1
|
Zhao S, Liu M, Chen J, Meng L, Wang Y. Pathophysiological impacts of 5-MeO-MiPT on zebrafish (Danio rerio) via the Gα q/11-PLC β signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116969. [PMID: 39216220 DOI: 10.1016/j.ecoenv.2024.116969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Novel Psychoactive Substances (NPS) derived from tryptamines has been detected in aquatic environments, leading to environmental toxicology concerns. However, the specific toxicological mechanism, underlying these NPS, remains unclear. In our previous work, we used 5-Methoxy-N-isopropyl-N-methyltryptamine (5-MeO-MiPT) as the representative drug for NPS, and found that, 5-MeO-MiPT led to obvious behavioral inhibition and oxidative stress responses in zebrafishes model. In this study, Zebrafish were injected with varying concentrations of 5-MeO-MiPT for 30 days. RNA-seq, qPCR, metabolomics, and histopathological analyses were conducted to assess gene expression and tissue integrity. This study confirms that 5-MeO-MiPT substantially influences the transcription and expression of 13 selected genes, including ucp1, pet100, grik3, and grik4, mediated by the Gαq/11-PLCβ signaling pathway. We elucidate the molecular mechanism that 5-MeO-MiPT can inhibit DAG-Ca2+/Pkc/Erk, Pkc/Pla2/PLCs and Ca2+/Camk Ⅱ/NMDA, while enhance Ca2+/Creb. Those secondary signaling pathways may be the mechanisms mediating 5-MeO-MiPT inhibiting normal behavior in zebrafish. These findings offer novel insights into the toxicological effects and addiction mechanisms of 5-MeO-MiPT. Moreover, it presents promising avenues for investigating other tryptamine-based NPS and offers a new direction for diagnosing and treating liver-brain pathway-related diseases.
Collapse
Affiliation(s)
- Sen Zhao
- Zhejiang Police College, Zhejiang Key Laboratory of Drug Prevention and Control Technology, Hangzhou 310053, PR China
| | - Meng Liu
- Zhejiang Police College, Zhejiang Key Laboratory of Drug Prevention and Control Technology, Hangzhou 310053, PR China
| | - Jinyuan Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Liang Meng
- Department of Forensic Science, Fujian Police College, Fuzhou 350007, PR China.
| | - Yanjiao Wang
- Inovia Materials (HangZhou) Co. Ltd, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
2
|
Sen Zhao, Wang Y, Zhong C, Chen J, Meng L. Biotransformation of 5-methoxy-N-isopropyl-N-methyltryptamine by zebrafish and human liver microsome with high-resolution mass spectrometry. J Pharm Biomed Anal 2024; 241:115987. [PMID: 38280235 DOI: 10.1016/j.jpba.2024.115987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
To explore the metabolites of 5-Methoxy-N-isopropyl-N-methyltryptamine (5-MeO-MiPT) and unveil its toxicological effects, we examined its metabolic profiles using zebrafish and human liver microsome models. Employing ultra-high-performance liquid chromatography Q Exactive hybrid quadrupole-Orbitrap high-resolution mass spectrometry (UPLC-QE-HRMS), we analyzed samples from intoxicated zebrafish and human liver microsomes. In the zebrafish model, we identified a total of six metabolites. Primary phase I metabolic pathways involved N-Demethylation and Indole-hydroxylation reactions, while phase II metabolism included Glucoside conjugation directly, Glucoside conjugation after Indole-hydroxylation, and Sulfonation following Indole-hydroxylation. In the human liver microsome model, nine metabolites were generated. Major phase I metabolic pathways encompassed N-Demethylation, 5-O-Demethylation, and N-Depropylation, N-Oxidation, Indole-hydroxylation, N-Demethylation combined with Indole-hydroxylation, and 5-O-Methylation-carboxylation. Phase II metabolism involved Glucoside conjugation after Indole-hydroxylation, as well as Glucoside conjugation after 5-O-Demethylation. Proposed phase I metabolites, such as 5-MeO-MiPT-N-Demethylation (5-MeO-NiPT) and 5-MeO-MiPT-Indole-hydroxylation, alongside the phase II metabolite OH&Glucoside conjugation-5-MeO-MiPT, were identified as effective markers for screening 5-MeO-MiPT intake. This study systematically delineates the phase I and II metabolites of 5-MeO-MiPT, confirming their pathways through in vivo and in vitro extrapolation. Additionally, inclusion of the parent drug itself and OH&Glucoside conjugation-5-MeO-MiPT could serve as valuable confirmation tools.
