1
|
Derman D, Pham DD, Mejia AF, Ferradal SL. Individual patterns of functional connectivity in neonates as revealed by surface-based Bayesian modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.24.550218. [PMID: 39149306 PMCID: PMC11326129 DOI: 10.1101/2023.07.24.550218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Resting-state functional connectivity is a widely used approach to study the functional brain network organization during early brain development. However, the estimation of functional connectivity networks in individual infants has been rather elusive due to the unique challenges involved with functional magnetic resonance imaging (fMRI) data from young populations. Here, we use fMRI data from the developing Human Connectome Project (dHCP) database to characterize individual variability in a large cohort of term-born infants (N = 289) using a novel data-driven Bayesian framework. To enhance alignment across individuals, the analysis was conducted exclusively on the cortical surface, employing surface-based registration guided by age-matched neonatal atlases. Using 10 minutes of resting-state fMRI data, we successfully estimated subject-level maps for fourteen brain networks/subnetworks along with individual functional parcellation maps that revealed differences between subjects. We also found a significant relationship between age and mean connectivity strength in all brain regions, including previously unreported findings in higher-order networks. These results illustrate the advantages of surface-based methods and Bayesian statistical approaches in uncovering individual variability within very young populations.
Collapse
Affiliation(s)
- Diego Derman
- Department of Intelligent Systems Engineering, Indiana University, USA
| | | | | | | |
Collapse
|
2
|
Tuulari JJ, Rajasilta O, Cabral J, Kringelbach ML, Karlsson L, Karlsson H. Maternal prenatal distress exposure negatively associates with the stability of neonatal frontoparietal network. Stress 2024; 27:2275207. [PMID: 37877207 DOI: 10.1080/10253890.2023.2275207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
Maternal prenatal distress (PD), frequently defined as in utero prenatal stress exposure (PSE) to the developing fetus, influences the developing brain and numerous associations between PSE and brain structure have been described both in neonates and in older children. Previous studies addressing PSE-linked alterations in neonates' brain activity have focused on connectivity analyses from predefined seed regions, but the effects of PSE at the level of distributed functional networks remains unclear. In this study, we investigated the impact of prenatal distress on the spatial and temporal properties of functional networks detected in functional MRI data from 20 naturally sleeping, term-born (age 25.85 ± 7.72 days, 11 males), healthy neonates. First, we performed group level independent component analysis (GICA) to evaluate an association between PD and the identified functional networks. Second, we searched for an association with PD at the level of the stability of functional networks over time using leading eigenvector dynamics analysis (LEiDA). No statistically significant associations were detected at the spatial level for the GICA-derived networks. However, at the dynamic level, LEiDA revealed that maternal PD negatively associated with the stability of a frontoparietal network. These results imply that maternal PD may influence the stability of frontoparietal connections in neonatal brain network dynamics and adds to the cumulating evidence that frontal areas are especially sensitive to PSE. We advocate for early preventive intervention strategies regarding pregnant mothers. Nevertheless, future research venues are required to assess optimal intervention timing and methods for maximum benefit.
Collapse
Affiliation(s)
- Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Clinical Medicine, Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- Turku Collegium for Science, Medicine and Technology (TCSMT), University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Olli Rajasilta
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Joana Cabral
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Centre for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland
- Department of Clinical Medicine, Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Clinical Medicine, Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland
| |
Collapse
|
3
|
Nazari R, Salehi M. Early development of the functional brain network in newborns. Brain Struct Funct 2023; 228:1725-1739. [PMID: 37493690 DOI: 10.1007/s00429-023-02681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
During the prenatal period and the first postnatal years, the human brain undergoes rapid growth, which establishes a preliminary infrastructure for the subsequent development of cognition and behavior. To understand the underlying processes of brain functioning and identify potential sources of developmental disorders, it is essential to uncover the developmental rules that govern this critical period. In this study, graph theory modeling and network science analysis were employed to investigate the impact of age, gender, weight, and typical and atypical development on brain development. Local and global topologies of functional connectomes obtained from rs-fMRI data were collected from 421 neonates aged between 31 and 45 postmenstrual weeks who were in natural sleep without any sedation. The results showed that global efficiency, local efficiency, clustering coefficient, and small-worldness increased with age, while modularity and characteristic path length decreased with age. The normalized rich-club coefficient displayed a U-shaped pattern during development. The study also examined the global and local impacts of gender, weight, and group differences between typical and atypical cases. The findings presented some new insights into the maturation of functional brain networks and their relationship with cognitive development and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Reza Nazari
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mostafa Salehi
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
- School of Computer Science, Institute for Research in Fundamental Science (IPM), Tehran, P.O.Box 19395-5746, Iran.
