon-emitting luciferase coupled with postsynaptic light-gated channels, and artificial neuropeptide signalling pathways. This Perspective describes these different methods and how they have been applied, and examines how the field may advance.
Collapse
Affiliation(s)
- Ithai Rabinowitch
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Daniel A Colón-Ramos
- Wu Tsai Institute, Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Krieg
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| |
Collapse
|
6
|
Wu JY, Cho SJ, Descant K, Li PH, Shapson-Coe A, Januszewski M, Berger DR, Meyer C, Casingal C, Huda A, Liu J, Ghashghaei T, Brenman M, Jiang M, Scarborough J, Pope A, Jain V, Stein JL, Guo J, Yasuda R, Lichtman JW, Anton ES. Mapping of neuronal and glial primary cilia contactome and connectome in the human cerebral cortex. Neuron 2024; 112:41-55.e3. [PMID: 37898123 PMCID: PMC10841524 DOI: 10.1016/j.neuron.2023.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 07/25/2023] [Accepted: 09/22/2023] [Indexed: 10/30/2023]
Abstract
Primary cilia act as antenna receivers of environmental signals and enable effective neuronal or glial responses. Disruption of their function is associated with circuit disorders. To understand the signals these cilia receive, we comprehensively mapped cilia's contacts within the human cortical connectome using serial-section EM reconstruction of a 1 mm3 cortical volume, spanning the entire cortical thickness. We mapped the "contactome" of cilia emerging from neurons and astrocytes in every cortical layer. Depending on the layer and cell type, cilia make distinct patterns of contact. Primary cilia display cell-type- and layer-specific variations in size, shape, and microtubule axoneme core, which may affect their signaling competencies. Neuronal cilia are intrinsic components of a subset of cortical synapses and thus a part of the connectome. This diversity in the structure, contactome, and connectome of primary cilia endows each neuron or glial cell with a unique barcode of access to the surrounding neural circuitry.
Collapse
Affiliation(s)
- Jun Yao Wu
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Su-Ji Cho
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine Descant
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Peter H Li
- Google Research, Mountain View, CA 94043, USA
| | - Alexander Shapson-Coe
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Daniel R Berger
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cailyn Meyer
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Cristine Casingal
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ariba Huda
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jiaqi Liu
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Tina Ghashghaei
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Mikayla Brenman
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Michelle Jiang
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Joseph Scarborough
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Art Pope
- Google Research, Mountain View, CA 94043, USA
| | - Viren Jain
- Google Research, Mountain View, CA 94043, USA
| | - Jason L Stein
- UNC Neuroscience Center and the Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jiami Guo
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
| | - Jeff W Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - E S Anton
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Zhantiev R, Korsunovskaya O. Bimodality of auditory receptors in bush-crickets. Сontinued discussion. It's time to experiment. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:961-966. [PMID: 37559464 DOI: 10.1002/jez.2745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/11/2023]
Abstract
Continuation of the discussion on the sensitivity of the chordotonal sensilla of the tympanal organ of bush-crickets to vibratory stimuli. We have previously shown that individual receptors registered directly in the tympanal organ perceive vibrations along with sound stimuli. In addition, scolopidia of the crista acustica possess mixed sensitivity, too, as well as receptors of the intermediate organ. The authors of the comment offered their opinion concerning our applied methods as well as our obtained results. In particular, they noted the dissimilarity of our data from the previously obtained data (the 1970s-1990s), mainly in the laboratory of Prof. K. Kalmring, who assumed that only low-frequency receptors, in particular receptors of the intermediate organ, possess mixed sensitivity. At the same time, receptor activity was recorded in the tympanal nerve without morphological identification of receptors (with the exception of one stained neuron in the prothoracic ganglion). We carried out a series of experiments using the method of K. Kalmring and found that it is possible to register several receptors in the tympanal nerve with different reactions during one experiment: to sound only, also both to vibration stimuli and sound. In the latter case, we dealt with low-threshold receptors, which responded to ultrasound, and this with high probability belonged to the crista acustica. Similar data were previously obtained on the bush-cricket Decticus verrucivorus. In this publication, we explain the methodological features of our work and suggest that the loss of sensitivity to vibrations at the level of the tympanal nerve by some auditory receptors may be due to the ephaptic and/or chemical interaction of the tympanal organ receptors with vibroreceptors of the subgenual or other organs. To verify this hypothesis, it is necessary to conduct additional studies, such as physiological, morphological, and immunohistochemical, along the entire vibroacoustic afferent tract, that is, from the peripheral part to the first switches to the corresponding interneurons.
Collapse
Affiliation(s)
- Rustem Zhantiev
- Department of Entomology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Korsunovskaya
- Department of Entomology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Ribelayga CP, O’Brien J. When microscopy and electrophysiology meet connectomics-Steve Massey's contribution to unraveling the structure and function of the rod/cone gap junction. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1305131. [PMID: 38983007 PMCID: PMC11182179 DOI: 10.3389/fopht.2023.1305131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/31/2023] [Indexed: 07/11/2024]
Abstract
Electrical synapses, formed of gap junctions, are ubiquitous components of the central nervous system (CNS) that shape neuronal circuit connectivity and dynamics. In the retina, electrical synapses can create a circuit, control the signal-to-noise ratio in individual neurons, and support the coordinated neuronal firing of ganglion cells, hence, regulating signal processing at the network, single-cell, and dendritic level. We, the authors, and Steve Massey have had a long interest in gap junctions in retinal circuits, in general, and in the network of photoreceptors, in particular. Our combined efforts, based on a wide array of techniques of molecular biology, microscopy, and electrophysiology, have provided fundamental insights into the molecular structure and properties of the rod/cone gap junction. Yet, a full understanding of how rod/cone coupling controls circuit dynamics necessitates knowing its operating range. It is well established that rod/cone coupling can be greatly reduced or eliminated by bright-light adaptation or pharmacological treatment; however, the upper end of its dynamic range has long remained elusive. This held true until Steve Massey's recent interest for connectomics led to the development of a new strategy to assess this issue. The effort proved effective in establishing, with precision, the connectivity rules between rods and cones and estimating the theoretical upper limit of rod/cone electrical coupling. Comparing electrophysiological measurements and morphological data indicates that under pharmacological manipulation, rod/cone coupling can reach the theoretical maximum of its operating range, implying that, under these conditions, all the gap junction channels present at the junctions are open. As such, channel open probability is likely the main determinant of rod/cone coupling that can change momentarily in a time-of-day- and light-dependent manner. In this article we briefly review our current knowledge of the molecular structure of the rod/cone gap junction and of the mechanisms behind its modulation, and we highlight the recent work led by Steve Massey. Steve's contribution has been critical toward asserting the modulation depth of rod/cone coupling as well as elevating the rod/cone gap junction as one of the most suitable models to examine the role of electrical synapses and their plasticity in neural processing.
