1
|
Wei X, Liu W, Dong Z, Shen X, Huang C. Determination of aconitum alkaloids in acute poisoning case by electromembrane extraction. Talanta 2024; 280:126767. [PMID: 39197315 DOI: 10.1016/j.talanta.2024.126767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
In this work, electromembrane extraction (EME) was used for the first time to separate aconitine (AC), mesaconitine (Mes-AC) and hypaconitine (Hyp-AC) from biological samples and Chinese herbal medicines. Efficient EME of polar and high molecular weight aconitine alkaloids from different sample matrices was achieved with the solvent of 1-ethyl-2-nitrobenzene (ENB). Under the optimal EME conditions, EME provided recoveries for all targets in the range of 72%-74 %, 85%-103 % and 92%-94 % for whole blood, urine and aqueous samples. The proposed EME systems combined with LC-MS/MS and HPLC-UV were evaluated using different sample matrices, and the methods displayed satisfactory analytical characteristic including negligible matrix effect. The LOD and LOQ of AC, Mes-AC, and Hyp-AC by EME-LC-MS/MS were in the range of 0.002-0.068 ng/mL and 0.005-0.228 ng/mL respectively. The LOD and LOQ of AC, Mes-AC, and Hyp-AC by EME-HPLC-UV were in the range of 0.06-0.26 μg/mL and 0.20-0.86 μg/mL, respectively. The coefficient of determination, R2-value was ≥0.9926 for all cases, and the accuracy in the linear ranges was in the range of 91%-111 %. Finally, the method was successfully applied for the qualitative and quantitative analysis of AC and Mes-AC in the whole blood and herbal medicine dreg samples from an actual forensic case, and poisoning by aconitum alkaloids was identified as the cause of death. Therefore, we believe that EME could be a powerful tool to identify poisoning, and EME has great potential for efficient separation of polar and high molecular weight substances. These are of great importance in the fields of but not limited to forensic science, Traditional Chinese Medicine and clinics.
Collapse
Affiliation(s)
- Xiangting Wei
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China
| | - Wenyi Liu
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China
| | - Zhuangzhuang Dong
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China.
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
2
|
Wu Z, Qian J, Feng C, Chen Z, Gao X, Liu Y, Gao Y. A review of Aconiti Lateralis Radix Praeparata (Fuzi) for kidney disease: phytochemistry, toxicology, herbal processing, and pharmacology. Front Pharmacol 2024; 15:1427333. [PMID: 39021829 PMCID: PMC11251978 DOI: 10.3389/fphar.2024.1427333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Background Aconiti Lateralis Radix Praeparata, commonly known as Fuzi in. traditional Chinese medicine (TCM), is widely utilized in clinical practice despite its inherent toxicity. Since ancient times, TCM practitioners have explored various processing techniques to broaden its clinical applications and enhance its safety profile. This review aims to summarize the effects of processing on the chemical composition, toxicity, and pharmacological properties of Fuzi, as well as investigate potential underlying mechanisms. Methods Data on phytochemistry, toxicology, pharmacology, and processing methods of Fuzi were gathered from the literature of electronic databases, including Web of Science, PubMed, and CNKI. Results Fuzi contains over 100 kinds of chemical compounds, including alkaloids, flavonoids, and polysaccharides, among which alkaloids are the main active compounds. Diester-diterpenoid alkaloids are the main contributors to Fuzi's toxicity and have side effects on some organs, such as the heart, liver, kidneys, nervous system, and reproductive system. The chemical composition of aconite, particularly its alkaloid content, was changed by hydrolysis or substitution reaction during processing to enhance its efficacy and reduce its toxicity. Salted aconite could enhance the therapeutic efficacy of Fuzi in treating kidney diseases and influence its pharmacokinetics. Conclusion Processing plays an important role in increasing the efficiency and decreasing toxicity of aconite. Further studies are needed to elucidate the changes of aconite before and after processing and the underlying mechanisms of these changes, thereby providing evidence for the clinical safety of drug use.
Collapse
Affiliation(s)
- Ziyang Wu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jiawen Qian
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chenhang Feng
- The Third Affiliated Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhouqi Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiangfu Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
| | - Yuancheng Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
3
|
Cao WY, Liu JY, Sun M, Wang JK, Lu F, Yang QN, Zhang WT, Zi MJ, Zhang BE, Liu HB, Wang SG, Wu Y, Wu RZ, Wu WD, Li R, Zhu ZY, Gao R. Pharmacokinetics, safety, and efficacy of Fuqi Guben Gao in the treatment of kidney-yang deficiency syndrome: a randomized, double-blind phase I trial. Front Pharmacol 2024; 15:1351871. [PMID: 39015370 PMCID: PMC11250459 DOI: 10.3389/fphar.2024.1351871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/05/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction: Fuqi Guben Gao (FQGBG) is a botanical drug formulation composed of FuZi (FZ; Aconitum carmichaelii Debeaux [Ranunculaceae; Aconiti radix cocta]), Wolfberry (Lycium barbarum L. [Solanaceae; Lycii fructus]), and Cinnamon (Neolitsea cassia (L.) Kosterm. [Lauraceae; Cinnamomi cortex]). It has been used to clinically treat nocturia caused by kidney-yang deficiency syndrome (KYDS) for over 30 years and warms kidney yang. However, the pharmacological mechanism and the safety of FQGBG in humans require further exploration and evaluation. Methods: We investigated the efficacy of FQGBG in reducing urination and improving immune organ damage in two kinds of KYDS model rats (hydrocortisone-induced model and natural aging model), and evaluated the safety of different oral FQGBG doses through pharmacokinetic (PK) parameters, metabonomics, and occurrence of adverse reactions in healthy Chinese participants in a randomized, double-blind, placebo-controlled, single ascending dose clinical trial. Forty-two participants were allocated to six cohorts with FQGBG doses of 12.5, 25, 50, 75, 100, and 125 g. The PKs of FQGBG in plasma were determined using a fully validated LC-MS/MS method. Results: FQGBG significantly and rapidly improved the symptoms of increased urination in both two KYDS model rats and significantly resisted the adrenal atrophy in hydrocortisone-induced KYDS model rats. No apparent increase in adverse events was observed with dose escalation. Major adverse drug reactions included toothache, thirst, heat sensation, gum pain, diarrhea, abdominal distension, T-wave changes, and elevated creatinine levels. The PK results showed a higher exposure level of benzoylhypaconine (BHA) than benzoylmesaconine (BMA) and a shorter half-life of BMA than BHA. Toxic diester alkaloids, aconitine, mesaconitine, and hypaconitine were below the lower quantitative limit. Drug-induced metabolite markers primarily included lysophosphatidylcholines, fatty acids, phenylalanine, and arginine metabolites; no safety-related metabolite changes were observed. Conclusion: Under the investigated dosing regimen, FQGBG was safe. The efficacy mechanism of FQGBG in treating nocturia caused by KYDS may be related to the improvement of the hypothalamus-pituitary-adrenal axis function and increased energy metabolism. Clinical Trial Registration: https://www.chictr.org.cn/showproj.html?proj=26934, identifier ChiCTR1800015840.