| |
Collapse
|
4
|
Posner MI, Rothbart MK. Fifty Years Integrating Neurobiology and Psychology to Study Attention. Biol Psychol 2023; 180:108574. [PMID: 37148960 DOI: 10.1016/j.biopsycho.2023.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
At the time of the start of Biological Psychology cognitive studies had developed approaches to measuring cognitive processes. However, linking these to the underlying biology in the typical human brain had hardly begun. A critical step came in 1988 when methods for imaging the human brain in cognitive tasks began. By 1990 it was possible to describe three brain networks that carried out the hypothesized cognitive functions outlined 20 years before. Their development was traced in infancy, first using age-appropriate tasks and later through resting state imaging. Imaging was applied to both voluntary and involuntary cued shifts of visual orienting in humans and primates, and a summary was presented in 2002. By 2008 these new imaging findings were used to test hypotheses about the genes involved in each network. Recently, studies of mice using optogenetics to control populations of neurons have brought us closer to a synthesis of how attention and memory networks operate together in human learning. Perhaps the coming years will bring us to an integrated theory of aspects of attention using data from all the levels that can illuminate these issues, thus fulfilling a key goal of the Journal.
Collapse
|
5
|
Rajasilta O, Häkkinen S, Björnsdotter M, Scheinin NM, Lehtola SJ, Saunavaara J, Parkkola R, Lähdesmäki T, Karlsson L, Karlsson H, Tuulari JJ. Maternal psychological distress associates with alterations in resting-state low-frequency fluctuations and distal functional connectivity of the neonate medial prefrontal cortex. Eur J Neurosci 2023; 57:242-257. [PMID: 36458867 PMCID: PMC10108202 DOI: 10.1111/ejn.15882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Prenatal stress exposure (PSE) has been observed to exert a programming effect on the developing infant brain, possibly with long-lasting consequences on temperament, cognitive functions and the risk for developing psychiatric disorders. Several prior studies have revealed that PSE associates with alterations in neonate functional connectivity in the prefrontal regions and amygdala. In this study, we explored whether maternal psychological symptoms measured during the 24th gestational week had associations with neonate resting-state network metrics. Twenty-one neonates (nine female) underwent resting-state fMRI scanning (mean gestation-corrected age at scan 26.95 days) to assess fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo). The ReHo/fALFF maps were used in multiple regression analysis to investigate whether maternal self-reported anxiety and/or depressive symptoms associate with neonate functional brain features. Maternal psychological distress (composite score of depressive and anxiety symptoms) was positively associated with fALFF in the neonate medial prefrontal cortex (mPFC). Anxiety and depressive symptoms, assessed separately, exhibited similar but weaker associations. Post hoc seed-based connectivity analyses further showed that distal connectivity of mPFC covaried with PSE. No associations were found between neonate ReHo and PSE. These results offer preliminary evidence that PSE may affect functional features of the developing brain during gestation.