Collapse
Affiliation(s)
- Christophe P. Ribelayga
- Department of Vision Sciences, University of Houston College of Optometry, Houston, TX, United States
| | | |
Collapse
|
9
|
Michel JC, Grivette MMB, Harshfield AT, Huynh L, Komons AP, Loomis B, McKinnis K, Miller BT, Nguyen EQ, Huang TW, Lauf S, Michel ES, Michel ME, Kissinger JS, Marsh AJ, Crow WE, Kaye LE, Lasseigne AM, Lukowicz-Bedford RM, Farnsworth DR, Martin EA, Miller AC. Electrical synapse structure requires distinct isoforms of a postsynaptic scaffold. PLoS Genet 2023; 19:e1011045. [PMID: 38011265 PMCID: PMC10703405 DOI: 10.1371/journal.pgen.1011045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/07/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
Electrical synapses are neuronal gap junction (GJ) channels associated with a macromolecular complex called the electrical synapse density (ESD), which regulates development and dynamically modifies electrical transmission. However, the proteomic makeup and molecular mechanisms utilized by the ESD that direct electrical synapse formation are not well understood. Using the Mauthner cell of zebrafish as a model, we previously found that the intracellular scaffolding protein ZO1b is a member of the ESD, localizing postsynaptically, where it is required for GJ channel localization, electrical communication, neural network function, and behavior. Here, we show that the complexity of the ESD is further diversified by the genomic structure of the ZO1b gene locus. The ZO1b gene is alternatively initiated at three transcriptional start sites resulting in isoforms with unique N-termini that we call ZO1b-Alpha, -Beta, and -Gamma. We demonstrate that ZO1b-Beta and ZO1b-Gamma are broadly expressed throughout the nervous system and localize to electrical synapses. By contrast, ZO1b-Alpha is expressed mainly non-neuronally and is not found at synapses. We generate mutants in all individual isoforms, as well as double mutant combinations in cis on individual chromosomes, and find that ZO1b-Beta is necessary and sufficient for robust GJ channel localization. ZO1b-Gamma, despite its localization to the synapse, plays an auxiliary role in channel localization. This study expands the notion of molecular complexity at the ESD, revealing that an individual genomic locus can contribute distinct isoforms to the macromolecular complex at electrical synapses. Further, independent scaffold isoforms have differential contributions to developmental assembly of the interneuronal GJ channels. We propose that ESD molecular complexity arises both from the diversity of unique genes and from distinct isoforms encoded by single genes. Overall, ESD proteomic diversity is expected to have critical impacts on the development, structure, function, and plasticity of electrical transmission.
Collapse
Affiliation(s)
- Jennifer Carlisle Michel
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Margaret M. B. Grivette
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Amber T. Harshfield
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Lisa Huynh
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Ava P. Komons
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Bradley Loomis
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Kaitlan McKinnis
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Brennen T. Miller
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Ethan Q. Nguyen
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Tiffany W. Huang
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Sophia Lauf
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Elias S. Michel
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Mia E. Michel
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Jane S. Kissinger
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Audrey J. Marsh
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - William E. Crow
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Lila E. Kaye
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Abagael M. Lasseigne
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Rachel M. Lukowicz-Bedford
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Dylan R. Farnsworth
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - E. Anne Martin
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Adam C. Miller
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
10
|
Zhang X, Wang Y, Cai Z, Wan Z, Aihemaiti Y, Tu H. A gonadal gap junction INX-14/Notch GLP-1 signaling axis suppresses gut defense through an intestinal lysosome pathway. Front Immunol 2023; 14:1249436. [PMID: 37928537 PMCID: PMC10620905 DOI: 10.3389/fimmu.2023.1249436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Gap junctions mediate intercellular communications across cellular networks in the nervous and immune systems. Yet their roles in intestinal innate immunity are poorly understood. Here, we show that the gap junction/innexin subunit inx-14 acts in the C. elegans gonad to attenuate intestinal defenses to Pseudomonas aeruginosa PA14 infection through the PMK-1/p38 pathway. RNA-Seq analyses revealed that germline-specific inx-14 RNAi downregulated Notch/GLP-1 signaling, while lysosome and PMK-1/p38 pathways were upregulated. Consistently, disruption of inx-14 or glp-1 in the germline enhanced resistance to PA14 infection and upregulated lysosome and PMK-1/p38 activity. We show that lysosome signaling functions downstream of the INX-14/GLP-1 signaling axis and upstream of PMK-1/p38 pathway to facilitate intestinal defense. Our findings expand the understanding of the links between the reproductive system and intestinal defense, which may be evolutionarily conserved in higher organism.
Collapse
Affiliation(s)
| | | | | | | | | | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| |
Collapse
|
11
|
Cárdenas-García SP, Ijaz S, Pereda AE. The components of an electrical synapse as revealed by expansion microscopy of a single synaptic contact. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550347. [PMID: 37546897 PMCID: PMC10402082 DOI: 10.1101/2023.07.25.550347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Most nervous systems combine both transmitter-mediated and direct cell-cell communication, known as 'chemical' and 'electrical' synapses, respectively. Chemical synapses can be identified by their multiple structural components. Electrical synapses are, on the other hand, generally defined by the presence of a 'gap junction' (a cluster of intercellular channels) between two neuronal processes. However, while gap junctions provide the communicating mechanism, it is unknown whether electrical transmission requires the contribution of additional cellular structures. We investigated this question at identifiable single synaptic contacts on the zebrafish Mauthner cells, at which gap junctions coexist with specializations for neurotransmitter release and where the contact defines the anatomical limits of a synapse. Expansion microscopy of these contacts revealed a detailed map of the incidence and spatial distribution of proteins pertaining to various synaptic structures. Multiple gap junctions of variable size were identified by the presence of their molecular components. Remarkably, most of the synaptic contact's surface was occupied by interleaving gap junctions and components of adherens junctions, suggesting a close functional association between these two structures. In contrast, glutamate receptors were confined to small peripheral portions of the contact, indicating that most of the synaptic area works as an electrical synapse. Thus, our results revealed the overarching organization of an electrical synapse that operates with not one, but multiple gap junctions, in close association with structural and signaling molecules known to be components of AJs. The relationship between these intercellular structures will aid in establishing the boundaries of electrical synapses found throughout animal connectomes and provide insight into the structural organization and functional diversity of electrical synapses.