Collapse
Affiliation(s)
- Wei-Yi Cao
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jun-Yu Liu
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Yunnan Institute of Materia Medica, Kunming, Yunnan, China
- Yunnan Baiyao Group Co., Ltd., Kunming, Yunnan, China
| | - Min Sun
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Yunnan Institute of Materia Medica, Kunming, Yunnan, China
- Yunnan Baiyao Group Co., Ltd., Kunming, Yunnan, China
| | - Jing-Kun Wang
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Yunnan Institute of Materia Medica, Kunming, Yunnan, China
- Yunnan Baiyao Group Co., Ltd., Kunming, Yunnan, China
| | - Fang Lu
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Qiao-Ning Yang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Wan-Tong Zhang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Ming-Jie Zi
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Bai-E Zhang
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Yunnan Institute of Materia Medica, Kunming, Yunnan, China
- Yunnan Baiyao Group Co., Ltd., Kunming, Yunnan, China
| | - Hong-Bin Liu
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Yunnan Institute of Materia Medica, Kunming, Yunnan, China
- Yunnan Baiyao Group Co., Ltd., Kunming, Yunnan, China
| | - Shu-Ge Wang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Yi Wu
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Rong-Zu Wu
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Wen-Di Wu
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Rui Li
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zhao-Yun Zhu
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Yunnan Institute of Materia Medica, Kunming, Yunnan, China
- Yunnan Baiyao Group Co., Ltd., Kunming, Yunnan, China
| | - Rui Gao
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
4
|
Cui Y, Liu Q, Zhang Q, Di X, Zhang H. Benzoylaconine Protects Skeletal Muscle Against Ischemia-Reperfusion Injury Through Activation of IF1-Dependent AMPK/Nrf2 Axis. Drug Des Devel Ther 2024; 18:2125-2142. [PMID: 38882050 PMCID: PMC11178076 DOI: 10.2147/dddt.s456699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/07/2024] [Indexed: 06/18/2024] Open
Abstract
Background Aconitum carmichaelii (Fuzi) has been conventionally used to cure a variety of ailments, such as pain, cold sensations, and numbness of limb muscles (Bi Zheng) in China. Our prior investigations identified Benzoylaconine (BAC) as a bioactive alkaloid derived from Aconitum carmichaelii, with other studies also demonstrating its significant pharmacological potential. Purpose This study aimed to explore the potential of BAC as a protective agent against skeletal muscle ischemia-reperfusion (I/R) injury and to elucidate the underlying mechanisms. Methods In vivo models involved subjecting Sprague-Dawley rats to I/R through femoral artery ligation followed by reperfusion, while in vitro models utilized C2C12 cells subjected to hypoxia/reoxygenation (H/R). CCK-8 assay was used to assess cell viability. TUNEL staining and flow cytometric analysis were used to measure cell apoptosis. Biochemical assay was used to assess skeletal muscle injury and oxidative stress. Immunofluorescence and Western blot were performed to determine protein levels. Results BAC effectively protected muscle tissue from I/R injury, enhancing cell viability (p<0.01), elevating SOD levels (p<0.05), and reducing CK (p<0.01), LDH (p<0.01), ROS (p<0.01), MDA (p<0.01), and apoptosis-related molecules in vivo and in vitro (p<0.05, p<0.01). Mechanistically, BAC increased the expression of IF1, phosphorylated AMPK, facilitated the translocation of nuclear Nrf2, and induced the expression of HO-1 (p<0.01). Notably, AMPK inhibitor Compound C significantly hindered the ability of BAC to ameliorate H/R-induced cell injury (p<0.05), oxidative stress(p<0.01), and apoptosis (p<0.05), as well as promote Nrf2 nuclear translocation (p<0.01). Moreover, silencing of IF1 with siRNA abolished BAC-induced activation of AMPK/Nrf2 axis (p<0.01). Conclusion Our study provides novel evidence supporting the potential of BAC as a myocyte-protective agent against I/R injury, and we establish a previously unknown mechanism involving the activation of the IF1-dependent AMPK/Nrf2 axis in mediating the protective effects of BAC.
Collapse
Affiliation(s)
- Yidong Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People’s Republic of China
| | - Qingming Liu
- Department of Neurology, Shandong Second Provincial General Hospital, Jinan, 250012, People’s Republic of China
| | - Qiqiang Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
| | - Xuemei Di
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
| |
Collapse
|
5
|
Zhang QQ, Chen QS, Feng F, Cao X, Chen XF, Zhang H. Benzoylaconitine: A promising ACE2-targeted agonist for enhancing cardiac function in heart failure. Free Radic Biol Med 2024; 214:206-218. [PMID: 38369076 DOI: 10.1016/j.freeradbiomed.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/23/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Benzoylaconitine is a natural product in the treatment of cardiovascular disease. However, its pharmacological effect, direct target protein, and molecular mechanisms for the treatment of heart failure are unclear. In this study, benzoylaconitine inhibited Ang II-induced cell hypertrophy and fibrosis in rat primary cardiomyocytes and rat fibroblasts, while attenuating cardiac function and cardiac remodeling in TAC mice. Using the limited proteolysis-mass spectrometry (LiP-MS) method, the angiotensin-converting enzyme 2 (ACE2) was confirmed as a direct binding target of benzoylaconitine for the treatment of heart failure. In ACE2-knockdown cells and ACE2-/- mice, benzoylaconitine failed to ameliorate cardiomyocyte hypertrophy, fibrosis, and heart failure. Online RNA-sequence analysis indicated p38/ERK-mediated mitochondrial reactive oxygen species (ROS) and nuclear factor kappa B (NF-κB) activation are the possible downstream molecular mechanisms for the effect of BAC-ACE2 interaction. Further studies in ACE2-knockdown cells and ACE2-/- mice suggested that benzoylaconitine targeted ACE2 to suppress p38/ERK-mediated mitochondrial ROS and NF-κB pathway activation. Our findings suggest that benzoylaconitine is a promising ACE2 agonist in regulating mitochondrial ROS release and inflammation activation to improve cardiac function in the treatment of heart failure.
Collapse
Affiliation(s)
- Qi-Qiang Zhang
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qing-Shan Chen
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Fei Feng
- School of Pharmacy, Naval Medical University (Second Military Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Xiang Cao
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiao-Fei Chen
- School of Pharmacy, Naval Medical University (Second Military Medical University), 325 Guohe Road, Shanghai, 200433, China.
| | - Hai Zhang
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
6
|
Zhao P, Tian Y, Geng Y, Zeng C, Ma X, Kang J, Lu L, Zhang X, Tang B, Geng F. Aconitine and its derivatives: bioactivities, structure-activity relationships and preliminary molecular mechanisms. Front Chem 2024; 12:1339364. [PMID: 38318112 PMCID: PMC10839071 DOI: 10.3389/fchem.2024.1339364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Aconitine (AC), which is the primary bioactive diterpene alkaloid derived from Aconitum L plants, have attracted considerable interest due to its unique structural feature. Additionally, AC demonstrates a range of biological activities, such as its ability to enhance cardiac function, inhibit tumor growth, reduce inflammation, and provide analgesic effects. However, the structure-activity relationships of AC are remain unclear. A clear understanding of these relationships is indeed critical in developing effective biomedical applications with AC. In line with these challenges, this paper summarized the structural characteristics of AC and relevant functional and bioactive properties and the structure-activity relationships presented in biomedical applications. The primary temporal scope of this review was established as the period spanning from 2010 to 2023. Subsequently, the objective of this review was to provide a comprehensive understanding of the specific action mechanism of AC, while also exploring potential novel applications of AC derivatives in the biomedical field, drawing upon their structural characteristics. In conclusion, this review has provided a comprehensive analysis of the challenges and prospects associated with AC in the elucidation of structure-bioactivity relationships. Furthermore, the importance of exploring modern biotechnology approaches to enhance the potential biomedical applications of AC has been emphasized.