Collapse
Affiliation(s)
- Sen Zhao
- Zhejiang Police College, Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Hangzhou 310053, PR China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yanjiao Wang
- Binjiang Institute of Zhejiang University, Hangzhou 310053, PR China
| | - Chenhao Zhong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jinyuan Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Liang Meng
- Department of Forensic Science, Fujian Police College, Fuzhou 350007, PR China.
| |
Collapse
|
3
|
Bergh MSS, Bogen IL, Grafinger KE, Huestis MA, Øiestad ÅML. Metabolite markers for three synthetic tryptamines N-ethyl-N-propyltryptamine, 4-hydroxy-N-ethyl-N-propyltryptamine, and 5-methoxy-N-ethyl-N-propyltryptamine. Drug Test Anal 2024. [PMID: 38459837 DOI: 10.1002/dta.3668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 03/11/2024]
Abstract
N-Ethyl-N-propyltryptamine (EPT), 4-hydroxy-N-ethyl-N-propyltryptamine (4-OH-EPT), and 5-methoxy-N-ethyl-N-propyltryptamine (5-MeO-EPT) are new psychoactive substances classified as tryptamines, sold online. Many tryptamines metabolize rapidly, and identifying the appropriate metabolites to reveal intake is essential. While the metabolism of 4-OH-EPT and 5-MeO-EPT are not previously described, EPT is known to form metabolites by indole ring hydroxylation among others. Based on general knowledge of metabolic patterns, 5-MeO-EPT is also expected to form ring hydroxylated EPT (5-OH-EPT). In the present study, the aim was to characterize the major metabolites of EPT, 4-OH-EPT, and 5-MeO-EPT, to provide markers for substance identification in forensic casework. The tryptamines were incubated with pooled human liver microsomes at 37°C for up to 4 h. The generated metabolites were separated and detected by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis. The major in vitro EPT metabolites were formed by hydroxylation, N-dealkylation, and carbonylation. In comparison, 4-OH-EPT metabolism was dominated by double bond formation, N-dealkylation, hydroxylation, and carbonylation in vitro and hydroxylation or carbonylation combined with double bond loss, carbonylation, N-dealkylation, and hydroxylation in vivo. 5-MeO-EPT was metabolized by O-demethylation, hydroxylation, and N-dealkylation in vitro. The usefulness of the characterized metabolites in forensic casework was demonstrated by identification of unique metabolites for 4-OH-EPT in a human postmortem blood sample with suspected EPT or 4-OH-EPT intoxication.
Collapse
Affiliation(s)
- Marianne Skov-Skov Bergh
- Section for Drug Abuse Research, Department of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Inger Lise Bogen
- Section for Drug Abuse Research, Department of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Katharina Elisabeth Grafinger
- Institute of Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Marilyn A Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Åse Marit Leere Øiestad
- Section for Forensic Toxicological Analytics, Department of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Bassi M, Bilel S, Tirri M, Corli G, Di Rosa F, Gregori A, Alkilany AM, Rachid O, Roda E, Zauli G, Locatelli CA, Marti M. Pharmaco-toxicological effects of the novel tryptamine hallucinogen 5-MeO-MiPT on motor, sensorimotor, physiological, and cardiorespiratory parameters in mice-from a human poisoning case to the preclinical evidence. Psychopharmacology (Berl) 2024; 241:489-511. [PMID: 38214743 PMCID: PMC10884077 DOI: 10.1007/s00213-024-06526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
RATIONALE The 5-methoxy-N-methyl-N-isopropyltryptamine (5-MeO-MiPT, known online as "Moxy") is a new psychedelic tryptamine first identified on Italian national territory in 2014. Its hallucinogen effects are broadly well-known; however, only few information is available regarding its pharmaco-toxicological effects. OBJECTIVES Following the seizure of this new psychoactive substances by the Arm of Carabinieri and the occurrence of a human intoxication case, in the current study we had the aim to characterize the in vivo acute effects of systemic administration of 5-MeO-MiPT (0.01-30 mg/kg i.p.) on sensorimotor (visual, acoustic, and overall tactile) responses, thermoregulation, and stimulated motor activity (drag and accelerod test) in CD-1 male mice. We also evaluated variation on sensory gating (PPI, prepulse inhibition; 0.01-10 mg/kg i.p.) and on cardiorespiratory parameters (MouseOx and BP-2000; 30 mg/kg i.p.). Lastly, we investigated the in silico ADMET (absorption, distribution, metabolism, excretion, toxicity) profile of 5-MeO-MiPT compared to 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) and N,N-dimethyltryptamine (DMT). RESULTS This study demonstrates that 5-MeO-MiPT dose-dependently inhibits sensorimotor and PPI responses and, at high doses, induces impairment of the stimulated motor activity and cardiorespiratory changes in mice. In silico prediction shows that the 5-MeO-MiPT toxicokinetic profile shares similarities with 5-MeO-DIPT and DMT and highlights a cytochrome risk associated with this compound. CONCLUSIONS Consumption of 5-MeO-MiPT can affect the ability to perform activities and pose a risk to human health status, as the correspondence between the effects induced in mice and the symptoms occurred in the intoxication case suggests. However, our findings suggest that 5-MeO-MiPT should not be excluded from research in the psychiatric therapy field.