Collapse
Affiliation(s)
- Sandra P. Cárdenas-García
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sundas Ijaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alberto E. Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
12
|
Pio-Lopez L, Bischof J, LaPalme JV, Levin M. The scaling of goals from cellular to anatomical homeostasis: an evolutionary simulation, experiment and analysis. Interface Focus 2023; 13:20220072. [PMID: 37065270 PMCID: PMC10102734 DOI: 10.1098/rsfs.2022.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Complex living agents consist of cells, which are themselves competent sub-agents navigating physiological and metabolic spaces. Behaviour science, evolutionary developmental biology and the field of machine intelligence all seek to understand the scaling of biological cognition: what enables individual cells to integrate their activities to result in the emergence of a novel, higher-level intelligence with large-scale goals and competencies that belong to it and not to its parts? Here, we report the results of simulations based on the TAME framework, which proposes that evolution pivoted the collective intelligence of cells during morphogenesis of the body into traditional behavioural intelligence by scaling up homeostatic competencies of cells in metabolic space. In this article, we created a minimal in silico system (two-dimensional neural cellular automata) and tested the hypothesis that evolutionary dynamics are sufficient for low-level setpoints of metabolic homeostasis in individual cells to scale up to tissue-level emergent behaviour. Our system showed the evolution of the much more complex setpoints of cell collectives (tissues) that solve a problem in morphospace: the organization of a body-wide positional information axis (the classic French flag problem in developmental biology). We found that these emergent morphogenetic agents exhibit a number of predicted features, including the use of stress propagation dynamics to achieve the target morphology as well as the ability to recover from perturbation (robustness) and long-term stability (even though neither of these was directly selected for). Moreover, we observed an unexpected behaviour of sudden remodelling long after the system stabilizes. We tested this prediction in a biological system-regenerating planaria-and observed a very similar phenomenon. We propose that this system is a first step towards a quantitative understanding of how evolution scales minimal goal-directed behaviour (homeostatic loops) into higher-level problem-solving agents in morphogenetic and other spaces.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | | | | | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
13
|
Ishibashi M, Keung J, Morgans CW, Aicher SA, Carroll JR, Singer JH, Jia L, Li W, Fahrenfort I, Ribelayga CP, Massey SC. Analysis of rod/cone gap junctions from the reconstruction of mouse photoreceptor terminals. eLife 2022; 11:73039. [PMID: 35471186 PMCID: PMC9170248 DOI: 10.7554/elife.73039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Electrical coupling, mediated by gap junctions, contributes to signal averaging, synchronization, and noise reduction in neuronal circuits. In addition, gap junctions may also provide alternative neuronal pathways. However, because they are small and especially difficult to image, gap junctions are often ignored in large-scale 3D reconstructions. Here, we reconstruct gap junctions between photoreceptors in the mouse retina using serial blockface-scanning electron microscopy, focused ion beam-scanning electron microscopy, and confocal microscopy for the gap junction protein Cx36. An exuberant spray of fine telodendria extends from each cone pedicle (including blue cones) to contact 40-50 nearby rod spherules at sites of Cx36 labeling, with approximately 50 Cx36 clusters per cone pedicle and 2-3 per rod spherule. We were unable to detect rod/rod or cone/cone coupling. Thus, rod/cone coupling accounts for nearly all gap junctions between photoreceptors. We estimate a mean of 86 Cx36 channels per rod/cone pair, which may provide a maximum conductance of ~1200 pS, if all gap junction channels were open. This is comparable to the maximum conductance previously measured between rod/cone pairs in the presence of a dopamine antagonist to activate Cx36, suggesting that the open probability of gap junction channels can approach 100% under certain conditions.
Collapse
Affiliation(s)
- Munenori Ishibashi
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Joyce Keung
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - James R Carroll
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, College Park, United States
| | - Li Jia
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Iris Fahrenfort
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Christophe P Ribelayga
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Stephen C Massey
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| |
Collapse
|
14
|
Grodstein J, Levin M. A Computational Approach to Explaining Bioelectrically Induced Persistent, Stochastic Changes of Axial Polarity in Planarian Regeneration. Bioelectricity 2022; 4:18-30. [PMID: 39372228 PMCID: PMC11450330 DOI: 10.1089/bioe.2021.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Morphogenesis results when cells cooperate to construct a specific anatomical structure. The behavior of such cell swarms exhibits not only robustness but also plasticity with respect to what specific anatomies will be built. Important aspects of evolutionary biology, regenerative medicine, and cancer are impacted by the algorithms by which instructive information guides invariant or stochastic outcomes of such collective activity. Planarian flatworms are an important model system in this field, as flatworms reliably regenerate a primary body axis after diverse kinds of injury. Importantly, the number of heads to which they regenerate is not determined genetically: lines of worms can be produced, which, with no further manipulation, regenerate as two-headed (2H) worms, or as "Cryptic" worms. When cut into pieces, Cryptic worms produce one-headed (1H) and 2H regenerates stochastically. Neural and bioelectric mechanisms have been proposed to explain aspects of the regenerative dataset. However, these models have not been unified and do not explain all of the Cryptic worm data. In this study, we propose a model in which two separate systems (a bioelectric circuit and a neural polarity mechanism) compete to determine the anatomical structure of a regenerate. We show how our model accounts for existing data and provides a consistent synthesis of mechanisms that explain both the robustness of planarian regeneration and its remarkable re-writability toward novel stable and stochastic anatomical states.