Collapse
Affiliation(s)
- Pengyu Zhao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye Tian
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Yuefei Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Chenjuan Zeng
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Xiuying Ma
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Jie Kang
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Lin Lu
- Sichuan Engineering Research Center for Medicinal Animals, Chengdu, China
| | - Xin Zhang
- Sichuan Good Doctor Pharmaceutical Group, Chengdu, China
| | - Bo Tang
- Sichuan Engineering Research Center for Medicinal Animals, Chengdu, China
| | - Funeng Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Kakkar RA, Haneen MA, Parida AC, Sharma G. The known, unknown, and the intriguing about members of a critically endangered traditional medicinal plant genus Aconitum. FRONTIERS IN PLANT SCIENCE 2023; 14:1139215. [PMID: 37575934 PMCID: PMC10421671 DOI: 10.3389/fpls.2023.1139215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/03/2023] [Indexed: 08/15/2023]
Abstract
Humanity will always be indebted to plants. In the ongoing scientific era, the 'Herbal Revolution' has helped discover several valuable medicinal plants and associated novel secondary metabolites from the diverse unexplored ecosystems, treating several diseases via phytotherapy. The Aconitum genus comprises several economically-important poisonous mountainous medicinal plant species whose unique biodiversity is on the verge of extinction due to illegal human intervention triggered habitat loss, over-harvesting, and unrestricted trading. Owing to its vast diversity of diterpene alkaloids, most species are extensively used to treat several ailments in rural parts of the world. Irrespective of this, many unexplored and intriguing prospects exist to understand and utilize this critical plant for human benefit. This systematic review tries to fill this gap by compiling information from the sporadically available literature known for ~300 Aconitum spp. regarding its nomenclature and classification, endangerment, plant morphology, ploidy, secondary metabolites, drug pharmacokinetics, conservation, and omics-based computational studies. We also depicted the disparity in the studied model organisms for this diverse genus. The absence of genomic/metagenomic data is becoming a limiting factor in understanding its plant physiology, metabolic pathways, and plant-microbes interactions, and therefore must be promoted. Additionally, government support and public participation are crucial in establishing conservation protocols to save this plant from endangerment.
Collapse
Affiliation(s)
- Richa Ashok Kakkar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Mariam Azeezuddin Haneen
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | | | - Gaurav Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| |
Collapse
|
8
|
Tang MH, Peng FL, Liu XX, Chao RB. Comparative Pharmacokinetic Investigation on Multiple Active Aminoalcohol-Diterpenoid Alkaloids after Single Oral Administrations of Monomers and Aqueous Extract of Fuzi (Aconiti Lateralis Radix Praeparata) by UFLC-MS/MS. PLANTA MEDICA 2023; 89:561-570. [PMID: 36690020 DOI: 10.1055/a-1984-8515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To further study the aminoalcohol-diterpenoid alkaloids (ADAs) in Fuzi (Aconiti Lateralis Radix Praeparata), a simple and sensitive UFLC-MS/MS method was established and validated for the determination of five ADAs, aconine, mesaconine, hypaconine, deoxyaconine and fuziline, in rat plasma to compare the pharmacokinetic characteristics of pure ADAs and Fuzi decoction. After precipitating protein with methanol, plasma samples were isolated at 0.5 mL/min flow rate on Waters Acquity UPLC BEH C18 column (100 mm × 2.1 mm, 1.7 µm). The mobile phase was composed of 0.1% formic acid-water and methanol with gradient elution. Mass spectrometric inspection was conducted on a 5500 UFLC-MS/MS system with an electrospray ionization source in patterns of positive ion and multiple reaction-monitoring (MRM). All calibration curves were proved to have acceptable linearity (r2 > 0.99) in linear ranges. Intra-day and inter-day precision and the accuracy met the requirements. The matrix effects of all analytes were between 85% and 115% of three concentration levels. This method has been under verification for comparative pharmacokinetic research after oral administration between aqueous extract of Fuzi and single pure ADAs. The results demonstrated that there are evident pharmacokinetic discrepancies between them, and administration in the extract form instead of pure form may contribute to higher absorption.
Collapse
Affiliation(s)
- Ming-Hai Tang
- West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fu-Li Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xiu-Xiu Liu
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ruo-Bing Chao
- West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Tao H, Liu X, Tian R, Liu Y, Zeng Y, Meng X, Zhang Y. A review: Pharmacokinetics and pharmacology of aminoalcohol-diterpenoid alkaloids from Aconitum species. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115726. [PMID: 36183950 DOI: 10.1016/j.jep.2022.115726] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconitum medicinal materials, such as Aconitum carmichaelii Debeaux (Chinese: Wutou/) and Aconitum kusnezoffii Reichb. (Chinese: Caowu/), are a kind of important Traditional Chinese Medicine (TCM) with great medicinal value. Statistics show that there are over 600 efficient TCM formulations comprising Aconitum medicinal materials. But high toxicity limits their clinical application. Clinically, the Aconitum medicinal materials must undergo a complex processing process that includes soaking, steaming, and boiling with pharmaceutical excipients, which makes highly toxic ester diterpenoid alkaloids are hydrolyzed to form less toxic aminoalcohol-diterpenoid alkaloids (ADAs). AIM OF THE STUDY This review aims to summarize the pharmacokinetic and pharmacological activities of low-toxicity ADAs, providing a reference for future ADAs research and drug development. MATERIALS AND METHODS Accessible literature on ADAs published between 1984 and 2022 were screened and obtained from available electronic databases such as PubMed, Web of Science, Springer, Science Direct and Google Scholar, followed by systematic analysis. RESULTS ADAs are secondary products of plant metabolism, widely distributed in the Aconitum species and Delphinium species. The toxicity of ADAs as pharmacodynamic components of Aconitum medicinal materials is much lower than that of other diterpenoid alkaloids due to the absence of ester bonds. On the one hand, the pharmacokinetics of ADAs have received little attention compared to other toxic alkaloids. The research primarily focuses on aconine and mesaconine. According to existing studies, ADAs absorption in the gastrointestinal tract is primarily passive with a short Tmax. Simultaneously, efflux transporters have less impact on ADAs absorption than non-ADAs. After entering the body, ADAs are widely distributed in the heart, liver, lungs, and kidney, but less in the brain. Notably, aconine is not well metabolized by liver microsomes. Aconine and mesaconine are excreted in urine and feces, respectively. ADAs, on the other hand, have been shown to have a variety of pharmacological activities, including cardiac, analgesic, anti-inflammatory, anti-tumor, antioxidant, and regenerative effects via regulating multiple signaling pathways, including Nrf2/ARE, PERK/eIF2α/ATF4/Chop, ERK/CREB, NF-κB, Bcl-2/Bax, and GSK3β/β-catenin signaling pathways. CONCLUSIONS ADAs have been shown to have beneficial effects on heart disease, neurological disease, and other systemic diseases. Moreover, ADAs have low toxicity and a wide range of safe doses. All of these suggest that ADAs have great potential for drug development.