Collapse
Affiliation(s)
- Olli Rajasilta
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Suvi Häkkinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Malin Björnsdotter
- The Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Satu J Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, University of Turku and Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- Department of Pediatric Neurology, University of Turku and Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Center for Population Health Research, University of Turku and Turku University Hospital, Finland
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- Center for Population Health Research, University of Turku and Turku University Hospital, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Oxford (Sigrid Juselius Fellowship), Oxford, UK
- Turku Collegium for Science and Medicine, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Gao W, Huang Z, Ou W, Tang X, Lv W, Nie J. Functional individual variability development of the neonatal brain. Brain Struct Funct 2022; 227:2181-2190. [PMID: 35668328 DOI: 10.1007/s00429-022-02516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 05/22/2022] [Indexed: 11/28/2022]
Abstract
Individual variability in cognition and behavior results from the differences in brain structure and function that have already emerged before birth. However, little is known about individual variability in brain functional architecture at local level in neonates which is of great significance to explore owing to largely undeveloped long-range functional connectivity and segregated functions in early brain development. To address this, resting-state fMRI data of 163 neonates ranged from 32 to 45 postconceptional weeks (PCW) were used in this study, and various functional features including functional parcellation similarity, local brain activity and local functional connectivity were used to characterize individual functional variability. We observed significantly higher local functional individual variability in superior parietal, sensorimotor, and visual cortex, and lower variability in the frontal, insula and cingulate cortex relative to other regions within each hemisphere. The mean local functional individual variability significantly increased with age, and the age effect was found larger in brain regions such as the occipital, temporal, prefrontal and parietal cortex. Our findings promote the understanding of brain plasticity and regional differential maturation in the early stage.
Collapse
Affiliation(s)
- Wenjian Gao
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education (South China Normal University), Guangzhou, China
| | - Ziyi Huang
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education (South China Normal University), Guangzhou, China
| | - Wenfei Ou
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education (South China Normal University), Guangzhou, China
| | - Xiaoqian Tang
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education (South China Normal University), Guangzhou, China
| | - Wanying Lv
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education (South China Normal University), Guangzhou, China
| | - Jingxin Nie
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China. .,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education (South China Normal University), Guangzhou, China.
| |
Collapse
|
7
|
Radhakrishnan R, Vishnubhotla RV, Guckien Z, Zhao Y, Sokol GM, Haas DM, Sadhasivam S. Thalamocortical functional connectivity in infants with prenatal opioid exposure correlates with severity of neonatal opioid withdrawal syndrome. Neuroradiology 2022; 64:1649-1659. [PMID: 35410397 DOI: 10.1007/s00234-022-02939-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Prenatal opioid exposure (POE) is a growing public health concern due to its associated adverse outcomes including neonatal opioid withdrawal syndrome (NOWS). The aim of this study was to assess alterations in thalamic functional connectivity in neonates with POE using resting-state functional magnetic resonance imaging (rs-fMRI) and identify whether these altered connectivity measures were associated with NOWS severity. METHODS In this prospective, IRB-approved study, we performed rs-fMRI in 19 infants with POE and 20 healthy control infants without POE. Following standard pre-processing, we performed seed-based functional connectivity analysis with the right and left thalamus as the regions of interest. We performed post hoc analysis in the prenatal opioid exposure group to identify associations of altered thalamocortical connectivity with severity of NOWS. P value of < .05 was considered statistically significant. RESULTS There were several regions of significantly altered thalamic to cortical functional connectivity in infants with POE compared to the healthy infants. Distinct regions of thalamocortical functional connectivity correlated with maximum modified Finnegan score. Association between thalamocortical connectivity and severity of NOWS was nominally modified by maternal psychological conditions and polysubstance use. CONCLUSION Our findings reveal prenatal opioid exposure-related alterations in thalamic functional connectivity in the infant brain that are correlated with severity of NOWS. Future studies may benefit from evaluation of thalamocortical resting state functional connectivity in infants with POE to help stratify risk of long term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 705 Riley Hospital Drive, Indianapolis, IN, 46202, USA.