Collapse
Affiliation(s)
- Joel Grodstein
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Function and Plasticity of Electrical Synapses in the Mammalian Brain: Role of Non-Junctional Mechanisms. BIOLOGY 2022; 11:biology11010081. [PMID: 35053079 PMCID: PMC8773336 DOI: 10.3390/biology11010081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023]
Abstract
Simple Summary Relevant brain functions, such as perception, organization of behavior, and cognitive processes, are the outcome of information processing by neural circuits. Within these circuits, communication between neurons mainly relies on two modalities of synaptic transmission: chemical and electrical. Moreover, changes in the strength of these connections, aka synaptic plasticity, are believed to underlie processes of learning and memory, and its dysfunction has been suggested to underlie a variety of neurological disorders. While the relevance of chemical transmission and its plastic changes are known in great detail, analogous mechanisms and functional impact of their electrical counterparts were only recently acknowledged. In this article, we review the basic physical principles behind electrical transmission between neurons, the plethora of functional operations supported by this modality of neuron-to-neuron communication, as well as the basic principles of plasticity at these synapses. Abstract Electrical transmission between neurons is largely mediated by gap junctions. These junctions allow the direct flow of electric current between neurons, and in mammals, they are mostly composed of the protein connexin36. Circuits of electrically coupled neurons are widespread in these animals. Plus, experimental and theoretical evidence supports the notion that, beyond synchronicity, these circuits are able to perform sophisticated operations such as lateral excitation and inhibition, noise reduction, as well as the ability to selectively respond upon coincident excitatory inputs. Although once considered stereotyped and unmodifiable, we now know that electrical synapses are subject to modulation and, by reconfiguring neural circuits, these modulations can alter relevant operations. The strength of electrical synapses depends on the gap junction resistance, as well as on its functional interaction with the electrophysiological properties of coupled neurons. In particular, voltage and ligand gated channels of the non-synaptic membrane critically determine the efficacy of transmission at these contacts. Consistently, modulatory actions on these channels have been shown to represent relevant mechanisms of plasticity of electrical synaptic transmission. Here, we review recent evidence on the regulation of electrical synapses of mammals, the underlying molecular mechanisms, and the possible ways in which they affect circuit function.
Collapse
|
16
|
Pereda AE, Miller AC. On the location of electrical synapses. Dev Cell 2021; 56:3178-3180. [PMID: 34875222 DOI: 10.1016/j.devcel.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Location is of critical functional relevance for synapses, including electrical synapses, which are a form of neuronal communication mediated by cell-cell channels. In this issue of Developmental Cell, Palumbos et al. identify a mechanism that supports the localization and function of electrical synapses with subcellular specificity.
Collapse
Affiliation(s)
- Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
17
|
Transitory and Vestigial Structures of the Developing Human Nervous System. Pediatr Neurol 2021; 123:86-101. [PMID: 34416613 DOI: 10.1016/j.pediatrneurol.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/23/2022]
Abstract
As with many body organs, the human central nervous system contains many structures and cavities that may have had functions in embryonic and fetal life but are vestigial or atrophic at maturity. Examples are the septum pellucidum, remnants of the lamina terminalis, Cajal-Retzius neurons, induseum griseum, habenula, and accessory olfactory bulb. Other structures are transitory in fetal or early postnatal life, disappearing from the mature brain. Examples are the neural crest, subpial granular glial layer of Brun over cerebral cortex, radial glial cells, and subplate zone of cerebral cortex. At times persistent fetal structures that do not regress may cause neurological problems or indicate a pathologic condition, such as Blake pouch cyst. Transitory structures thus can become vestigial. Examples are an excessively wide cavum septi pellucidi, suprapineal recess of the third ventricle, trigeminal artery of the posterior fossa circulation, and hyaloid ocular artery. Arrested maturation might be considered another aspect of vestigial structure. An example is the persistent microcolumnar cortical architecture in focal cortical dysplasia type Ia, in cortical zones of chronic fetal ischemia, and in some metabolic/genetic congenital encephalopathies. Some transitory structures in human brain are normal adult structures in lower vertebrates. Recognition of transitory and vestigial structures by fetal or postnatal neuroimaging and neuropathologically enables better understanding of cerebral ontogenesis and avoids misinterpretations.
Collapse
|
18
|
Lasseigne AM, Echeverry FA, Ijaz S, Michel JC, Martin EA, Marsh AJ, Trujillo E, Marsden KC, Pereda AE, Miller AC. Electrical synaptic transmission requires a postsynaptic scaffolding protein. eLife 2021; 10:e66898. [PMID: 33908867 PMCID: PMC8081524 DOI: 10.7554/elife.66898] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Electrical synaptic transmission relies on neuronal gap junctions containing channels constructed by Connexins. While at chemical synapses neurotransmitter-gated ion channels are critically supported by scaffolding proteins, it is unknown if channels at electrical synapses require similar scaffold support. Here, we investigated the functional relationship between neuronal Connexins and Zonula Occludens 1 (ZO1), an intracellular scaffolding protein localized to electrical synapses. Using model electrical synapses in zebrafish Mauthner cells, we demonstrated that ZO1 is required for robust synaptic Connexin localization, but Connexins are dispensable for ZO1 localization. Disrupting this hierarchical ZO1/Connexin relationship abolishes electrical transmission and disrupts Mauthner cell-initiated escape responses. We found that ZO1 is asymmetrically localized exclusively postsynaptically at neuronal contacts where it functions to assemble intercellular channels. Thus, forming functional neuronal gap junctions requires a postsynaptic scaffolding protein. The critical function of a scaffolding molecule reveals an unanticipated complexity of molecular and functional organization at electrical synapses.
Collapse
Affiliation(s)
| | - Fabio A Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Sundas Ijaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | | | - E Anne Martin
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Audrey J Marsh
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Elisa Trujillo
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Kurt C Marsden
- Department of Biological Sciences, NC State UniversityRaleighUnited States
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Adam C Miller
- Institute of Neuroscience, University of OregonEugeneUnited States
| |
Collapse
|
19
|
Zoidl GR, Spray DC. The Roles of Calmodulin and CaMKII in Cx36 Plasticity. Int J Mol Sci 2021; 22:4473. [PMID: 33922931 PMCID: PMC8123330 DOI: 10.3390/ijms22094473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 01/07/2023] Open
Abstract
Anatomical and electrophysiological evidence that gap junctions and electrical coupling occur between neurons was initially confined to invertebrates and nonmammals and was thought to be a primitive form of synaptic transmission. More recent studies revealed that electrical communication is common in the mammalian central nervous system (CNS), often coexisting with chemical synaptic transmission. The subsequent progress indicated that electrical synapses formed by the gap junction protein connexin-36 (Cx36) and its paralogs in nonmammals constitute vital elements in mammalian and fish synaptic circuitry. They govern the collective activity of ensembles of coupled neurons, and Cx36 gap junctions endow them with enormous adaptive plasticity, like that seen at chemical synapses. Moreover, they orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie the fundamental integrative processes, such as memory and learning. Here, we review the available mechanistic evidence and models that argue for the essential roles of calcium, calmodulin, and the Ca2+/calmodulin-dependent protein kinase II in integrating calcium signals to modulate the strength of electrical synapses through interactions with the gap junction protein Cx36.