Collapse
Affiliation(s)
- Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ruimin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yong Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
10
|
Natori Y, Kamioka S, Yoshimoto T, Ishii A. A Simple and Rapid Method for Quantifying Aconitines and Their Metabolites in Whole Blood by Modified QuEChERS and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). Forensic Sci Int 2022; 341:111475. [DOI: 10.1016/j.forsciint.2022.111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
|
11
|
Chen L, Yan L, Zhang W. Benzoylaconine improves mitochondrial function in oxygen-glucose deprivation and reperfusion-induced cardiomyocyte injury by activation of the AMPK/PGC-1 axis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:325-333. [PMID: 36039733 PMCID: PMC9437369 DOI: 10.4196/kjpp.2022.26.5.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022]
Abstract
Heart failure (HF) has become one of the severe public health problems. The detailed role of mitochondrial function in HF was still unclear. Benzoylaconine (BAC) is a traditional Chinese medicine, but its role in HF still needs to be explored. In this study, oxygen-glucose deprivation and reperfusion (OGD/R) was executed to mimic the injury of H9C2 cells in HF. The viability of H9C2 cells was assessed via MTT assay. OGD/R treatment markedly decreased the viability of H9C2 cells, but BAC treatment evidently increased the viability of OGD/R-treated H9C2 cells. The apoptosis of H9C2 was enhanced by OGD/R treatment but suppressed by BAC treatment. The mitochondrial membrane potential was evaluated via JC-1 assay. BAC improved the mitochondrial function and suppressed oxidative stress in OGD/R-treated H9C2 cells. Moreover, Western blot analysis revealed that the protein expression of p-AMPK and PGC-1α were reduced in OGD/R-treated H9C2 cells, which was reversed by BAC. Rescue assays indicated that AMPK attenuation reversed the BAC-mediated protective effect on OGD/R-treated cardiomyocytes. Moreover, BAC alleviated myocardial injury in vivo. In a word, BAC modulated the mitochondrial function in OGD/R-induced cardiomyocyte injury by activation of the AMPK/PGC-1 axis. The findings might provide support for the application of BAC in the treatment of HF.
Collapse
Affiliation(s)
- Leijie Chen
- Department of Cardiology, Hebi People’s Hospital, Hebi 458030, China
| | - Laixing Yan
- Department of Cardiovascular Medicine, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310022, China
| | - Weiwei Zhang
- Department of Geriatrics, Hubin Street Community Health Service Center, Hangzhou 310000, China
| |
Collapse
|
12
|
An insight into current advances on pharmacology, pharmacokinetics, toxicity and detoxification of aconitine. Biomed Pharmacother 2022; 151:113115. [PMID: 35605296 DOI: 10.1016/j.biopha.2022.113115] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
Aconitine is a diterpenoid alkaloid, which mainly exists in the plants of Aconitum. In the last decade, a plethora of studies on the pharmacological activities of aconitine has been conducted and demonstrated that aconitine possessed an extensive range of pharmacological activities such as anti-tumor, anti-inflammatory, analgesic, local anesthesia, and immunomodulatory effects. Pharmacokinetic studies indicated that aconitine may have the characteristics of poor bioavailability, wide distribution, and slow elimination. However, studies have also found that aconitine has toxic effects on the heart, nerves, embryos, etc. Therefore, we believe that aconitine may not be suitable for heart patients and pregnant women to treat related diseases. It is important to note that all of these pharmacological effects require further high-quality studies to determine the clinical efficacy of aconitine. This review aims to summarize the advances in pharmacological, pharmacokinetics, toxicity, and detoxification of aconitine in the last decade with an emphasis on its anti-tumor and anti-inflammatory activities, to provide researchers with the latest information and point out the limitations of relevant research at the current stage and the aspects that should be strengthened in future research.
Collapse
|
13
|
Zhang QQ, Chen FH, Wang F, Di XM, Li W, Zhang H. A Novel Modulator of the Renin–Angiotensin System, Benzoylaconitine, Attenuates Hypertension by Targeting ACE/ACE2 in Enhancing Vasodilation and Alleviating Vascular Inflammation. Front Pharmacol 2022; 13:841435. [PMID: 35359841 PMCID: PMC8963105 DOI: 10.3389/fphar.2022.841435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 12/15/2022] Open
Abstract
The monoester alkaloids in Aconitum carmichaelii, including benzoylaconitine (BAC), benzoylmesaconine, and benzoylhypaconitine, were found to have anti-hypertensive effects in spontaneously hypertension rats (SHRs), of which BAC is the strongest. However, its antihypertensive target and underlying molecular mechanisms remain unclear. In this study, first, we screened the antihypertensive targets of BAC by using the CVDPlatform (www.cbligand.org/CVD) and found that ACE/ACE2 are the most possible targets. Then, we verified the effect of BAC on ACE/ACE2 by virtual docking, SPR, enzyme activity assay, and HUVECs cell experiment. We found that BAC could bind with ACE/ACE2, inhibit ACE activity and protein expression, and activate ACE2 enzyme activity. Using vascular function test in vitro, we found that BAC could target ACE/ACE2 to enhance endothelium-dependent vasorelaxation. In BAC-treated SHRs, the levels of ACE and AngII in serum were reduced while Ang (1–7) was increased significantly, and the expression of ACE was reduced, which suggested that BAC can inhibit ACE and activate ACE2 to inhibit AngI to AngII and promote AngII to Ang (1–7) to inhibit vasoconstriction and finally attenuate hypertension. Furthermore, the signaling pathways with regard to vasorelaxation and vascular inflammation were investigated. The results showed that BAC could significantly activate Akt/eNOS, increase NO production, and promote endothelial-related vasodilation; BAC could also reduce inflammatory factors TNF-α and IL6, inhibition of COX-2 expression, and IKB-α phosphorylation to reduce vascular inflammation in SHRs. In brief, BAC targets ACE/ACE2 to enhance endothelium-dependent vasorelaxation and reduce vascular inflammation to attenuate hypertension as a potential modulator of the renin–angiotensin system.