Collapse
Grants
- Effects of NPS: development of a multicentre research for the information enhancement of the Early Warning System Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
- Implementation of the identification Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
- study of the effects of NPS: Development of a multicentric research to strengthen the database of the National Monitoring Centre for Drug Addiction Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
- the Early Warning System Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
- FAR 2021 Università degli Studi di Ferrara
- FAR 2022 Università degli Studi di Ferrara
- Anti-Drug Policies Department, Presidency of the Council of Ministers, Italy
Collapse
Affiliation(s)
- Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy
| | - Fabiana Di Rosa
- Department of Scientific Investigation (RIS), Carabinieri, 00191, Rome, Italy
| | - Adolfo Gregori
- Department of Scientific Investigation (RIS), Carabinieri, 00191, Rome, Italy
| | - Alaaldin M Alkilany
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Ousama Rachid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Via Fossato Di Mortara 70, 44121, Ferrara, Italy.
- Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Ferrara, Italy.
| |
Collapse
|
5
|
Zhutao G, Ding K, Zheng S, Ni C, Liang C, He S, Deng Q. UPLC-LTQ-Orbitrap Study on Rat Urinary Metabolites of 5-Methoxy-Alpha-Methyltryptamine. Curr Drug Metab 2024; 25:298-305. [PMID: 39005122 DOI: 10.2174/0113892002295551240628061732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE 5-Methoxy-α-Methyltryptamine (5-MeO-AMT) is a new psychoactive substance which is abused due to its hallucinogenic and euphoric effects. This study aimed to study the metabolic characteristics of 5-MeO-AMT. METHODS Five rats were given intraperitoneal injection at a dose of 50 mg/kg of 5-MeO-AMT, and their urine was subsequently collected at different times within 7 days. Ultra-high performance liquid chromatographytandem high-resolution mass spectrometry (UPLC-LTQ-Orbitrap) was used to detect the precise molecular weight and fragment ions of 5-MeO-AMT and its possible metabolites in the urine sample extracted with benzene-ethyl acetate. RESULTS Three metabolites, including OH-5-MeO-AMT, α-Me-5-HT, and N-Acetyl-5-MeO-AMT were identified in rats' urine. The major metabolic pathways involved O-demethylation, hydroxylation of indole ring, and Acetylation on aliphatic amines. CONCLUSION The results of this study are an important reference for the identification and screening of toxicants of 5-MeO-AMT.
Collapse
Affiliation(s)
- Guo Zhutao
- Department of Toxicants and Narcotics Examination Office, Shanghai Municipal Public Security Bureau, Shanghai, 200083, PR China
- School of Pharmacy, Fudan University, Department of Toxicants & Navcotics Examination Office, Shanghai, 201203, PR China
| | - Keran Ding
- Department of Toxicants and Narcotics Examination Office, Shanghai Municipal Public Security Bureau, Shanghai, 200083, PR China
- School of Pharmacy, Fudan University, Department of Toxicants & Navcotics Examination Office, Shanghai, 201203, PR China
| | - Shuiqing Zheng
- Department of Toxicants and Narcotics Examination Office, Shanghai Municipal Public Security Bureau, Shanghai, 200083, PR China
| | - Chunfang Ni
- Department of Toxicants and Narcotics Examination Office, Shanghai Municipal Public Security Bureau, Shanghai, 200083, PR China
| | - Chen Liang
- Department of Toxicants and Narcotics Examination Office, Shanghai Municipal Public Security Bureau, Shanghai, 200083, PR China
| | - Siyang He
- Department of Toxicants and Narcotics Examination Office, Shanghai Municipal Public Security Bureau, Shanghai, 200083, PR China
| | - Qianya Deng
- Department of Toxicants and Narcotics Examination Office, Shanghai Municipal Public Security Bureau, Shanghai, 200083, PR China
| |
Collapse
|
6
|
Human Hepatocyte 4-Acetoxy-N,N-Diisopropyltryptamine Metabolite Profiling by Reversed-Phase Liquid Chromatography Coupled with High-Resolution Tandem Mass Spectrometry. Metabolites 2022; 12:metabo12080705. [PMID: 36005577 PMCID: PMC9413566 DOI: 10.3390/metabo12080705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Tryptamine intoxications and fatalities are increasing, although these novel psychoactive substances (NPS) are not controlled in most countries. There are few data on the metabolic pathways and enzymes involved in tryptamine biotransformation. 4-acetoxy-N,N-diisopropyltryptamine (4-AcO-DiPT) is a synthetic tryptamine related to 4-hydroxy-N,N-diisopropyltryptamine (4-OH-DiPT), 4-acetyloxy-N,N-dipropyltryptamine (4-AcO-DPT), and 4-acetoxy-N,N-dimethyltryptamine (4-AcO-DMT). The aim of this study was to determine the best 4-AcO-DiPT metabolites to identify 4-AcO-DiPT consumption through human hepatocyte metabolism and high-resolution mass spectrometry. 4-AcO-DiPT metabolites were predicted in silico with GLORYx freeware to assist in metabolite identification. 4-AcO-DiPT was incubated with 10-donor-pooled human hepatocytes and sample analysis was performed with reversed-phase liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-HRMS/MS) in positive- and negative-ion modes. Software-assisted LC-HRMS/MS raw data mining was performed. A total of 47 phase I and II metabolites were predicted, and six metabolites were identified after 3 h incubation following ester hydrolysis, O-glucuronidation, O-sulfation, N-oxidation, and N-dealkylation. All second-generation metabolites were derived from the only first-generation metabolite detected after ester hydrolysis (4-OH-DiPT). The metabolite with the second-most-intense signal was 4-OH-iPT-sulfate followed by 4-OH-DiPT-glucuronide, indicating that glucuronidation and sulfation are common in this tryptamine’s metabolic pathway. 4-OH-DiPT, 4-OH-iPT, and 4-OH-DiPT-N-oxide are suggested as optimal biomarkers to identify 4-AcO-DiPT consumption.