Collapse
Affiliation(s)
- Georg R. Zoidl
- Department of Biology & Center for Vision Research (CVR), York University, Toronto, ON M3J 1P3, Canada
| | - David C. Spray
- Dominick P. Purpura Department of Neuroscience & Department of Medicine (Cardiology), Albert Einstein College of Medicine, New York, NY 10461, USA;
| |
Collapse
|
20
|
Cervera J, Ramirez P, Levin M, Mafe S. Community effects allow bioelectrical reprogramming of cell membrane potentials in multicellular aggregates: Model simulations. Phys Rev E 2020; 102:052412. [PMID: 33327213 DOI: 10.1103/physreve.102.052412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
Bioelectrical patterns are established by spatiotemporal correlations of cell membrane potentials at the multicellular level, being crucial to development, regeneration, and tumorigenesis. We have conducted multicellular simulations on bioelectrical community effects and intercellular coupling in multicellular aggregates. The simulations aim at establishing under which conditions a local heterogeneity consisting of a small patch of cells can be stabilized against a large aggregate of surrounding identical cells which are in a different bioelectrical state. In this way, instructive bioelectrical information can be persistently encoded in spatiotemporal patterns of separated domains with different cell polarization states. The multicellular community effects obtained are regulated both at the single-cell and intercellular levels, and emerge from a delicate balance between the degrees of intercellular coupling in: (i) the small patch, (ii) the surrounding bulk, and (iii) the interface that separates these two regions. The model is experimentally motivated and consists of two generic voltage-gated ion channels that attempt to establish the depolarized and polarized cell states together with coupling conductances whose individual and intercellular different states permit a dynamic multicellular connectivity. The simulations suggest that community effects may allow the reprogramming of single-cell bioelectrical states, in agreement with recent experimental data. A better understanding of the resulting electrical regionalization can assist the electroceutical correction of abnormally depolarized regions initiated in the bulk of normal tissues as well as suggest new biophysical mechanisms for the establishment of target patterns in multicellular engineering.
Collapse
Affiliation(s)
- Javier Cervera
- Departamento Termodinàmica, Universitat de València, E-46100 Burjassot, Spain
| | - Patricio Ramirez
- Departamento Física Aplicada, Universidad Politécnica de Valencia, E-46022 Valencia, Spain
| | - Michael Levin
- Department of Biology and Allen Discovery Center at Tufts University, Medford, Massachusetts 02155-4243, USA
| | - Salvador Mafe
- Departamento Termodinàmica, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
21
|
Jin EJ, Park S, Lyu X, Jin Y. Gap junctions: historical discoveries and new findings in the Caenorhabditiselegans nervous system. Biol Open 2020; 9:bio053983. [PMID: 32883654 PMCID: PMC7489761 DOI: 10.1242/bio.053983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gap junctions are evolutionarily conserved structures at close membrane contacts between two cells. In the nervous system, they mediate rapid, often bi-directional, transmission of signals through channels called innexins in invertebrates and connexins in vertebrates. Connectomic studies from Caenorhabditis elegans have uncovered a vast number of gap junctions present in the nervous system and non-neuronal tissues. The genome also has 25 innexin genes that are expressed in spatial and temporal dynamic pattern. Recent findings have begun to reveal novel roles of innexins in the regulation of multiple processes during formation and function of neural circuits both in normal conditions and under stress. Here, we highlight the diverse roles of gap junctions and innexins in the C. elegans nervous system. These findings contribute to fundamental understanding of gap junctions in all animals.
Collapse
Affiliation(s)
- Eugene Jennifer Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seungmee Park
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaohui Lyu
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
22
|
Cachope R, Pereda AE. Regulatory Roles of Metabotropic Glutamate Receptors on Synaptic Communication Mediated by Gap Junctions. Neuroscience 2020; 456:85-94. [PMID: 32619474 DOI: 10.1016/j.neuroscience.2020.06.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022]
Abstract
Variations of synaptic strength are thought to underlie forms of learning and can functionally reshape neural circuits. Metabotropic glutamate receptors play key roles in regulating the strength of chemical synapses. However, information within neural circuits is also conveyed via a second modality of transmission: gap junction-mediated synapses. We review here evidence indicating that metabotropic glutamate receptors also play important roles in the regulation of synaptic communication mediated by neuronal gap junctions, also known as 'electrical synapses'. Activity-driven interactions between metabotropic glutamate receptors and neuronal gap junctions can lead to long-term changes in the strength of electrical synapses. Further, the regulatory action of metabotropic glutamate receptors on neuronal gap junctions is not restricted to adulthood but is also of critical relevance during brain development and contributes to the pathological mechanisms that follow brain injury.
Collapse
Affiliation(s)
- Roger Cachope
- CHDI Foundation, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
23
|
Martin EA, Lasseigne AM, Miller AC. Understanding the Molecular and Cell Biological Mechanisms of Electrical Synapse Formation. Front Neuroanat 2020; 14:12. [PMID: 32372919 PMCID: PMC7179694 DOI: 10.3389/fnana.2020.00012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
In this review article, we will describe the recent advances made towards understanding the molecular and cell biological mechanisms of electrical synapse formation. New evidence indicates that electrical synapses, which are gap junctions between neurons, can have complex molecular compositions including protein asymmetries across joined cells, diverse morphological arrangements, and overlooked similarities with other junctions, all of which indicate new potential roles in neurodevelopmental disease. Aquatic organisms, and in particular the vertebrate zebrafish, have proven to be excellent models for elucidating the molecular mechanisms of electrical synapse formation. Zebrafish will serve as our main exemplar throughout this review and will be compared with other model organisms. We highlight the known cell biological processes that build neuronal gap junctions and compare these with the assemblies of adherens junctions, tight junctions, non-neuronal gap junctions, and chemical synapses to explore the unknown frontiers remaining in our understanding of the critical and ubiquitous electrical synapse.
Collapse
Affiliation(s)
| | | | - Adam C. Miller
- Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| |
Collapse
|
24
|
Yan Y, Yang H, Xie Y, Ding Y, Kong D, Yu H. Research Progress on Alzheimer's Disease and Resveratrol. Neurochem Res 2020; 45:989-1006. [PMID: 32162143 DOI: 10.1007/s11064-020-03007-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), a common irreversible neurodegenerative disease characterized by amyloid-β plaques, neurofibrillary tangles, and changes in tau phosphorylation, is accompanied by memory loss and symptoms of cognitive dysfunction. Increases in disease incidence due to the ageing of the population have placed a great burden on society. To date, the mechanism of AD and the identities of adequate drugs for AD prevention and treatment have eluded the medical community. It has been confirmed that phytochemicals have certain neuroprotective effects against AD. For example, some progress has been made in research on the use of resveratrol, a natural polyphenolic phytochemical, for the prevention and treatment of AD in recent years. Elucidation of the pathogenesis of AD will create a solid foundation for drug treatment. In addition, research on resveratrol, including its mechanism of action, the roles of signalling pathways and its therapeutic targets, will provide new ideas for AD treatment, which is of great significance. In this review, we discuss the possible relationships between AD and the following factors: synapses, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs), silent information regulator 1 (SIRT1), and estrogens. We also discuss the findings of previous studies regarding these relationships in the context of AD treatment and further summarize research progress related to resveratrol treatment.