Collapse
Affiliation(s)
- Qi-Qiang Zhang
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Feng-Hua Chen
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue-Mei Di
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hai Zhang
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Hai Zhang,
| |
Collapse
|
14
|
Song C, Wei XY, Qiu ZD, Gong L, Chen ZY, Ma Y, Shen Y, Zhao YJ, Wang WH, Lai CJS, Yang B. Exploring the resources of the genus Viscum for potential therapeutic applications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114233. [PMID: 34044077 DOI: 10.1016/j.jep.2021.114233] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Viscum comprises approximately 100 species that are mainly distributed across Africa, Asia and Europe. The extracts and preparations of Viscum species are widely used as common complementary and alternative medicines in the treatment of rheumatism and cancer. AIM OF THE REVIEW This review aims to explore the medicinal properties of twelve species belonging to the genus Viscum for potential therapeutic applications. MATERIALS AND METHODS We collected online information (including PubMed, CNKI, Google Scholar, and Web of Science) from January 1915 to April 2021 and knowledge from classical books on Chinese herbal medicines available for 12 species of the genus Viscum, including Viscum coloratum (Kom.) Nakai, Viscum album L., Viscum articulatum Burm. f., Viscum liquidambaricola Hayata, Viscum ovalifolium DC., Viscum capitellatum Sm., Viscum cruciatum Sieber ex Boiss., Viscum nudum Danser, Viscum angulatum B.Heyne ex DC., Viscum tuberculatum A.Rich., Viscum multinerve Hayata, and Viscum diospyrosicola Hayata. RESULTS At least 250 different compounds have been reported across twelve Viscum species, including amino acid and peptides, alkaloids, phenolic acids, flavonoids, terpenoids, carbohydrates, fatty acids, lipids, and other types of compounds. In particular, for Viscum coloratum (Kom.) Nakai and Viscum album L., the plants, preparations, and bioactive components have been thoroughly reviewed. This has allowed to elucidate the role of active components, including lectins, viscotoxins, flavonoids, terpenoids, phenolic acids, and polysaccharides, in multiple bioactivities, such as anti-cancer, anti-rheumatism arthralgia, anti-inflammation, anti-cardiovascular diseases, enhancing immunity, and anti-chemotherapy side effects. We also evaluated quality control methods based on active compounds, in vivo exposure compounds, and discriminated chemical markers. CONCLUSIONS This is the first report to systematically review the pharmaceutical development history, chemical composition, clinical evidence, pharmacological activity, discriminated chemical markers, in vivo exposure, and quality control on twelve distinct species of Viscum plants with medicinal properties. The significant safety and efficacy, along with the minor side effects are constantly confirmed in clinics. The genus Viscum is thus an important medicinal resource that is worth exploring and developing in future pharmacological and chemical studies.
Collapse
Affiliation(s)
- Chuan Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China; State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Xu-Ya Wei
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Zi-Dong Qiu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Li Gong
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Ze-Yan Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Ying Ma
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Yu-Jun Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Wei-Hao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Chang-Jiang-Sheng Lai
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| | - Bin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| |
Collapse
|
15
|
Zhou C, Gao J, Ji H, Li W, Xing X, Liu D, Guo Q, Zhou L, Jing F. Benzoylaconine Modulates LPS-Induced Responses Through Inhibition of Toll-Like Receptor-Mediated NF-κB and MAPK Signaling in RAW264.7 Cells. Inflammation 2021; 44:2018-2032. [PMID: 34272638 DOI: 10.1007/s10753-021-01478-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 11/26/2022]
Abstract
Previous studies have shown that benzoylaconine (BAC), a representative monoester alkaloid, has a potential anti-inflammatory effect. This study investigated the underlying molecular mechanisms using the mode of LPS-activated RAW264.7 macrophage cells. Our findings showed that BAC significantly suppressed the release of pro-inflammatory cytokines and mediators, including IL-6, TNF-α, IL-1β, ROS, NO, and PGE2. BAC treatment also effectively downregulated the elevated protein levels of iNOS and COX-2 induced by LPS in a dose-dependent manner. In this study, we found that BAC inhibited LPS-induced NF-κB activation by reducing the phosphorylation and degradation of IκBα by western blotting and blocking the nuclear translocation of p65 using an immunofluorescence assay. The elevated protein levels of JNK, p38, and ERK phosphorylation after LPS stimulation were restored effectively by BAC treatment. The protein expression of Toll-like receptor 4 (TLR4) and LPS-induced phosphorylation of TAK1, which is a crucial upstream regulatory factor of TLR-induced MAPK and NF-κB signaling, were inhibited by BAC in activated RAW264.7 macrophages. Moreover, BAC decreased the levels of TAK1 phosphorylation and pro-inflammatory cytokines and mediators associated with MAPK and NF-κB activation, similar to TLR4 inhibitor TAK-242. These findings demonstrated that BAC exhibited an anti-inflammatory effect by the inhibition of TLR-induced MAPK and NF-κB pathways, indicating that it could potentially be used for treating inflammatory diseases.
Collapse
Affiliation(s)
- Changkai Zhou
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong Province, People's Republic of China
| | - Jing Gao
- Department of Pharmacy, The Third People's Hospital of Qingdao, No.29 Yongping Road, Qingdao, Shandong Province, People's Republic of China
| | - Hongyan Ji
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong Province, People's Republic of China
| | - Wenjing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong Province, People's Republic of China
| | - Xiaomin Xing
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong Province, People's Republic of China
| | - Donghua Liu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong Province, People's Republic of China
| | - Qie Guo
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong Province, People's Republic of China
| | - Lihua Zhou
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong Province, People's Republic of China
| | - Fanbo Jing
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong Province, People's Republic of China.
| |
Collapse
|
16
|
Mi L, Li YC, Sun MR, Zhang PL, Li Y, Yang H. A systematic review of pharmacological activities, toxicological mechanisms and pharmacokinetic studies on Aconitum alkaloids. Chin J Nat Med 2021; 19:505-520. [PMID: 34247774 DOI: 10.1016/s1875-5364(21)60050-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Indexed: 12/24/2022]
Abstract
The tubers and roots of Aconitum (Ranunculaceae) are widely used as heart medicine or analgesic agents for the treatment of coronary heart disease, chronic heart failure, rheumatoid arthritis and neuropathic pain since ancient times. As a type of natural products mainly extracted from Aconitum plants, Aconitum alkaloids have complex chemical structures and exert remarkable biological activity, which are mainly responsible for significant effects of Aconitum plants. The present review is to summarize the progress of the pharmacological, toxicological, and pharmacokinetic studies of Aconitum alkaloids, so as to provide evidence for better clinical application. Research data concerning pharmacological, toxicological and pharmacokinetic studies of Aconitum alkaloids were collected from different scientific databases (PubMed, CNKI, Google Scholar, Baidu Scholar, and Web of Science) using the phrase Aconitum alkaloids, as well as generic synonyms. Aconitum alkaloids are both bioactive compounds and toxic ingredients in Aconitum plants. They produce a wide range of pharmacological activities, including protecting the cardiovascular system, nervous system, and immune system and anti-cancer effects. Notably, Aconitum alkaloids also exert strong cardiac toxicity, neurotoxicity and liver toxicity, which are supported by clinical studies. Finally, pharmacokinetic studies indicated that cytochrome P450 proteins (CYPs) and efflux transporters (ETs) are closely related to the low bioavailability of Aconitum alkaloids and play an important role in their metabolism and detoxification in vivo.