Collapse
|
7
|
Mohr ALA, Logan BK, Fogarty MF, Krotulski AJ, Papsun DM, Kacinko SL, Huestis MA, Ropero-Miller JD. Reports of Adverse Events Associated with Use of Novel Psychoactive Substances, 2017-2020: A Review. J Anal Toxicol 2022; 46:e116-e185. [PMID: 35445267 PMCID: PMC9282356 DOI: 10.1093/jat/bkac023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
An important role of modern forensic and clinical toxicologists is to monitor the adverse events of novel psychoactive substances (NPS). Following a prior review from 2013 to 2016, this critical literature review analyzes and evaluates published case reports for NPS from January 2017 through December 2020. The primary objective of this study is to assist in the assessment and interpretation of these cases as well as provide references for confirmation methods. Chemistry, pharmacology, adverse events and user profiles (e.g., polypharmacy) for NPS are provided including case history, clinical symptoms, autopsy findings and analytical results. Literature reviews were performed in PubMed and Google Scholar for publications using search terms such as NPS specific names, general terms (e.g., 'designer drugs' and 'novel psychoactive substances'), drug classes (e.g., 'designer stimulants') and outcome-based terms (e.g., 'overdose' and 'death'). Government and website drug surveillance databases and abstracts published by professional forensic science organizations were also searched. Toxicological data and detailed case information were extracted, tabulated, analyzed and organized by drug category. Case reports included overdose fatalities (378 cases), clinical treatment and hospitalization (771 cases) and driving under the influence of drugs (170 cases) for a total of 1,319 cases providing details of adverse events associated with NPS. Confirmed adverse events with associated toxidromes of more than 60 NPS were reported including synthetic cannabinoid, NPS stimulant, NPS hallucinogen, NPS benzodiazepine and NPS opioid cases. Fifty of these NPS were reported for the first time in January 2017 through December 2020 as compared to the previous 4 years surveyed. This study provides insight and context of case findings described in the literature and in digital government surveillance databases and websites during a recent 4-year period. This review will increase the awareness of adverse events associated with NPS use to better characterize international emerging drug threats.
Collapse
Affiliation(s)
- Amanda L A Mohr
- Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation, 2300 Stratford Ave, Willow Grove, PA 19090, USA
| | - Barry K Logan
- Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation, 2300 Stratford Ave, Willow Grove, PA 19090, USA
- NMS Labs, 200 Welsh Rd, Horsham, PA 19044, USA
| | - Melissa F Fogarty
- Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation, 2300 Stratford Ave, Willow Grove, PA 19090, USA
| | - Alex J Krotulski
- Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation, 2300 Stratford Ave, Willow Grove, PA 19090, USA
| | | | | | - Marilyn A Huestis
- Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation, 2300 Stratford Ave, Willow Grove, PA 19090, USA
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jeri D Ropero-Miller
- RTI International, Center for Forensic Sciences, 3040 East Cornwallis Rd, Research Triangle Park, NC 27709, USA
| |
Collapse
|
8
|
Zhai W, Li L, Zhao J, Xiang P, Liu M, Shi Y, Dang Y. Tentative identification of in vitro metabolites of O-acetylpsilocin (psilacetin, 4-AcO-DMT) by UHPLC-Q-Orbitrap MS. Drug Test Anal 2022; 14:1300-1309. [PMID: 35312166 DOI: 10.1002/dta.3255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022]
Abstract
4-Acetoxy-N,N-dimethyltryptamine (4-AcO-DMT, psilacetin, O-acetylpsilocin) is a synthetic tryptamine with psychedelic properties. Psilacetin may also act as precursor drug of psilocin, similar to psilocybin, but little is known about its metabolism. In this study, the phase I and phase II in vitro metabolism of 4-AcO-DMT was investigated with pooled human liver microsomes, and the reaction mixture was analyzed using liquid chromatography-quadrupole/electrostatic field orbitrap mass spectrometry. Fifteen metabolites were formed after incubation of pooled human liver microsomes with 4-AcO-DMT (12 phase I metabolites and 3 phase II metabolites). The proposed metabolite structures were based on accurate mass analysis and MS/MS fragmentation patterns. The biotransformations included hydrolysis, hydroxylation, N-demethylation, oxidation, and conjugation with glucuronic acid. The hydrolysis metabolite was the most abundant compound. For the development of new methods for the identification of 4-AcO-DMT consumption, the beta-hydroxylation metabolite of 4-AcO-DMT (M2-1) is recommended as a biomarker. The data reported in this work might be applicable to metabolic transformation of 4-AcO-DMT in vivo and also forensically helpful.