Collapse
Affiliation(s)
- Yan Yan
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Huihuang Yang
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuxun Xie
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuanlin Ding
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Danli Kong
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| | - Haibing Yu
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
25
|
Abstract
The complete description of the expression of gap junction proteins in the nervous system of the worm reveals a great complexity of their distribution amongst different neuronal classes, opening an unprecedented opportunity to expose the functional diversity of electrical synapses.
Collapse
Affiliation(s)
- Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
26
|
Totland MZ, Rasmussen NL, Knudsen LM, Leithe E. Regulation of gap junction intercellular communication by connexin ubiquitination: physiological and pathophysiological implications. Cell Mol Life Sci 2020; 77:573-591. [PMID: 31501970 PMCID: PMC7040059 DOI: 10.1007/s00018-019-03285-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/10/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022]
Abstract
Gap junctions consist of arrays of intercellular channels that enable adjacent cells to communicate both electrically and metabolically. Gap junctions have a wide diversity of physiological functions, playing critical roles in both excitable and non-excitable tissues. Gap junction channels are formed by integral membrane proteins called connexins. Inherited or acquired alterations in connexins are associated with numerous diseases, including heart failure, neuropathologies, deafness, skin disorders, cataracts and cancer. Gap junctions are highly dynamic structures and by modulating the turnover rate of connexins, cells can rapidly alter the number of gap junction channels at the plasma membrane in response to extracellular or intracellular cues. Increasing evidence suggests that ubiquitination has important roles in the regulation of endoplasmic reticulum-associated degradation of connexins as well as in the modulation of gap junction endocytosis and post-endocytic sorting of connexins to lysosomes. In recent years, researchers have also started to provide insights into the physiological roles of connexin ubiquitination in specific tissue types. This review provides an overview of the advances made in understanding the roles of connexin ubiquitination in the regulation of gap junction intercellular communication and discusses the emerging physiological and pathophysiological implications of these processes.
Collapse
Affiliation(s)
- Max Zachrisson Totland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Nikoline Lander Rasmussen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Lars Mørland Knudsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway.
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
27
|
Tetenborg S, Yadav SC, Brüggen B, Zoidl GR, Hormuzdi SG, Monyer H, van Woerden GM, Janssen-Bienhold U, Dedek K. Localization of Retinal Ca 2+/Calmodulin-Dependent Kinase II-β (CaMKII-β) at Bipolar Cell Gap Junctions and Cross-Reactivity of a Monoclonal Anti-CaMKII-β Antibody With Connexin36. Front Mol Neurosci 2019; 12:206. [PMID: 31555090 PMCID: PMC6724749 DOI: 10.3389/fnmol.2019.00206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/07/2019] [Indexed: 11/13/2022] Open
Abstract
Neuronal gap junctions formed by connexin36 (Cx36) and chemical synapses share striking similarities in terms of plasticity. Ca2+/calmodulin-dependent protein kinase II (CaMKII), an enzyme known to induce memory formation at chemical synapses, has recently been described to potentiate electrical coupling in the retina and several other brain areas via phosphorylation of Cx36. The contribution of individual CaMKII isoforms to this process, however, remains unknown. We recently identified CaMKII-β at electrical synapses in the mouse retina. Now, we set out to identify cell types containing Cx36 gap junctions that also express CaMKII-β. To ensure precise description, we first tested the specificity of two commercially available antibodies on CaMKII-β-deficient retinas. We found that a polyclonal antibody was highly specific for CaMKII-β. However, a monoclonal antibody (CB-β-1) recognized CaMKII-β but also cross-reacted with the C-terminal tail of Cx36, making localization analyses with this antibody inaccurate. Using the polyclonal antibody, we identified strong CaMKII-β expression in bipolar cell terminals that were secretagogin- and HCN1-positive and thus represent terminals of type 5 bipolar cells. In these terminals, a small fraction of CaMKII-β also colocalized with Cx36. A similar pattern was observed in putative type 6 bipolar cells although there, CaMKII expression seemed less pronounced. Next, we tested whether CaMKII-β influenced the Cx36 expression in bipolar cell terminals by quantifying the number and size of Cx36-immunoreactive puncta in CaMKII-β-deficient retinas. However, we found no significant differences between the genotypes, indicating that CaMKII-β is not necessary for the formation and maintenance of Cx36-containing gap junctions in the retina. In addition, in wild-type retinas, we observed frequent association of Cx36 and CaMKII-β with synaptic ribbons, i.e., chemical synapses, in bipolar cell terminals. This arrangement resembled the composition of mixed synapses found for example in Mauthner cells, in which electrical coupling is regulated by glutamatergic activity. Taken together, our data imply that CaMKII-β may fulfill several functions in bipolar cell terminals, regulating both Cx36-containing gap junctions and ribbon synapses and potentially also mediating cross-talk between these two types of bipolar cell outputs.
Collapse
Affiliation(s)
- Stephan Tetenborg
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Shubhash Chandra Yadav
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Bianca Brüggen
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Georg R Zoidl
- Department of Biology & Center for Vision Research, York University, Toronto, ON, Canada
| | - Sheriar G Hormuzdi
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | | | - Geeske M van Woerden
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Ulrike Janssen-Bienhold
- Department of Neuroscience, Visual Neuroscience, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
28
|
Diniz GB, Battagello DS, Cherubini PM, Reyes-Mendoza JD, Luna-Illades C, Klein MO, Motta-Teixeira LC, Sita LV, Miranda-Anaya M, Morales T, Bittencourt JC. Melanin-concentrating hormone peptidergic system: Comparative morphology between muroid species. J Comp Neurol 2019; 527:2973-3001. [PMID: 31152440 DOI: 10.1002/cne.24723] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022]
Abstract
Melanin-concentrating hormone (MCH) is a conserved neuropeptide, predominantly located in the diencephalon of vertebrates, and associated with a wide range of functions. While functional studies have focused on the use of the traditional mouse laboratory model, critical gaps exist in our understanding of the morphology of the MCH system in this species. Even less is known about the nontraditional animal model Neotomodon alstoni (Mexican volcano mouse). A comparative morphological study among these rodents may, therefore, contribute to a better understanding of the evolution of the MCH peptidergic system. To this end, we employed diverse immunohistochemical protocols to identify key aspects of the MCH system, including its spatial relationship to another neurochemical population of the tuberal hypothalamus, the orexins. Three-dimensional (3D) reconstructions were also employed to convey a better sense of spatial distribution to these neurons. Our results show that the distribution of MCH neurons in all rodents studied follows a basic plan, but individual characteristics are found for each species, such as the preeminence of a periventricular group only in the rat, the lack of posterior groups in the mouse, and the extensive presence of MCH neurons in the anterior hypothalamic area of Neotomodon. Taken together, these data suggest a strong anatomical substrate for previously described functions of the MCH system, and that particular neurochemical and morphological features may have been determinant to species-specific phenotypes in rodent evolution.