Collapse
Affiliation(s)
- Li Mi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Chen Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meng-Ru Sun
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Pei-Lin Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
17
|
Fan B, Xu S, Bi J, Huang S, Zu Z, Qian C. Simultaneous Determination of Six Alkaloids in Rat Plasma by SPE-HPLC-MS/MS and Their Pharmacokinetics after Oral Administration of Radix aconiti Preparata Extract. ACS Pharmacol Transl Sci 2021; 4:118-127. [PMID: 33615166 DOI: 10.1021/acsptsci.0c00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/28/2022]
Abstract
Simultaneous determination of the content of six alkaloids (aconitine, hypoaconitine, mesaconitine, benzoylaconine, benzoylhypaconine, and benzoylmesaconine) in rat plasma is enabled by HPLC-MS/MS combined with microsolid phase extraction (micro-SPE). To study its pharmacokinetics in rat plasma, the extracted plasma sample was passed through a C18 extraction column and eluted with acetonitrile. The six alkaloids in the Radix aconiti Preparata extract can be completely separated as peaks with good shape. The six components in the plasma sample showed a good linear relationship within their respective linear ranges (R 2 > 0.997). The analysis of the six alkaloids can be completed within 20 min. This method has high intraday and interday precision, and the room temperature stability and freeze-thaw stability are good. The matrix effect of the plasma samples is between 86.4 and 114%. The metabolism of the six Aconitum alkaloids in plasma is analyzed using a two-compartment model, which is characterized by fast absorption, slow elimination, and good linear fit, R 2 > 0.99. The peak time (T max) for aconitine, hypaconitine, and neoaconitine ranged from 29.95 to 42.07 min, while the peak time (T max) for benzoaconitine, benzohypaconitine, and benzoxinaconitine ranged from 42.88 to 73.08 min. With the increased dosage, the bioavailability of Aconitum alkaloids decreased gradually. The method for the determination of Aconitum alkaloids in rat plasma by high performance liquid chromatography-tandem mass spectrometry is sensitive and accurate, which is suitable for rat plasma analysis. The results provide a scientific basis for metabolic study of Aconitum alkaloids in vivo, and pave the way for clinical use of Aconitum medicinal materials and extracts.
Collapse
Affiliation(s)
- Baolei Fan
- Hubei University of Science and Technology, 2 Yong'an Ave, Xian'an District, Xianning, Hubei 430081, China
| | - Sheng Xu
- Hubei University of Science and Technology, 2 Yong'an Ave, Xian'an District, Xianning, Hubei 430081, China
| | - Jianli Bi
- Hubei University of Science and Technology, 2 Yong'an Ave, Xian'an District, Xianning, Hubei 430081, China
| | - Shengtang Huang
- Hubei University of Science and Technology, 2 Yong'an Ave, Xian'an District, Xianning, Hubei 430081, China
| | - Zengyi Zu
- Hubei University of Science and Technology, 2 Yong'an Ave, Xian'an District, Xianning, Hubei 430081, China
| | - Chunqi Qian
- Michigan State University, 846 Service Road, East Lansing, Michigan 48864, United States
| |
Collapse
|
18
|
Wang X, Lei H, Qi X, Guo X, Xu X, Zu X, Ye J. Simultaneous determination of five bioactive components of XiaoJin Capsule in normal and mammary gland hyperplasia rat plasma using LC-MS/MS and its application to a pharmacokinetic study. Biomed Chromatogr 2020; 35:e5000. [PMID: 33460195 DOI: 10.1002/bmc.5000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/20/2020] [Accepted: 10/06/2020] [Indexed: 11/06/2022]
Abstract
XiaoJin Capsule (XJC) is a classic Traditional Chinese Medicine formula for clinical treatment of thyroid nodules, mammary gland hyperplasia and breast cancer. For the specification and rational application of XJC in the future, an accurate and specific LC-MS/MS method was developed and validated for quantitative determination of five components in rat plasma after oral administration of XJC. The collected plasma samples were extracted by protein precipitation with methanol-acetonitrile (1:3, v/v) mixture solvent and separated on a C18 column using a gradient elution system. Mass spectrometry was performed on a triple quadrupole mass spectrometer, and samples were detected in positive ionization and multiple reactions monitoring mode. The method was properly validated in terms of linearity, precision, accuracy, recovery, matrix effect and stability. All calibration curves showed good linearity (r2 > 0.9910) over their concentration ranges. The intra- and inter-day precisions (RSD) were within 11.0%, and the LLOQ was 0.1, 0.2, 0.5, 7.5 and 7.5 ng/ml for aconine, songorine, neoline, 3-acetyl-11-keto-β-boswellic acid and 11-keto-β-boswellic acid, respectively. Extraction recovery, matrix effect and stability were satisfactory in rat plasma. This established method was successfully applied to a pharmacokinetics study of five compounds after oral administration of XJC to normal and mammary gland hyperplasia model rats.
Collapse
Affiliation(s)
- Xinyu Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Huibo Lei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xiaopo Qi
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Xin Guo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xike Xu
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Xianpeng Zu
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Ji Ye
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| |
Collapse
|
19
|
Pharmacokinetics and tissue distribution of eighteen major alkaloids of Aconitum carmichaelii in rats by UHPLC-QQQ-MS. J Pharm Biomed Anal 2020; 185:113226. [DOI: 10.1016/j.jpba.2020.113226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
|
20
|
Wood C, Coulson J, Thompson J, Bonner S. An Intentional Aconite Overdose: A Case Report. J Crit Care Med (Targu Mures) 2020; 6:124-129. [PMID: 32426520 PMCID: PMC7216026 DOI: 10.2478/jccm-2020-0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 03/22/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Aconite is one of the most toxic known herbs, widely used for centuries as an essential Chinese medicine, but also for deliberate poisoning throughout history. Clinically indicated in herbal medicine for a range of ailments from headaches to muscle spasm, unfortunately the narrow therapeutic window may lead to a range of toxic presentations. The mechanism of action of the pharmacologically active compounds in Aconite relate to the activation of voltage gated sodium channels within a range of tissue including myocardial, neuronal and smooth muscle leading to persistent cellular activity. CASE PRESENTATION We report on a rare case of a fifty year old male with intentional aconite overdose presenting with refractory cardiovascular instability from persistent life threatening arrhythmias, respiratory failure and seizure activity. CONCLUSION An overview of Aconite, its history, pharmacological effects, treatment of overdose and outcomes is presented.