Collapse
Affiliation(s)
- Wenya Zhai
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Le Li
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Junbo Zhao
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Mengxi Liu
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Yan Shi
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Yonghui Dang
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
9
|
Pharmacological and metabolic characterization of the novel synthetic opioid brorphine and its detection in routine casework. Forensic Sci Int 2021; 327:110989. [PMID: 34509061 DOI: 10.1016/j.forsciint.2021.110989] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/21/2022]
Abstract
After their first emergence in 2009, Novel synthetic opioids (NSO) have become an emerging class of New Psychoactive Substances (NPS) on the market for these new drugs. So far, 67 NSO have been reported to the Early Warning system of the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). It is presumed that NSO mainly target the four known opioid receptors, i.e. the μ-opioid (MOR), the δ-opioid (DOR), the κ-opioid (KOR) and nociceptin receptors and that their consumption can result in serious adverse effects such as massive respiratory depression or death. In the present study we investigated the in vivo and in vitro metabolism of brorphine, a NSO that was first identified on the NPS market in August 2019 in the United States, using both a pooled human liver microsome assay and real forensic case samples. For the detection of metabolites LC-HR-MS/MS was used and quantification of brorphine was performed using an LC-MS/MS method. Additionally, we pharmacologically characterized brorphine regarding its activation of the MOR and KOR via G protein recruitment using the [35S]-GTPγS assay. In forensic urine samples, 14 distinct metabolites were identified, whereas in blood only four metabolites could be found. The pooled human liver microsome assay generated six distinct in vitro phase I metabolites. The most prominent in vivo metabolite was formed by N-oxydation, whereas the main in vitro metabolite was formed by hydroxylation. The pharmacological characterization at the MOR and KOR revealed brorphine to be a potent MOR agonist and a weak, partial KOR agonist in the [35S]-GTPγS assay.
Collapse
|
10
|
Wagmann L, Manier SK, Meyer MR. Can the Intake of a Synthetic Tryptamine be Detected Only by Blood Plasma Analysis? A Clinical Toxicology Case Involving 4-HO-MET. J Anal Toxicol 2021; 46:567-572. [PMID: 34100553 DOI: 10.1093/jat/bkab062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 11/14/2022] Open
Abstract
Tryptamines represent a group of hallucinogenic new psychoactive substances with increasing prevalence. Unfortunately, only limited data concerning their toxicology and bioanalysis is available as tryptamines are not included in routine screening procedures in many laboratories. In order to expand the current knowledge, we report a non-fatal clinical toxicology case involving the synthetic tryptamine 4-HO-MET (4-hydroxy-N-methyl-N-ethyl-tryptamine, 3-{2-[ethyl(methyl)amino]ethyl}-1H-indol-4-ol, metocin, or methylcybin). Only blood was available and our systematic blood plasma screening approaches based on gas chromatography-mass spectrometry (GC-MS) and liquid chromatography (LC) coupled to low-resolution linear ion trap mass spectrometry (ITMSn) or high-resolution tandem mass spectrometry (HRMS/MS) were conducted. The ingestion of the synthetic tryptamine 4-HO-MET could be revealed by blood plasma analysis using both LC-based systematic screening approaches, but not using GC-MS. Furthermore, the detection of metabolites, which may be used to confirm an intake of the parent compound 4-HO-MET, was only successful using LC-HRMS/MS most probably due to its increased sensitivity compared to LC-ITMSn. A total of four metabolites were detected in blood including N-demethyl-, oxo-, and hydroxy-4-HO-MET, as well as the N-oxide. Finally, LC-HRMS/MS analysis revealed a plasma concentration of 193 ng/mL for 4-HO-MET using the standard addition method. The presented data may help clinical and forensic toxicologists with the interpretation of future cases involving synthetic tryptamines, especially if only blood samples are available.
Collapse
Affiliation(s)
- Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Kirrberger Str. Geb. 46, 66421 Homburg, Germany
| | - Sascha K Manier
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Kirrberger Str. Geb. 46, 66421 Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Kirrberger Str. Geb. 46, 66421 Homburg, Germany
| |
Collapse
|
11
|
Manier SK, Felske C, Zapp J, Eckstein N, Meyer MR. Studies on the In Vitro and In Vivo Metabolic Fate of the New Psychoactive Substance N-Ethyl-N-Propyltryptamine for Analytical Purposes. J Anal Toxicol 2021; 45:195-202. [PMID: 32507893 DOI: 10.1093/jat/bkaa060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/29/2022] Open
Abstract
Prerequisites for the reliable identification of substances in terms of forensic and clinical toxicology or doping control include knowledge about their metabolism and their excretion patterns in urine. N-Ethyl-N-propyltryptamine (N-ethyl-N-[2-(1H-indol-3-yl)ethyl]propan-1-amine, EPT) is an N,N-dialkylated tryptamine derivative, sold as new psychoactive substance, and supposed to act as a partial agonist at the 5-HT2A receptor. The aims of the presented study were to elucidate in vitro metabolites of EPT after incubations with pooled human liver S9 fraction (pS9) and in vivo metabolites excreted into rat urine. Finally, suitable analytical target compounds should be identified. Analysis of pS9 incubations using liquid chromatography-high-resolution tandem mass spectrometry revealed EPT metabolites formed after N-dealkylation as well as alkyl and aryl hydroxylation and formation of a hydroxy sulfate. Investigations using rat urine after oral dosing showed that the metabolic pathways of EPT shifted from in vitro hydroxylation of the alkyl amine group to an increased in vivo hydroxylation of the indole ring with several N-dealkyl metabolites. A glucuronic acid conjugate after hydroxylation of the indole ring was additionally found in vivo. The parent compound could not be detected in the rat urine samples. Therefore, analytical methods using mass spectrometry should include hydroxy-EPT and two hydroxy-EPT glucuronide isomers for reliable identification.