Collapse
Affiliation(s)
- Giovanne B Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniella S Battagello
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Queretaro, Mexico
| | - Pedro M Cherubini
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Julio D Reyes-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Queretaro, Mexico
| | - Cesar Luna-Illades
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Queretaro, Mexico
| | - Marianne O Klein
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lívia C Motta-Teixeira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luciane V Sita
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Manuel Miranda-Anaya
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Santiago de Querétaro, Queretaro, Mexico
| | - Teresa Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Queretaro, Mexico
| | - Jackson C Bittencourt
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Center for Neuroscience and Behavior, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Alcamí P, Pereda AE. Beyond plasticity: the dynamic impact of electrical synapses on neural circuits. Nat Rev Neurosci 2019; 20:253-271. [PMID: 30824857 DOI: 10.1038/s41583-019-0133-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electrical synapses are found in vertebrate and invertebrate nervous systems. The cellular basis of these synapses is the gap junction, a group of intercellular channels that mediate direct communication between adjacent neurons. Similar to chemical synapses, electrical connections are modifiable and their variations in strength provide a mechanism for reconfiguring neural circuits. In addition, electrical synapses dynamically regulate neural circuits through properties without equivalence in chemical transmission. Because of their continuous nature and bidirectionality, electrical synapses allow electrical currents underlying changes in membrane potential to leak to 'coupled' partners, dampening neuronal excitability and altering their integrative properties. Remarkably, this effect can be transiently alleviated when comparable changes in membrane potential simultaneously occur in each of the coupled neurons, a phenomenon that is dynamically dictated by the timing of arriving signals such as synaptic potentials. By way of this mechanism, electrical synapses influence synaptic integration and action potential generation, imparting an additional layer of dynamic complexity to neural circuits.
Collapse
Affiliation(s)
- Pepe Alcamí
- Max Planck Institute for Ornithology, Seewiesen, Germany
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universitaet Munich, Martinsried, Germany
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Alberto E Pereda
- Marine Biological Laboratory, Woods Hole, MA, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
30
|
Nagy JI, Pereda AE, Rash JE. On the occurrence and enigmatic functions of mixed (chemical plus electrical) synapses in the mammalian CNS. Neurosci Lett 2019; 695:53-64. [PMID: 28911821 PMCID: PMC5845811 DOI: 10.1016/j.neulet.2017.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/28/2017] [Accepted: 09/10/2017] [Indexed: 12/31/2022]
Abstract
Electrical synapses with diverse configurations and functions occur at a variety of interneuronal appositions, thereby significantly expanding the physiological complexity of neuronal circuitry over that provided solely by chemical synapses. Gap junctions between apposed dendritic and somatic plasma membranes form "purely electrical" synapses that allow for electrical communication between coupled neurons. In addition, gap junctions at axon terminals synapsing on dendrites and somata allow for "mixed" (dual chemical+electrical) synaptic transmission. "Dual transmission" was first documented in the autonomic nervous system of birds, followed by its detection in the central nervous systems of fish, amphibia, and reptiles. Subsequently, mixed synapses have been detected in several locations in the mammalian CNS, where their properties and functional roles remain undetermined. Here, we review available evidence for the presence, complex structural composition, and emerging functional properties of mixed synapses in the mammalian CNS.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology and Pathophysiology, Faculty of Medicine, 745 Bannatyne Ave, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada.
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - John E Rash
- Department of Biomedical Sciences, and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
31
|
Plasticity of the Electrical Connectome of C. elegans. Cell 2019; 176:1174-1189.e16. [PMID: 30686580 PMCID: PMC10064801 DOI: 10.1016/j.cell.2018.12.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/12/2018] [Accepted: 12/14/2018] [Indexed: 11/23/2022]
Abstract
The specific patterns and functional properties of electrical synapses of a nervous system are defined by the neuron-specific complement of electrical synapse constituents. We systematically examined the molecular composition of the electrical connectome of the nematode C. elegans through a genome- and nervous-system-wide analysis of the expression patterns of the invertebrate electrical synapse constituents, the innexins. We observe highly complex combinatorial expression patterns throughout the nervous system and found that these patterns change in a strikingly neuron-type-specific manner throughout the nervous system when animals enter an insulin-controlled diapause arrest stage under harsh environmental conditions, the dauer stage. By analyzing several individual synapses, we demonstrate that dauer-specific electrical synapse remodeling is responsible for specific aspects of the altered locomotory and chemosensory behavior of dauers. We describe an intersectional gene regulatory mechanism involving terminal selector and FoxO transcription factors mediating dynamic innexin expression plasticity in a neuron-type- and environment-specific manner.
Collapse
|
32
|
Abstract
As the physiology of synapses began to be explored in the 1950s, it became clear that electrical communication between neurons could not always be explained by chemical transmission. Instead, careful studies pointed to a direct intercellular pathway of current flow and to the anatomical structure that was (eventually) called the gap junction. The mechanism of intercellular current flow was simple compared with chemical transmission, but the consequences of electrical signaling in excitable tissues were not. With the recognition that channels were a means of passive ion movement across membranes, the character and behavior of gap junction channels came under scrutiny. It became evident that these gated channels mediated intercellular transfer of small molecules as well as atomic ions, thereby mediating chemical, as well as electrical, signaling. Members of the responsible protein family in vertebrates-connexins-were cloned and their channels studied by many of the increasingly biophysical techniques that were being applied to other channels. As described here, much of the evolution of the field, from electrical coupling to channel structure-function, has appeared in the pages of the Journal of General Physiology.