| | - Ramana V Vishnubhotla
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 705 Riley Hospital Drive, Indianapolis, IN, 46202, USA
| | - Zoe Guckien
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gregory M Sokol
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David M Haas
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
8
|
Hu H, Cusack R, Naci L. OUP accepted manuscript. Brain Commun 2022; 4:fcac071. [PMID: 35425900 PMCID: PMC9006044 DOI: 10.1093/braincomms/fcac071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 11/12/2022] Open
Abstract
One of the great frontiers of consciousness science is understanding how early consciousness arises in the development of the human infant. The reciprocal relationship between the default mode network and fronto-parietal networks—the dorsal attention and executive control network—is thought to facilitate integration of information across the brain and its availability for a wide set of conscious mental operations. It remains unknown whether the brain mechanism of conscious awareness is instantiated in infants from birth. To address this gap, we investigated the development of the default mode and fronto-parietal networks and of their reciprocal relationship in neonates. To understand the effect of early neonate age on these networks, we also assessed neonates born prematurely or before term-equivalent age. We used the Developing Human Connectome Project, a unique Open Science dataset which provides a large sample of neonatal functional MRI data with high temporal and spatial resolution. Resting state functional MRI data for full-term neonates (n = 282, age 41.2 weeks ± 12 days) and preterm neonates scanned at term-equivalent age (n = 73, 40.9 weeks ± 14.5 days), or before term-equivalent age (n = 73, 34.6 weeks ± 13.4 days), were obtained from the Developing Human Connectome Project, and for a reference adult group (n = 176, 22–36 years), from the Human Connectome Project. For the first time, we show that the reciprocal relationship between the default mode and dorsal attention network was present at full-term birth or term-equivalent age. Although different from the adult networks, the default mode, dorsal attention and executive control networks were present as distinct networks at full-term birth or term-equivalent age, but premature birth was associated with network disruption. By contrast, neonates before term-equivalent age showed dramatic underdevelopment of high-order networks. Only the dorsal attention network was present as a distinct network and the reciprocal network relationship was not yet formed. Our results suggest that, at full-term birth or by term-equivalent age, infants possess key features of the neural circuitry that enables integration of information across diverse sensory and high-order functional modules, giving rise to conscious awareness. Conversely, they suggest that this brain infrastructure is not present before infants reach term-equivalent age. These findings improve understanding of the ontogeny of high-order network dynamics that support conscious awareness and of their disruption by premature birth.
Collapse
Affiliation(s)
- Huiqing Hu
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Rhodri Cusack
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Correspondence to: Lorina Naci School of Psychology Trinity College Institute of Neuroscience Global Brain Health Institute Trinity College Dublin Dublin, Ireland E-mail:
| |
Collapse
|
9
|
Copeland A, Silver E, Korja R, Lehtola SJ, Merisaari H, Saukko E, Sinisalo S, Saunavaara J, Lähdesmäki T, Parkkola R, Nolvi S, Karlsson L, Karlsson H, Tuulari JJ. Infant and Child MRI: A Review of Scanning Procedures. Front Neurosci 2021; 15:666020. [PMID: 34321992 PMCID: PMC8311184 DOI: 10.3389/fnins.2021.666020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a safe method to examine human brain. However, a typical MR scan is very sensitive to motion, and it requires the subject to lie still during the acquisition, which is a major challenge for pediatric scans. Consequently, in a clinical setting, sedation or general anesthesia is often used. In the research setting including healthy subjects anesthetics are not recommended for ethical reasons and potential longer-term harm. Here we review the methods used to prepare a child for an MRI scan, but also on the techniques and tools used during the scanning to enable a successful scan. Additionally, we critically evaluate how studies have reported the scanning procedure and success of scanning. We searched articles based on special subject headings from PubMed and identified 86 studies using brain MRI in healthy subjects between 0 and 6 years of age. Scan preparations expectedly depended on subject's age; infants and young children were scanned asleep after feeding and swaddling and older children were scanned awake. Comparing the efficiency of different procedures was difficult because of the heterogeneous reporting of the used methods and the success rates. Based on this review, we recommend more detailed reporting of scanning procedure to help find out which are the factors affecting the success of scanning. In the long term, this could help the research field to get high quality data, but also the clinical field to reduce the use of anesthetics. Finally, we introduce the protocol used in scanning 2 to 5-week-old infants in the FinnBrain Birth Cohort Study, and tips for calming neonates during the scans.
Collapse
Affiliation(s)
- Anni Copeland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Eero Silver
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Riikka Korja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Satu J. Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Ekaterina Saukko
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Susanne Sinisalo
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Pediatric Neurology, Turku University Hospital, University of Turku, Turku, Finland
| | - Riitta Parkkola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Saara Nolvi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology and Speech-Language Pathology, Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|