Collapse
Affiliation(s)
- Sascha K Manier
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Center for Molecular Signaling (PZMS), 66421 Homburg, Germany
| | - Christina Felske
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Center for Molecular Signaling (PZMS), 66421 Homburg, Germany.,Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, 66953 Pirmasens, Germany
| | - Josef Zapp
- Department of Pharmaceutical Biology, Saarland University, 66123 Saarbrücken, Germany
| | - Niels Eckstein
- Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, 66953 Pirmasens, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Center for Molecular Signaling (PZMS), 66421 Homburg, Germany
| |
Collapse
|
12
|
Malaca S, Lo Faro AF, Tamborra A, Pichini S, Busardò FP, Huestis MA. Toxicology and Analysis of Psychoactive Tryptamines. Int J Mol Sci 2020; 21:E9279. [PMID: 33291798 PMCID: PMC7730282 DOI: 10.3390/ijms21239279] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
Our understanding of tryptamines is poor due to the lack of data globally. Tryptamines currently are not part of typical toxicology testing regimens and their contribution to drug overdoses may be underestimated. Although their prevalence was low, it is increasing. There are few published data on the many new compounds, their mechanisms of action, onset and duration of action, toxicity, signs and symptoms of intoxication and analytical methods to identify tryptamines and their metabolites. We review the published literature and worldwide databases to describe the newest tryptamines, their toxicology, chemical structures and reported overdose cases. Tryptamines are 5-HT2A receptor agonists that produce altered perceptions of reality. Currently, the most prevalent tryptamines are 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DiPT), 5-methoxy-N,N- diallyltryptamine (5-MeO-DALT) and dimethyltryptamine (DMT). From 2015 to 2020, 22 new analytical methods were developed to identify/quantify tryptamines and metabolites in biological samples, primarily by liquid chromatography tandem mass spectrometry. The morbidity accompanying tryptamine intake is considerable and it is critical for clinicians and laboratorians to be informed of the latest data on this public health threat.
Collapse
Affiliation(s)
- Sara Malaca
- Department of Excellence of Biomedical Sciences and Public Health, University “Politecnica delle Marche” of Ancona, Via Tronto 10, 60126 Ancona, Italy; (S.M.); (A.F.L.F.); (A.T.)
| | - Alfredo Fabrizio Lo Faro
- Department of Excellence of Biomedical Sciences and Public Health, University “Politecnica delle Marche” of Ancona, Via Tronto 10, 60126 Ancona, Italy; (S.M.); (A.F.L.F.); (A.T.)
| | - Alice Tamborra
- Department of Excellence of Biomedical Sciences and Public Health, University “Politecnica delle Marche” of Ancona, Via Tronto 10, 60126 Ancona, Italy; (S.M.); (A.F.L.F.); (A.T.)
| | - Simona Pichini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, V.Le Regina Elena 299, 00161 Rome, Italy;
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Sciences and Public Health, University “Politecnica delle Marche” of Ancona, Via Tronto 10, 60126 Ancona, Italy; (S.M.); (A.F.L.F.); (A.T.)
| | - Marilyn A. Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, 1020 Walnut St, Philadelphia, PA 19144, USA;
| |
Collapse
|
13
|
Grafinger KE, Liechti ME, Liakoni E. Clinical value of analytical testing in patients presenting with new psychoactive substances intoxication. Br J Clin Pharmacol 2019; 86:429-436. [PMID: 31483059 DOI: 10.1111/bcp.14115] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
New psychoactive substances (NPS) have emerged worldwide in recent years, posing a threat to public health and a challenge to drug policy. NPS are usually derivatives or analogues of classical recreational drugs designed to imitate their effects while circumventing regulations. This article provides an overview of benefits and limitations of analytical screening in managing patients presenting with acute NPS toxicity. NPS typically cannot be analytically identified with the usual immunoassay tests. To detect NPS using an immunoassay, antibodies specifically binding to the new structures would have to be developed, which is complicated by the rapid change of the NPS market. Activity-based assays could circumvent this problem since no prior knowledge on the substance structure is necessary. However, classical recreational drugs activating the same receptors could lead to false positive results. Liquid or gas chromatography coupled with mass spectrometry is a valuable NPS analysis tool, but its costs (e.g. equipment), run time (results usually within hours vs minutes in case of immunoasssays) and the need for specialized personnel hinder its use in clinical setting, while factors such as lack of reference standards can pose further limitations. Although supportive measures are sufficient in most cases for adequate patient management, the detection and identification of NPS can contribute significantly to public health and safety in cases of e.g. cluster intoxications and outbreaks, and to the investigation of these novel compounds' properties. However, this requires not only availability of the necessary equipment and personnel, but also collaboration between clinicians, authorities and laboratories.