Collapse
Affiliation(s)
| | - James Coulson
- National Poisons Information Service, BirminghamUnited Kingdom
| | - John Thompson
- National Poisons Information Service, BirminghamUnited Kingdom
| | - Stephen Bonner
- James Cook University Hospital, Middlesbrough, United Kingdom
| |
Collapse
|
21
|
Yang Z, Lin Y, Gao L, Zhou Z, Wang S, Dong D, Wu B. Circadian clock regulates metabolism and toxicity of Fuzi(lateral root of Aconitum carmichaeli Debx) in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153161. [PMID: 31911401 DOI: 10.1016/j.phymed.2019.153161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Therapeutic applications of Fuzi (lateral root of Aconitum carmichaeli Debx) are seriously concerned with its toxic effects. Strategies and approaches to reducing toxicity are of great interest. PURPOSE We aimed to characterize the diurnal rhythm of Fuzi toxicity, and to determine the role of metabolism and pharmacokinetics in generating toxicity rhythmicity. METHODS Toxicity was determined based on assessment of heart injury and animal survival after dosing mice with Fuzi decoction at different circadian time points. Circadian clock control of pharmacokinetics and toxicity was investigated using Bmal1-deficient (Bmal1-/-) mice. RESULTS Fuzi exhibited a diurnal rhythmicity in cardiotoxicity (reflected by plasma CK-MB and LDH levels). The highest level of toxicity was observed at ZT10 (5 PM), while the lowest level of toxicity occurred at ZT22 (5 AM). Also, a higher mortality rate was observed at ZT10 and lower mortality rates at other times of the day. ZT10 dosing of Fuzi generated higher systemic exposures of three toxic alkaloid ingredients aconitine (AC), hypaconitine (HA) and mesaconitine (MA) compared to ZT22. This was accompanied by reduced the formation of the metabolites (N-deethyl-AC, didemethyl-HA and 2‑hydroxyl‑MA) at ZT10. Bmal1 ablation resulted in an increased level of Fuzi toxicity at ZT22, while having no influences when drug was dosed at ZT10. As a consequence, circadian time-dependent toxicity of Fuzi was lost in Bmal1-deficient mice. In addition, Bmal1 ablation increased the plasma concentrations of AC, HA and MA in mice after oral gavage of Fuzi, and reduced formation of their metabolites (N-deethyl-AC, didemethyl-HA and 2‑hydroxyl‑MA). Moreover, Fuzi metabolism in wild-type liver microsomes was more extensive at ZT22 than at ZT10. Bmal1 ablation abrogated circadian time-dependency of hepatic Fuzi metabolism. CONCLUSIONS Fuzi chronotoxicity in mice was attributed to time-varying hepatic metabolism and systemic exposure regulated by circadian clock. The findings may have implications in reducing Fuzi toxicity with a chronotherapeutic approach.
Collapse
Affiliation(s)
- Zemin Yang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yanke Lin
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lu Gao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ziyue Zhou
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Shuai Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Dong Dong
- School of Medicine, Jinan University, Guangzhou, China.
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
22
|
Xu Y, Yang L, Liang K, An R, Wang X, Zhang H. Pharmacokinetic effects of ginsenoside Rg1 on aconitine, benzoylaconine and aconine by UHPLC–MS/MS. Biomed Chromatogr 2020; 34:e4793. [DOI: 10.1002/bmc.4793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/29/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Yanwen Xu
- School of PharmacyShanghai University of Traditional Chinese Medicine Shanghai China
| | - Liang Yang
- Department of Radiation Center, Shanghai First Maternity and Infant HospitalTongji University School of Medicine Shanghai China
| | - Kun Liang
- School of PharmacyShanghai University of Traditional Chinese Medicine Shanghai China
| | - Rui An
- School of PharmacyShanghai University of Traditional Chinese Medicine Shanghai China
| | - Xinhong Wang
- School of PharmacyShanghai University of Traditional Chinese Medicine Shanghai China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant HospitalTongji University School of Medicine Shanghai China
| |
Collapse
|
23
|
Li HQ, Xu JY, Fan XH, Wu SS. Optimization of the traditional processing method for precision detoxification of CaoWu through biomimetic linking kinetics and human toxicokinetics of aconitine as toxic target marker. JOURNAL OF ETHNOPHARMACOLOGY 2019; 242:112053. [PMID: 31271819 DOI: 10.1016/j.jep.2019.112053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/08/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE CaoWu (Aconiti Kusnezoffii Radix), well known for its high toxicity leading to fatal ventricular arrhythmias, is detoxified by HeZi (Terminalia Chebula Retz) decoction to prepare ZhiCaoWu (Aconiti Kusnezoffii Radix Preparata) as one part of ingredients of NaRu-3 pill which is used for the treatment of rheumatoid arthritis (RA). Aconitine (AC) is a highly toxic alkaloid of CaoWu and it is used as toxic target marker for the quality control (QC) of ZhiCaoWu. In the traditional processing method, the vanish of astringent or spicy feeling in tongue is the important detoxification indicator of ZhiCaoWu. However, how CaoWu is detoxified to ZhiCaoWu and whether the appropriate content of AC in ZhiCaoWu can be efficiently perceived after the empirical detoxification still lack factual basis. AIM OF THE STUDY The present study aimed to optimize the traditional processing method for precision detoxification of CaoWu through biomimetic linking kinetics and human toxicokinetics (TK) of AC, with a view of providing insights into the changes of toxic target marker. MATERIALS AND METHODS CaoWu medicinal slices (Mes) and coarse powder (Cop) were processed by blank HeZi decoction through the soaking method for 7 days. High-performance liquid chromatography (HPLC) was used for the analysis of the samples. The acidity of blank HeZi decoction and HeZi processing decoction was directly determined by pH meter. The non-compartment analysis (NCA) was used to have an intuitive appreciation for AC and pH changes in HeZi processing decoction while the compartment model method was used to build the biomimetic linking kinetics model with the covariate. The inter-species scaling of animal TK parameters was conducted to predict human AC TK profiles. The possible uptake ways of AC (rapid-release or extended-release) for humans were attempted to assess the poisoning risk of AC in NaRu-3 pill. Based on the target content of AC in ZhiCaoWu, the biomimetic linking kinetics model was explored to optimize the traditional processing detoxification method of CaoWu. The assays of determining inflammatory cytokines in lipopolysaccharides (LPS)-induced RAW264.7 cells were performed to investigate the inflammatory modulation effects of AC in vitro. RESULTS ZhiCaoWu was prepared by eliminating redundant AC in CaoWu through the repeatable replacement of HeZi processing decoction in which its acidity (pH) was affected. AC-pH changes in HeZi processing decoction were adequately depicted by a biomimetic linking kinetics model whose predictive power was determined by comparing the predictions of AC in ZhiCaoWu with the reported data. Rapid-release AC at the converted dose of 111.1 and 417.6 μg (0.011 and 0.042% of AC in NaRu-3 pill) reached maximum blood concentrations of 26.1 and 98.1 ng/mL at 0.3 h, in comparison with minimum human lethal concentration (100 ng/mL). Achieving the target content of AC (0.04%) in ZhiCaoWu or AC (0.011%) in NaRu-3 pill to precisely control the poisoning risk, the potential optimized protocols were that the processing time at 0.2-0.8% of AC in CaoWu was 2.0-4.4 days for Cop and 2.7-6.2 days for Mes. Correspondingly, pH values in HeZi processing decoction were 3.95 and 3.77 for Cop and Mes, respectively. Meanwhile, Lipopolysaccharides (LPS)-induced RAW264.7 cells were exposed to 0, 20, and 200 μM of AC for 12 h and AC at 20 μM enhanced the levels of IL-6, IL-10 and TNF-α. CONCLUSIONS Thus, for the first time, a biomimetic linking kinetics model was built to optimize the traditional detoxification method. Moreover, pH changes could be developed as surrogate endpoint for guiding the processing detoxification of CaoWu. Notably, setting the content limit of AC (0.011%) was very rational to control the poisoning risk of NaRu-3 pill. In addition, it was possible that there existed the more complex mechanisms of AC for inflammatory modulation in vitro.