Collapse
Affiliation(s)
- Andrew L Harris
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
33
|
Faber DS, Pereda AE. Two Forms of Electrical Transmission Between Neurons. Front Mol Neurosci 2018; 11:427. [PMID: 30534051 PMCID: PMC6276723 DOI: 10.3389/fnmol.2018.00427] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/05/2018] [Indexed: 12/30/2022] Open
Abstract
Electrical signaling is a cardinal feature of the nervous system and endows it with the capability of quickly reacting to changes in the environment. Although synaptic communication between nerve cells is perceived to be mainly chemically mediated, electrical synaptic interactions also occur. Two different strategies are responsible for electrical communication between neurons. One is the consequence of low resistance intercellular pathways, called "gap junctions", for the spread of electrical currents between the interior of two cells. The second occurs in the absence of cell-to-cell contacts and is a consequence of the extracellular electrical fields generated by the electrical activity of neurons. Here, we place present notions about electrical transmission in a historical perspective and contrast the contributions of the two different forms of electrical communication to brain function.
Collapse
Affiliation(s)
- Donald S. Faber
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Alberto E. Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
- Marine Biological Laboratory, Woods Hole, MA, United States
| |
Collapse
|
34
|
Lynn BD, Li X, Hormuzdi SG, Griffiths EK, McGlade CJ, Nagy JI. E3 ubiquitin ligases LNX1 and LNX2 localize at neuronal gap junctions formed by connexin36 in rodent brain and molecularly interact with connexin36. Eur J Neurosci 2018; 48:3062-3081. [PMID: 30295974 DOI: 10.1111/ejn.14198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022]
Abstract
Electrical synapses in the mammalian central nervous system (CNS) are increasingly recognized as highly complex structures for mediation of neuronal communication, both with respect to their capacity for dynamic short- and long-term modification in efficacy of synaptic transmission and their multimolecular regulatory and structural components. These two characteristics are inextricably linked, such that understanding of mechanisms that contribute to electrical synaptic plasticity requires knowledge of the molecular composition of electrical synapses and the functions of proteins associated with these synapses. Here, we provide evidence that the key component of gap junctions that form the majority of electrical synapses in the mammalian CNS, namely connexin36 (Cx36), directly interacts with the related E3 ubiquitin ligase proteins Ligand of NUMB protein X1 (LNX1) and Ligand of NUMB protein X2 (LNX2). This is based on immunofluorescence colocalization of LNX1 and LNX2 with Cx36-containing gap junctions in adult mouse brain versus lack of such coassociation in LNX null mice, coimmunoprecipitation of LNX proteins with Cx36, and pull-down of Cx36 with the second PDZ domain of LNX1 and LNX2. Furthermore, cotransfection of cultured cells with Cx36 and E3 ubiquitin ligase-competent LNX1 and LNX2 isoforms led to loss of Cx36-containing gap junctions between cells, whereas these junctions persisted following transfection with isoforms of these proteins that lack ligase activity. Our results suggest that a LNX protein mediates ubiquitination of Cx36 at neuronal gap junctions, with consequent Cx36 internalization, and may thereby contribute to intracellular mechanisms that govern the recently identified modifiability of synaptic transmission at electrical synapses.
Collapse
Affiliation(s)
- Bruce D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xinbo Li
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Sheriar G Hormuzdi
- D'Arcy Thompson Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Emily K Griffiths
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
35
|
Robertson JM. The Gliocentric Brain. Int J Mol Sci 2018; 19:ijms19103033. [PMID: 30301132 PMCID: PMC6212929 DOI: 10.3390/ijms19103033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/23/2018] [Accepted: 09/28/2018] [Indexed: 01/10/2023] Open
Abstract
The Neuron Doctrine, the cornerstone of research on normal and abnormal brain functions for over a century, has failed to discern the basis of complex cognitive functions. The location and mechanisms of memory storage and recall, consciousness, and learning, remain enigmatic. The purpose of this article is to critically review the Neuron Doctrine in light of empirical data over the past three decades. Similarly, the central role of the synapse and associated neural networks, as well as ancillary hypotheses, such as gamma synchrony and cortical minicolumns, are critically examined. It is concluded that each is fundamentally flawed and that, over the past three decades, the study of non-neuronal cells, particularly astrocytes, has shown that virtually all functions ascribed to neurons are largely the result of direct or indirect actions of glia continuously interacting with neurons and neural networks. Recognition of non-neural cells in higher brain functions is extremely important. The strict adherence of purely neurocentric ideas, deeply ingrained in the great majority of neuroscientists, remains a detriment to understanding normal and abnormal brain functions. By broadening brain information processing beyond neurons, progress in understanding higher level brain functions, as well as neurodegenerative and neurodevelopmental disorders, will progress beyond the impasse that has been evident for decades.
Collapse
|
36
|
Marsh AJ, Michel JC, Adke AP, Heckman EL, Miller AC. Asymmetry of an Intracellular Scaffold at Vertebrate Electrical Synapses. Curr Biol 2017; 27:3561-3567.e4. [PMID: 29103941 PMCID: PMC5698123 DOI: 10.1016/j.cub.2017.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 12/25/2022]
Abstract
Neuronal synaptic connections are either chemical or electrical, and these two types of synapses work together to dynamically define neural circuit function [1]. Although we know a great deal about the molecules that support chemical synapse formation and function, we know little about the macromolecular complexes that regulate electrical synapses. Electrical synapses are created by gap junction (GJ) channels that provide direct ionic communication between neurons [2]. Although they are often molecularly and functionally symmetric, recent work has found that pre- and postsynaptic neurons can contribute different GJ-forming proteins, creating molecularly asymmetric channels that are correlated with functional asymmetry at the synapse [3, 4]. Associated with the GJs are structures observed by electron microscopy termed the electrical synapse density (ESD) [5]. The ESD has been suggested to be critical for the formation and function of the electrical synapse, yet the biochemical makeup of these structures is poorly understood. Here we find that electrical synapse formation in vivo requires an intracellular scaffold called Tight Junction Protein 1b (Tjp1b). Tjp1b is localized to the electrical synapse, where it is required for the stabilization of the GJs and for electrical synapse function. Strikingly, we find that Tjp1b protein localizes and functions asymmetrically, exclusively on the postsynaptic side of the synapse. Our findings support a novel model of electrical synapse molecular asymmetry at the level of an intracellular scaffold that is required for building the electrical synapse. We propose that such ESD asymmetries could be used by all nervous systems to support molecular and functional asymmetries at electrical synapses.
Collapse
Affiliation(s)
- Audrey J Marsh
- University of Oregon, Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Jennifer Carlisle Michel
- University of Oregon, Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Anisha P Adke
- University of Oregon, Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Emily L Heckman
- University of Oregon, Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Adam C Miller
- University of Oregon, Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|