Collapse
Affiliation(s)
- Katharina Elisabeth Grafinger
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Evangelia Liakoni
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Grafinger KE, Wilke A, König S, Weinmann W. Investigating the ability of the microbial model Cunninghamella elegans for the metabolism of synthetic tryptamines. Drug Test Anal 2018; 11:721-729. [PMID: 30462883 DOI: 10.1002/dta.2544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 11/11/2022]
Abstract
Tryptamines can occur naturally in plants, mushrooms, microbes, and amphibians. Synthetic tryptamines are sold as new psychoactive substances (NPS) because of their hallucinogenic effects. When it comes to NPS, metabolism studies are of crucial importance, due to the lack of pharmacological and toxicological data. Different approaches can be taken to study in vitro and in vivo metabolism of xenobiotica. The zygomycete fungus Cunninghamella elegans (C. elegans) can be used as a microbial model for the study of drug metabolism. The current study investigated the biotransformation of four naturally occurring and synthetic tryptamines [N,N-Dimethyltryptamine (DMT), 4-hydroxy-N-methyl-N-ethyltryptamine (4-HO-MET), N,N-di allyl-5-methoxy tryptamine (5-MeO-DALT) and 5-methoxy-N-methyl-N-isoporpoyltryptamine (5-MeO-MiPT)] in C. elegans after incubation for 72 hours. Metabolites were identified using liquid chromatography-high resolution-tandem mass spectrometry (LC-HR-MS/MS) with a quadrupole time-of-flight (QqTOF) instrument. Results were compared to already published data on these substances. C. elegans was capable of producing all major biotransformation steps: hydroxylation, N-oxide formation, carboxylation, deamination, and demethylation. On average 63% of phase I metabolites found in the literature could also be detected in C. elegans. Additionally, metabolites specific for C. elegans were identified. Therefore, C. elegans is a suitable complementary model to other in vitro or in vivo methods to study the metabolism of naturally occurring or synthetic tryptamines.
Collapse
Affiliation(s)
- Katharina Elisabeth Grafinger
- Institute of Forensic Medicine, Forensic Toxicology and Chemistry, University of Bern, Bühlstrasse 20, 3012, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - Andreas Wilke
- Department of Mechanical and Process Engineering, University of Applied Sciences Offenburg, Badstrasse 24, 77652, Offenburg, Germany
| | - Stefan König
- Institute of Forensic Medicine, Forensic Toxicology and Chemistry, University of Bern, Bühlstrasse 20, 3012, Bern, Switzerland
| | - Wolfgang Weinmann
- Institute of Forensic Medicine, Forensic Toxicology and Chemistry, University of Bern, Bühlstrasse 20, 3012, Bern, Switzerland
| |
Collapse
|
15
|
Grafinger KE, Stahl K, Wilke A, König S, Weinmann W. In vitro phase I metabolism of three phenethylamines 25D-NBOMe, 25E-NBOMe and 25N-NBOMe using microsomal and microbial models. Drug Test Anal 2018; 10:1607-1626. [PMID: 29971945 DOI: 10.1002/dta.2446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/04/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
Abstract
Numerous 2,5-dimethoxy-N-benzylphenethylamines (NBOMe), carrying a variety of lipophilic substituents at the 4-position, are potent agonists at 5-hydroxytryptamine (5HT2A ) receptors and show hallucinogenic effects. The present study investigated the metabolism of 25D-NBOMe, 25E-NBOMe, and 25N-NBOMe using the microsomal model of pooled human liver microsomes (pHLM) and the microbial model of the fungi Cunninghamella elegans (C. elegans). Identification of metabolites was performed using liquid chromatography-high resolution-tandem mass spectrometry (LC-HR-MS/MS) with a quadrupole time-of-flight (QqToF) instrument. In total, 36 25D-NBOMe phase I metabolites, 26 25E-NBOMe phase I metabolites and 24 25N-NBOMe phase I metabolites were detected and identified in pHLM. Furthermore, 14 metabolites of 25D-NBOMe, 11 25E-NBOMe metabolites, and nine 25N-NBOMe metabolites could be found in C. elegans. The main biotransformation steps observed were oxidative deamination, oxidative N-dealkylation also in combination with hydroxylation, oxidative O-demethylation possibly combined with hydroxylation, oxidation of secondary alcohols, mono- and dihydroxylation, oxidation of primary alcohols, and carboxylation of primary alcohols. Additionally, oxidative di-O-demethylation for 25E-NBOMe and reduction of the aromatic nitro group and N-acetylation of the primary aromatic amine for 25N-NBOMe took place. The resulting 25N-NBOMe metabolites were unique for NBOMe compounds. For all NBOMes investigated, the corresponding 2,5-dimethoxyphenethylamine (2C-X) metabolite was detected. This study reports for the first time 25X-NBOMe N-oxide metabolites and hydroxylamine metabolites, which were identified for 25D-NBOMe and 25N-NBOMe and all three investigated NBOMes, respectively. C. elegans was capable of generating all main biotransformation steps observed in pHLM and might therefore be an interesting model for further studies of new psychoactive substances (NPS) metabolism.