Collapse
Affiliation(s)
- Han Qing Li
- State Clinical Trial Institution of New Drugs, International Mongolian Hospital of Inner Mongolia, Hohhot, 010065, China; Mongolian Medicine Laboratory, Mongolian Medicine Institute of Inner Mongolia, Hohhot, 010065, China.
| | - Jia Yin Xu
- Mongolian Pharmaceutical Preparation Center, International Mongolian Hospital of Inner Mongolia, Hohhot, 010065, China
| | - Xiao Hong Fan
- State Clinical Trial Institution of New Drugs, International Mongolian Hospital of Inner Mongolia, Hohhot, 010065, China
| | - Shan Shan Wu
- State Clinical Trial Institution of New Drugs, International Mongolian Hospital of Inner Mongolia, Hohhot, 010065, China
| |
Collapse
|
24
|
Liu C, Farah N, Weng W, Jiao B, Shen M, Fang L. Investigation of the permeation enhancer strategy on benzoylaconitine transdermal patch: the relationship between transdermal enhancement strength and physicochemical properties of permeation enhancer. Eur J Pharm Sci 2019; 138:105009. [DOI: 10.1016/j.ejps.2019.105009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
|
25
|
Wang Y, Shan Y, Wang Y, Fang Y, Huang T, Wang S, Zhu Q, Li X, Ge RS. Aconitine inhibits androgen synthesis enzymes by rat immature Leydig cells via down-regulating androgen synthetic enzyme expression in vitro. Chem Biol Interact 2019; 312:108817. [DOI: 10.1016/j.cbi.2019.108817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/11/2019] [Accepted: 09/05/2019] [Indexed: 01/09/2023]
|
26
|
He G, Ma R. Overview of Molecular Mechanisms Involved in Herbal Compounds for Inhibiting Osteoclastogenesis from Macrophage Linage RAW264.7. Curr Stem Cell Res Ther 2019; 15:570-578. [PMID: 31269885 DOI: 10.2174/1574888x14666190703144917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
Differentiation from RAW264.7 cells to osteoclasts rely on many signaling pathways, such as NF-κB, MAPK, Akt and others. However, the specific underlying mechanisms are not clear. Recently, much works have focused on the inhibitory effects of plant derived compounds in the differentiation from RAW264.7 to osteoclasts. However, the specific mechanisms remain unclear. In this paper, we summarize a lot of plant derived compounds which exert blocking effect on the progression of differentiation via signaling pathways.
Collapse
Affiliation(s)
- Gaole He
- Department of Spine, Honghui-Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Rui Ma
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|
27
|
Zhang Y, Bian X, Yang J, Wu H, Wu JL, Li N. Metabolomics of Clinical Poisoning by Aconitum Alkaloids Using Derivatization LC-MS. Front Pharmacol 2019; 10:275. [PMID: 30967780 PMCID: PMC6439482 DOI: 10.3389/fphar.2019.00275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
The root of Aconitum kusnezoffii (Caowu in Chinese, CW) is not only commonly used as a traditional Chinese medicine (TCM), but also served as a tonic in China. Due to its high toxicity, clinical poisoning cases induced by CW have frequently been reported. However, the mechanism is still unclear. In this study, Aconitum alkaloids and altered endogenous metabolites in CW poisoning patients were investigated to elucidate the possible intoxication mechanism. Eighteen alkaloids, including 6 toxic diester diterpenoid alkaloids (DDAs), were determined from the sera of patients. At the same time, 5-(diisopropylamino)amylamine (DIAAA) derivatization-ultrahigh performance liquid chromatography- quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF/MS) approach was applied in the metabolomics analysis to find much more carboxyl-containing metabolites (CCMs), which are the essential components for life and critical to elucidate the mechanism of toxicity. As a result, 32 altered metabolites after poisoning were identified. Among them, hydroxyeicosatetraenoic acids (HETEs) and some dicarboxylic acids were first found to be related to Aconitum alkaloids toxicity. Finally, biological pathway analysis indicated that the significantly changed metabolites were primarily involved in amino acid metabolism, TCA cycle, fatty acid metabolism, pyruvate metabolism, arachidonic acid metabolism, sphingolipid metabolism and so on. These results can not only provide more information on the mechanism of CW intoxication but also help the clinical diagnosis of CW poisoning.
Collapse
Affiliation(s)
- Yida Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Xiqing Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Jing Yang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haiying Wu
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| |
Collapse
|
28
|
Simultaneous Evaluation of the Influence of Panax ginseng on the Pharmacokinetics of Three Diester Alkaloids after Oral Administration of Aconiti Lateralis Radix in Rats Using UHPLC/QQQ-MS/MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6527549. [PMID: 30622607 PMCID: PMC6304572 DOI: 10.1155/2018/6527549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/02/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022]
Abstract
Objectives To investigate whether Panax ginseng (P. ginseng) could affect the metabolism of Diester Alkaloids (DAs) derived from Aconiti Lateralis Radix in vivo. Methods and Results 24 male Sprague-Dawley rats were randomized for 7-day treatment with P. ginseng (low, middle, and high), or vehicle. Aconiti Lateralis Radix was administered orally to each group on the 8th day. Plasma samples were collected, and Xevo TQ-S was used to detect the concentration of aconitine, mesaconitine, and hypaconitine in plasma. We describe a fast and reproducible method to detect the concentration of aconitine, mesaconitine, and hypaconitine in plasma. Compared to the control group, the AUC(0-t) of three DAs increased in both the middle and high dosing groups. The Vz/F of three DAs in these groups as well as the CLz/F of aconitine in all P. ginseng groups and the CLz/F of mesaconitine and hypaconitine in P. ginseng middle and high groups were decreased compared to the control group. Conclusion Orally administrated P. ginseng potentially inhibits the metabolism of DAs from Aconiti Lateralis Radix in rats.
Collapse
|
29
|
Yang M, Ji X, Zuo Z. Relationships between the Toxicities of Radix Aconiti Lateralis Preparata (Fuzi) and the Toxicokinetics of Its Main Diester-Diterpenoid Alkaloids. Toxins (Basel) 2018; 10:toxins10100391. [PMID: 30261585 PMCID: PMC6215299 DOI: 10.3390/toxins10100391] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
The processed lateral root of Aconitum carmichaelii Deb (Aconiti Radix lateralis praeparata or Fuzi) is a potent traditional herbal medicine extensively used in treatment of cardiovascular diseases, rheumatism arthritis, and bronchitis in many Asian countries. Although Fuzi has promising therapeutic effects, its toxicities are frequently observed. Three main C19-diester-diterpenoid alkaloids (DDAs) are believed to be the principal toxins of the herb. Although toxicokinetic profiles of the toxic DDAs have already been examined in several studies, they have seldom been correlated with the toxicities of Fuzi. The current article aimed to investigate the relationship between the up-to-date toxicokinetic data of the toxic DDAs and the existing evidence of the toxic effects of Fuzi. Relationships between the cardiac toxicity and the plasma and heart concentration of DDAs in mice and rats were established. Based on our findings, clinical monitoring of the plasma concentrations of DDAs of Fuzi is recommended to prevent potential cardiac toxicities. Additionally, caution with respect to potential hepatic and renal toxicity induced by Fuzi should be exercised. In addition, further analyses focusing on the preclinical tissue distribution profile of DDAs and on the long-term toxicokinetic-toxicity correlation of DDAs are warranted for a better understanding of the toxic mechanisms and safer use of Fuzi.
Collapse
Affiliation(s)
- Mengbi Yang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Xiaoyu Ji
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|