Collapse
Affiliation(s)
- Katharina Elisabeth Grafinger
- Institute of Forensic Medicine, Forensic Toxicology and Chemistry, University of Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Katja Stahl
- Department of Mechanical and Process Engineering, University of Applied Sciences Offenburg, Germany
| | - Andreas Wilke
- Department of Mechanical and Process Engineering, University of Applied Sciences Offenburg, Germany
| | - Stefan König
- Institute of Forensic Medicine, Forensic Toxicology and Chemistry, University of Bern, Switzerland
| | - Wolfgang Weinmann
- Institute of Forensic Medicine, Forensic Toxicology and Chemistry, University of Bern, Switzerland
| |
Collapse
|
16
|
Study of the in vitro and in vivo metabolism of 4-HO-MET. Forensic Sci Int 2018; 290:103-110. [PMID: 30015274 DOI: 10.1016/j.forsciint.2018.06.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 01/18/2023]
Abstract
4-Hydroxy-N-methyl-N-ethyltryptamine (4-HO-MET) is a new psychoactive substance (NPS) of the chemical class of tryptamines. It shows structural similarities to the endogenous neurotransmitter serotonin, and is a serotonergic hallucinogen, affecting emotional, motoric, and cognitive functions. The knowledge about its biotransformation is mandatory to confirm the abuse of the substance by urine analysis in forensic cases. Therefore, phase I metabolites were generated by the use of the pooled human liver microsomes (pHLM) in vitro model and analyzed by high-performance liquid chromatography high-resolution tandem mass spectrometry with information-dependent acquisition (HPLC-IDA-HR-MS/MS). Furthermore, three authentic urine samples was analyzed and results were compared: 12 different in vitro and 4 in vivo metabolites were found. The predominant biotransformation steps observed in vitro were mono- or dihydroxylation of 4-HO-MET, besides demethylation, demethylation in combination with monohydroxylation, formation of a carboxylic acid, deethylation, and oxidative deamination. In vivo, monohydroxylation, and glucuronidation were detected. A metabolic pathway based on these results was proposed. For the analysis of urine samples in forensic cases, the N-oxide metabolite and the HO-alkyl metabolite are recommended as target compounds, besides the glucuronides of 4-HO-MET and the parent compound 4-HO-MET itself.
Collapse
|
17
|
Watanabe S, Kuzhiumparambil U, Fu S. Structural Elucidation of Metabolites of Synthetic Cannabinoid UR-144 by Cunninghamella elegans Using Nuclear Magnetic Resonance (NMR) Spectroscopy. AAPS JOURNAL 2018. [DOI: 10.1208/s12248-018-0209-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Abstract
This summarizing and descriptive review article is an update on previously published reviews. It covers English-written and PubMed-listed review articles and original studies published between May 2016 and November 2017 on the toxicokinetics of new psychoactive substances (NPS). Compounds covered include stimulants and entactogens, synthetic cannabinoids, tryptamines, phenethylamine and phencyclidine-like drugs, benzodiazepines, and opioids. First, an overview and discussion is provided on selected review articles followed by an overview and discussion on selected original studies. Both sections are then concluded by an opinion on these latest developments. The present review shows that the NPS market is still highly dynamic and that studies regarding their toxicokinetics are necessary to understand risks associated with their consumption. Data collection and studies are encouraged to allow for detection of NPS in biological matrices in cases of acute intoxications or chronic consumption. Although some data are available, scientific papers dealing with the mechanistic reasons behind acute and chronic toxicity are still lacking.
Collapse
Affiliation(s)
- Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany.
| |
Collapse
|
19
|
Abstract
Bioanalysis of new psychoactive substances (NPS) is very challenging due to the growing number of compounds with new chemical structures found on the drugs of abuse market. Screening, identification, and quantification in biosamples are needed in clinical and forensic toxicology settings, and these procedures are more challenging than the analysis of seized drug material because of extremely low concentrations encountered in biofluids but also due to diverse metabolic alterations of the parent compounds. This article focuses on bioanalytical single- and multi-analyte procedures applicable to a broad variety of NPS in various biomatrices, such as blood, urine, oral fluid, or hair. Sample preparation, instrumentation, detection modes, and data evaluation are discussed as well as corresponding pitfalls. PubMed-listed and English-written original research papers and review articles published online between 01 October 2012 and 30 September 2017 were considered.
Collapse
Affiliation(s)
- Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Hans H Maurer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany.
| |
Collapse
|